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Part I: Leaflet to the Human Experiments. There are totally 50 par-
ticipants doing the experiments together. The experiment situa-
tion is the same for everyone. Once the experiments begin, any
kind of communication is not allowed.

Together with other participants, you shall engage in a re-
source-allocation experiment. For the experiment, there are two
virtual rooms (Room 1 and Room 2), and the amounts of virtual
money in the two rooms are M1 and M2, respectively. The value
of M1∕M2 is fixed in one experiment, but is not announced. In
each round, you have to choose to enter one of the two rooms,
in order to share alike the virtual money inside the room. After
everyone has made decision, those who earned more than the
global average are regarded as winners of the round, and the
room which the winners had entered as the winning room.

After you log in, you will see the choosing panel on the com-
puter screen (as shown in Fig. S1B), buttons with numbers of 1
and 2 are used to choose Room 1 and Room 2. The left displays
your current score (a) and the current experiment round (t).
During the experiment, 60 s were given for making choice. If
you could not decide your choice within 60 s, the experiment-con-
trol computer program would assign you a random choice with
probability 50%. Nevertheless, the participant who borrowed
the computer’s choice twice would be automatically kicked out of
the experiment. In each round of the experiment, the experiment-
control computer program will update the score for each parti-
cipant after all the participants have made their choices. If your
score is added 1 point, it means that the room you have chosen
happened to be the winning room. If the score keeps unchanged,
it may have two possible interpretations: either the other room
won or neither of the rooms won (i.e., the experiment ended
in a draw).

The initial capital of each participant is 0 point and the total
payoff of a participant is the accumulated scores (points) of all
the experiment rounds. At the end of the experiments, as a pre-
mium, this payoff (points) will be converted to the monetary pay-
off in Renminbi with a fixed exchange rate 1∶1 (namely, one point
equals to one Chinese Yuan). Try to win more points, and then
you can get more premium.

Part II: The Open Complex Adaptive System (CAS)—Theoretical
Analysis of the Agent-Based Modeling. Besides the simulations
performed in the main text here we present some theoretical ana-
lysis for the same open system. It is reasonable to assume that, if
P is not too small, the right column of a strategy filled in by 1 with
probability L∕P is equal to the one filled in 1 with the number of
L. Hence strategies with the same preference number L can be
regarded as the same. It is worth noting that if the situations vary
in a random manner, the probability is L∕P for a normal agent to
choose Room 1 using a strategy with preference number L. Next,
we assume that the preference number of the best strategy held
by normal agent i at time T, is Li. Denote the choice of room as xi
so that xi ¼ 1 if Room 1 is chosen and xi ¼ 0 otherwise. At the
same time, let imitating agent j choose to follow the normal agent
μ, the best agent (who has the highest score) in the group of size k
(1 ≤ k ≤ Nn). For the imitating agent, its choice of room is
yj ¼ xμ, and its preference number becomes Lj ¼ Lμ. With these
definitions, the total number of agents in Room 1 at time T can be
written as

N1 ¼ ∑
Nn

i¼1

xi þ∑
Nm

j¼1

yj: [S1]

It is obvious that hxii ¼ Li∕P, which can be used to derive the
expectation and the variance of the population in Room 1 as

hN1i ¼
1

P

�
∑
Nn

i¼1

Li þ∑
Nm

j¼1

Lj

�
;

σ2N1
¼ ∑

Nn

i¼1

σ2xi þ∑
Nm

j¼1

σ2yj þ∑
Nn

i¼1
∑
Nm

j¼1

ðhxiyji − hxiihyjiÞ

[S2]

þ ∑
Nm

p;q¼1;p≠q

ðhypyqi − hypihyqiÞ: [S3]

Owing to the specific method for the construction of strategies
in the resource-allocation model, the covariance between the
choices of different normal agents can be neglected. On the
right-hand side of Eq. S3, the third term is the correlation be-
tween choices of the normal agents and those of the imitating
agents who followed them. The fourth item is the correlation
between the choices of different imitating agents who followed
the same normal agent. Both terms should always be positive,
which means that adding the imitating agents could cause large
fluctuations (volatility) in the resource-allocation system. It
should be emphasized here that the stability defined in the main
text is different from the traditional definition of variance. The
former characterizes both the deviation and the fluctuation to the
idealized room population in the balanced state, while the latter
only represents the fluctuation to the mean value of the time ser-
ies. When the resource distribution is comparable (M1∕M2 ≈ 1),
because normal agents are able to produce the idealized popula-
tion or hN1i∕hN2i ≈M1∕M2, these two kinds of definitions
are approximately equal. This condition explains why the stability
can be destroyed when imitating agents are involved in situations
with a nearly unbiased resource distribution. However, when the
system environment becomes difficult for the normal agents to
adapt to, the difference between the “variance” and the “stabi-
lity” cannot be neglected. If no imitating agents are involved, the
normal agents alone cannot make the system reach the balanced
state. In that case, even if the fluctuation of N1∕N2 to its average
value could be made small, the deviation to the idealized popula-
tion ratio can still be very large. This situation would make the
system suffer from a higher dissipation. If an appropriate portion
of imitating agents is added, the deviation of N1∕N2 to the idea-
lized room population diminishes, leaving only some fluctuations
around M1∕M2, which could result in a reduction of waste in the
resource allocation.

Then, we study the performance of different strategies
(namely, strategies with different preference numbers). We also
assume the condition of M1∕M2 ≥ 1, as used in the main text.
Assume that at time T, the winning rate of Room 1 is αðTÞ.
The expectation of the increment of score for the strategy with
the preference number L should be 1 − L

P þ ð2LP − 1ÞαðTÞ. Then
the expectation of the cumulative score for this strategy from
t ¼ 1 to t ¼ T can be expressed as
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f ðL;TÞ ¼
�
1 −

L
P

�
T þ

�
2L
P

− 1

�
∑
T

t¼1

αðtÞ: [S4]

From this expression, we can calculate the dependence of the
cumulative score on the preference number as

Δf
ΔL

¼ 2

P∑
T

t¼1

½αðtÞ − 0.5�: [S5]

It is easy to find from Eq. S3 that if ∑T
t¼1½αðtÞ − 0.5� > 0, f should

be a monotonically increasing function with L. Now we assume
that ½αðTÞ − 0.5� is always positive, which is not a too stringent
condition as long as M1 is large enough. As the experiment
evolves under this assumption, the gap of scores among different
strategies of different preference numbers will become larger and
larger. Eventually, the best performed strategy owned by a nor-
mal agent would be the one with the largest L in its strategy book.
As a consequence, imitating agents will choose to follow those
who own the strategy with the largest preference number Lmax.
From Eq. S2, it is obvious that hN1i will also reach its maximum
value hN1imax, when both Li and Lj reach their maximum values.
With this maximum value of the expected population in Room 1,
we can propose the following two conditions:

• If hN1imax <
M1

M1þM2
N, the system can never reach the

balanced state.
• If hN1imax >

M1

M1þM2
N, the system can fluctuate around the

balanced state.

Denoting the population ratio hR1i ¼ hN1i∕N, we need to
calculate hR1imax ¼ hN1imax∕N, to evaluate the conditions above.
As the normal agents construct their strategies in a random way,
a strategy with an arbitrary preference number may be picked
up with a uniform probability 1∕ðP þ 1Þ. Thus, among the S
strategies of a normal agent, the probability to have Lmax ¼ ~L is
pð ~LÞ ¼ ð ~Lþ1

Pþ1
ÞS − ð ~L

Pþ1
ÞS. Because an imitating agent would choose

the best normal agent among the k group members, the probabil-
ity to have ðLmaxÞks ¼ ~L should be p0ð ~LÞ ¼ ð ~Lþ1

Pþ1
ÞkS − ð ~L

Pþ1
ÞkS. With

these probabilities, we obtain the population ratio as

hR1i ¼
1

NP

�
∑
Nn

i¼1

Li þ∑
Nm

j¼1

Lj

�

¼ 1

NP

�
Nn ∑

P

~L¼1

~Lpð ~LÞ þ Nm ∑
P

~L¼1

~Lp0ð ~LÞ
�

¼ 1 −
1

ðβ þ 1ÞP∑
P

~L¼1

��
~L

P þ 1

�
s
þ β

�
~L

P þ 1

�
ks
�
: [S6]

Part III: A Closed CAS—Simulations Based on the Agent-Based Model-
ing. For the open system discussed in the main text, if there are
too many imitating agents in the resource-allocation system, it
may still become a disturbing factor to the system. For the com-
pleteness of the study, here we consider a closed system in which
the number of normal and imitating agents is fixed at N ¼ 150
with the parameter β being varied. As shown in Fig. S2, in the
larger M1∕M2 region, situations with the imitating agents
(β ¼ 2.0 and 4.0) are generally better than those without the imi-
tating agents (β ¼0), similar to cases of the open system. Mean-
while, there clearly exists an optimized β (¼4.0 in the current
case) with which the best state of the closed system can be rea-
lized in the aspects of the efficiency (which, herein, only describes
the degree of balance of resource allocation in the model system)

and the stability. When β ¼ 9.0, the system seems to be disturbed
by the imitating agents and the performance (except the system
unpredictability) becomes even worse than the case of β ¼ 2.0.
The reason for this phenomenon may be explained as follows.
If too many imitating agents join the system, even the best normal
agents may be confused. Typically the best normal agents might
have wrong estimations about the system situation and then make
incorrect decisions. When the best normal agents’ decisions are
learnt by the imitating agents, the herd will overconsume the ar-
bitraging opportunities in the system as a result of the distribution
of biased resources, thus yielding a less efficient (or equivalently
less balanced) and less stable but still unpredictable state.

Part IV: An Alternative Approach to Analyzing Preferences of Normal
Agents and Imitating Agents in the Agent-Based Modeling: Analysis of
the Shannon Information Entropy. In order to study the agents’
preferences and their estimation of the system, the Shannon
information entropy (S1) may be introduced to our agent-based
modeling. The information entropy SI of a discrete random vari-
able X with possible values fx1;:::;xng is defined as SIðXÞ ¼
−∑n

i¼1 PðxiÞ lnPðxiÞ, in which PðxiÞ denotes the probability mass
function of xi. In the agent-based model, the information entropy
for a normal agent is SIi ¼ − Li

P ln
Li
P − P−Li

p ln P−Li
P , where Li stands

for the preference of the current strategy. If the normal agent
would choose two rooms with an equal probability, this informa-
tion entropy could reach the maximum value of ln 2. On the other
hand, the information entropy SIj for imitating agent j will be the
same as that of the normal agent he/she follows in the local group.
Thus the averaged information entropy of all the agents (i.e.,
normal agents and imitating agents) can be calculated as

SI ¼
1

N

�
∑
Nn

i¼1

SIi þ∑
Nm

j¼1

SIj

�
; [S7]

and the results are shown in Fig. S3A. As the averaged informa-
tion entropy decreases as M1∕M2 becomes larger, a clear-cut
average preference of agents emerges as the distribution of
resources gets more biased. This observation agrees with the ana-
lysis of participants’ preferences in the human experiments; see
Fig. 1 in the main text. Furthermore, the information content of
agent i can be defined as Ii ¼ ðln 2 − SIiÞ∕ ln 2. Note that a larger
Ii indicates that the agent has more confidence in a certain
room. The averaged information content for all the normal
agents (In) and imitating agents (Im) are shown in Fig. S3B. In
this figure, In decreases with the increase of the population of
imitating agents when M1∕M2 is small. This observation means
that normal agents can be confused by the actions of imitating
agents in a rather uniform distribution of the resource. When
M1∕M2 gets larger, In is nearly a constant implying that imitating
agents will no longer affect the estimation of the normal agents.
All of these arguments go well with the analysis of the experimen-
tal results in Fig. 1. The averaged information content of imitat-
ing agents has a rather drastic change as the environment varies.
When M1∕M2 ¼ 1, Im is pretty low, even lower than that of the
normal agents, a fact indicating that imitating agents have almost
unbiased preferences when the resource distribution is uniform.
As M1∕M2 increases, imitating agents are apt to flood into a
specific room and thus form the herd in the modeled system.

Part V: A Different Agent-Based Modeling in Which Imitating Agents
Follow the Majority, Rather than the Best Agent: an Open CAS vs. a
Closed One. To make our work more general, a different modeling
of the formation of herd is studied. Following the most successful
person is often seen in daily life, and there is another common
case following the majority. For example, people often decide
on which store or restaurant to patronize on the basis of how pop-
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ular they seem to be. In this sense, we make some changes to our
agent-based modeling adopted in the main text. Models’ main
structures are similar, but the difference between them is that the
“imitating agent” now follows the majority decision of his/her
group (namely, the current imitating agents act as local majority-
followers). This way of imitation means if more than half of
the group members choose Room 1, he/she will enter Room 1
accordingly.

As shown in Fig. S4 and Fig. S5, the system behaviors are
similar as those of “imitating the best.” The main difference
between Fig. 4 and Fig. S4 lies in Fig. S4C. WhenM1∕M2 is small,
adding imitating agents (local majority-followers) will cause
relatively larger fluctuations. From Fig. S5 we can find that in

the closed system of “following the majority,” there also exists
a proper β for one certain system environment M1∕M2. Com-
pared with Fig. S2, Fig. S5 shows that following the majority
works not that well as following the best and this is easy to under-
stand. The best normal agent owns the best strategy and is usually
much more sensitive than common ones, while the majority
reflects the average level of all the normal agents in the group.
Although quantitatively different, the main conclusions arising
from the two kinds of “following” are similar. Thus, the mechan-
ism on how to form the herd is not an essential problem, and both
imitating the best and following the majority can lead to similar
conclusions.

1. Shannon CE (1951) Prediction and entropy of printed English. The Bell System Tech-
nical Journal 30:50–64.

A B

Fig. S1. The desktops of the experiment-control computer program used in the computer-aided human experiments: The control panel (A) for the coordi-
nator and (B) for the human participants.
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Fig. S2. (A) hN1i∕hN2i, (B)e, (C) σ2∕N, and (D)w1 as a function ofM1∕M2, for a closed system. Parameters: N ¼ 150, S ¼ 4, P ¼ 16, k ¼ 5, and β ¼ 0;2.0;4.0, and
9.0. Simulations are run for 200 times, each over 400 time steps (first half for equilibration, the remaining half for statistics). In (A), “slope ¼ 1” denotes the
straight line with slope being 1.

A B

Fig. S3. The change of (A) the averaged information entropy (SI) for all the agents including the normal agents and imitating agents and (B) the averaged
information content for the normal agents (In) and imitating agents (Im), respectively. Simulations are run for 200 times, each over 400 time steps (first half for
equilibration, the remaining half for statistics). Parameters: Nn ¼ 50, S ¼ 4, P ¼ 16, and k ¼ 5.
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Fig. S4. (A) hN1i∕hN2i, (B)e, (C) σ2∕N, and (D)w1 as a function ofM1∕M2, for an open system. Parameters: Nn ¼ 50, P ¼ 16, S ¼ 4, k ¼ 5, and β ¼ 0;0.5;1.0, and
2.0. The imitating agents follow the majority of their local groups. Simulations are run for 200 times, each over 400 time steps (first half for equilibration, the
remaining half for statistics). In (A), “slope ¼ 1” denotes the straight line with slope being 1.
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Fig. S5. (A) hN1i∕hN2i, (B) e, (C) σ2∕N, and (D)w1 as a function ofM1∕M2, for a closed system. Parameters: N ¼ 150, P ¼ 16, S ¼ 4, k ¼ 5, and β ¼ 0;2.0;4.0, and
9.0. Others are the same as those information in Fig. S4.
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