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SI Materials and Methods
Computational Model of Cortical Trauma. Computational model of
cortical network. The dynamics of both pyramidal (PY) neurons
and interneurons (INs) are described with the one-compartment,
two-variable Morris–Lecar model, which is modified to account
for the correct membrane potential profile of neuronal spikes (1,
2). In addition, a spike frequency adaptation mechanism (2) was
incorporated into the model of PY neurons to account for the
activity-dependent adaptation displayed by these neurons. The
equations that govern the neuronal dynamics are (parameters
listed in Table S1) (Eqs. S1–S6)

C
dV
dt

¼ − gNamNðV −ENaÞ− gKωðV ÞðV −EKÞ
− gLðV −ELÞ− Iad − Isyn − Iaff ;

[S1]

dω
dt

¼ ϕ$ðωNðV Þ−ωÞcoshððV −V3Þ=2V4Þ; [S2]

mNðV Þ ¼ 0:5$ð1þ tanhððV −V1Þ=V2ÞÞ; [S3]

ωNðV Þ ¼ 0:5$ð1þ tanhððV −V3Þ=V4ÞÞ; [S4]

IadðtÞ ¼ gadzðV −EKÞ; and [S5]
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¼ α
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ð1þ expððβ−V Þ=γÞÞ− z
�
: [S6]

Eqs. S1–S4 are a one-compartment, two-variable Morris–Lecar
model of neuronal dynamics (1), which is modified to account for
correct voltage of spike generation in central neurons (2). Eqs.
S5 and S6 are for the adaptation current (2) that is added only to
the dynamics of model PY neurons.
Synaptic currents at PY–PY synapses had both AMPA and

NMDA components, with both AMPA and NMDA con-
ductances attenuated by synaptic depression as described be-
low. Inhibitory synaptic currents did not incorporate synaptic
depression.
Synaptic transmission was modeled as a deterministic process

in which the dynamics of AMPA and GABAA synaptic con-
ductances were described by the following generic equation, with
τD being the characteristic time of postsynaptic current decay
(Eq. S7):

dgAMPA;GABA

dt
¼ −

gAMPA;GABA

τD
þGX)PY ;X)INDδ

�
t− tspike

�
: [S7]

The value of maximal synaptic conductance, G, depended on the
pre- and postsynaptic neurons. Thus, GPY ) PY (maximal syn-
aptic conductance from PY to PY) was different from GIN ) PY

(maximal synaptic conductance from PY to inhibitory IN). The
values of these conductances are given in Table S1.
Temporal dynamics of NMDA conductance were modeled as

a difference of fast (gF) and slow (gS) exponentially decaying
components (Eqs. S8 and S9):

gNMDAðtÞ ¼ gSðtÞ− gFðtÞ
1þ 0:33½Mg�expð-0:06VÞ and [S8]

dgF;S
dt

¼ −
gF;S
τF;S

þGNMDADδ
�
t− tspike

�
: [S9]

The parameter D accounted for the efficacy of synaptic trans-
mission. For GABAergic synapses, this parameter was held fixed
(D = 1). For excitatory AMPA and NMDA synapses, it evolved
according to the following equation, with U representing the
strength of synaptic short-term depression (3) (Eq. S10):

dD
dt

¼ 1−D
τR

−Uδ
�
t− tspike

�
: [S10]

Unless otherwise specified, all synaptic parameters were the same
as the ones reported in Table S1. The different synaptic currents
were described by the following equations (Eqs. S11–S13):

IAMPAðtÞ ¼ gAMPAðtÞðV −EAMPAÞ; [S11]

INMDAðtÞ ¼ gNMDAðtÞðV −ENMDAÞ; and [S12]

IGABAðtÞ ¼ gGABAðtÞðV −EGABAÞ: [S13]

In addition to synaptic currents from their peers inside the
network, each model neuron was also stimulated by inputs from
other cortical areas. For each neuron, this stimulation was
modeled as an independent and uncorrelated Poisson process
(100 Hz) that stimulated the canonic AMPA conductance gEX at
times tEX (Eqs. S14 and S15):

dgEX
dt

¼ −
gEX
τEX

þGEXδðt− tEX Þ and [S14]

Iaff ðtÞ ¼ gEX ðtÞðV −EAMPAÞ: [S15]

Synaptic strength parameters in the baseline version of this
computational model (before action of homeostatic plasticity)
were constrained by the firing characteristics of cortical neurons
in intact cortex. There were four specific requirements on model
neurons. (i) Both PYs and INs fire asynchronously in the base-
line model of intact cortex. (ii) Synaptic interactions contribute
significantly to neuronal firing. (iii) PYs display spike frequency
adaptation. (iv) The mean rate of PY firing is w5 Hz, and the
mean rate of IN firing is w10 Hz. As shown in the work by
Houweling et al. (4), an asynchronous state can be obtained only
if the average recurrent synaptic conductance is constrained to
be smaller than the synaptic conductance that conveys afferent
excitation to a model neuron. That is, synaptic conductance has
to satisfy GPY ) PY < GPY ) EX and GIN ) PY < GIN ) EX. With
these considerations in mind, parameters were similar to the
parameters reported in Table S1.
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In this work, we considered 2D cortical networks of 80 × 80
model neurons, of which 80% (5,120 neurons) were excitatory;
the remaining 20% (1,280 neurons) were inhibitory. Each model
neuron could establish, with probability pc = 0.6, a unidirectional
synaptic connection with any other model neurons found within
its footprint (10 × 10 neurons). In some simulations, we scaled
the network size from 80 × 80 to 160 × 160 neurons (leaving all
other parameters the same) to check the robustness of our ob-
servations. The effect of self-synapses (autapses) was not ad-
dressed in the present study. To account for possible variations
in intrinsic excitability of cortical neurons, the actual value of
leak conductance, gL, was drawn from Gaussian distribution
centered around the mean egL (σg = 0.08) and truncated at
½0:95egL; 1:05egL�.
Deafferentation of model cortical network. Cortical deafferentation
was modeled here as a two-parameter scenario (fD and rD) in
which either the fraction of deafferented cells, fD, or the drop in
the rate of external stimulation, rD, could be varied. Thus, a pair
(fD = 0.4, rD = 0.1) designates the scenario in which 40% of
model neurons had the rate of their external stimulation reduced
to 10% of its value in intact cortex model (100 Hz). In the case of
random deafferentation, the spatial pattern of deafferentation
was determined by random selection of the corresponding
number of model neurons.
Homeostatic regulation of synaptic conductances. Experimental evi-
dence (5, 6) and computational models (4, 7, 8) have shown that
homeostatic plasticity (HSP) plays an important role in the re-
organization of cortical networks’ activity after deafferentation.
Homeostatic plasticity is a multifaceted process that encom-
passes activity-dependent change in synaptic conductance (9) as
well as changes in intrinsic excitability (10) or modulation of
synaptic transmitter release probability (11).
To avoid conflating the effects of different factors, we con-

centrated on the homeostatic regulation of synaptic conductances
and used a simple rule of HSP cast in the following equations (4)
(Eqs. S16 and S17):

GPY)PY ¼ GPY)PY þ αHSPðv0 −�vÞGPY)PY and [S16]

GPY)IN ¼ GPY)IN − 0:5$αHSPðv0 −�vÞGPY)IN : [S17]

Because homeostatic regulation of synaptic and intrinsic con-
ductances occurs on the time scale of hours and days, compu-
tational modeling of these processes becomes intractable. In Eqs.
S16 and S17, the parameter αHSP is the rate of homeostatic
update, and v0 = 5 Hz is the preset target rate of PY neurons
firing (similar to the network-averaged firing rate of model PY
neurons in the baseline model of healthy cortical network).
Similar to the scheme used in refs. 4 and 7, at the end of a 4-s
window, the network-averaged firing rate of model pyramidal
neurons, �v, is computed, and then, Eqs. S16 and S17 are applied
to model synapses. Thus, Eqs. S16 and S17 constitute a discrete
approximation of homeostatic regulation; however, by increasing
the time window (from 4 to 8 s), we have verified that our
conclusions regarding the role of trauma pattern in epilepto-
genesis are robust with respect to the choice of specific averaging
time. Experimental data (9) suggest that homeostatic changes in
synaptic conductances occur within the range of 100%. There-
fore, in our model, a hard bound on the maximal value of syn-
aptic conductance was imposed, preventing it from increasing
beyond 100% of the initial value. Simultaneously, a minimal
value of zero was required for synaptic conductance to prevent
the possibility of negative values after down-regulation by HSP.
Although recent evidence indicates that excitatory synapses onto
inhibitory interneurons are also subject to homeostatic regula-
tion (12), we assumed that only the synapses on PY neurons are
modified after trauma.

Detection of network bursting events. We used here the following
algorithm to detect the events of intense collective activity (which
we henceforth term network bursting events). First, the time of
recording is partitioned into nonoverlapping bins of 100 ms each.
Binned spike count for each model neuron is obtained. As a rule
of thumb, a bursting event occurs in time bin Tburst if at least
NBT = fBTN of recorded model neurons fired action potentials
during this time bin, with an average rate of firing greater than
vBT. This operational definition is constrained by the minimal
fraction of active neurons, fBT, that define the bursting events
and by the minimal intraburst firing rate, vBT, of these active
neurons. In most of our analyses, we set fBT = 0.5 and vBT = 15
Hz. In the analysis that aimed to address the stochastic invasion
of bursting events into the deafferented cortex, the minimal
fraction of active neurons was reduced to fBT = 0.1. In general,
reduction of fBT led to the detection of more spatially localized
bursting events. However, higher vBT led to the detection of
only those events during which the neuronal activity was signif-
icantly intense.
Because it is computationally intractable to analyze the activity

of an entire network of 6,400 neurons, we sampled the activity
of a subset of neurons, using this sample to estimate the rate of
bursting events in the network. In the case of a randomly deaf-
ferented network, the sampling region was a square block (usually
20 × 20 model neurons) cocentered with the center of the 2D
network. In the case of a block-deafferented network, the sam-
pling region was composed of five parallel adjacent lines (re-
sulting in a total of 400 model neurons). These sampling
considerations were based on the realization that spatially ran-
dom deafferentation should result in activity roughly symmetric
with respect to the center of the lattice, whereas in the block-
deafferented case, the activity is likely to propagate from intact
into deafferented regions. Changing the sampling rules (i.e.,
performing center-symmetric sampling for block-deafferented
cases) did not qualitatively change our conclusions regarding
the difference between the random and spatially structured
deafferentation.
Correlated inputs. In a preliminary set of simulations, we tested the
effect that the correlation between afferent inputs would have on
the reorganization of electrical activity in posttraumatic cortical
network. We followed the method used in the work by Rudolph
and Destexhe (13) to generate correlation between afferent in-
puts to different model neurons. Specifically, at each time step
(dt = 0.1 ms), N0 Poisson-distributed events were generated,
with N0 ¼ N − ðN − 1Þ ffiffiffi

c
p

. These N0 events were then randomly
distributed across n = 6,400 model neurons. The correlation
between the activities of different afferents follows, because the
correlation parameter, c, introduces instantaneous redundancy
in synaptic activity (N0 # N).

Effects of Spike Frequency Adaptation on the Activity of Model PY
Neurons. Our primary focus was to understand the influence that
the network structure and spatial organization of trauma pattern
might have on the genesis of epileptic-like activity after trauma.
However, before studying the network effects, it was important to
understand how cell-intrinsic parameters can affect its dynamics.
Here, we consider the effects of the spike frequency adaptation
(the hyperpolarizing conductance).
In our model of cortical neuronal network, the spike-gener-

ating dynamics of both excitatory PY neurons and inhibitory INs
were described by a variant of the Morris–Lecar model that was
slightly modified to account for correct membrane voltages of
spike generation (1, 2). Spiking activity of real excitatory PY
neurons in the cortex is subject to adaptation. To account for this
effect, we added a phenomenological spike frequency adaptation
hyperpolarizing conductance to the dynamical equation of ex-
citatory neurons.
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To show how such spike frequency adaptation modifies the
firing properties of excitatory model neurons, we considered the
response of isolated model neurons (not connected to the net-
work) driven by afferent excitation for different strengths of
adaptation conductance. Fig. S1 shows that increasing adapta-
tion conductance always acted to decrease the firing rate of
a model neuron; this effect of spike frequency adaptation is
stronger for higher values of afferent excitatory synaptic con-
ductance, GEX (which led to higher neuronal firing rates). Both
the mean (Fig. S1 Center) and SD (Fig. S1 Right) of subthreshold
membrane potential were lower for stronger adaptation.

Dissipation of Network Bursts by Asynchronous Activity of Intact
Neurons. To assess the destructive effects that the asynchronous
activity might have on the nucleation and propagation of seizure-
like network bursts, we computed the rate of bursts (using the
same criteria for burst detection as described in the text) for
different sizes of sampling regions. If intact asynchronous activity
acts to dissipate the propagation of bursts through the network,
we would expect to see a negative correlation between the
sampling block size and rate of bursts (i.e., lower apparent rate of
bursts for larger samples). Moreover, the dependence of burst
rate on the sample size is expected to be stronger for milder
deafferentation (smaller values of fD).
Fig. S2A shows the results of this analysis. The sampling region

here was a block (of increasing size) symmetric relative to the
center of the 2D square lattice defined by model neurons. The
apparent rate of network bursts indeed decreases with increasing
sample size; this effect depends on the severity of deafferentation
(as captured by fD). For a given drop rD in afferent excitation rate,
milder deafferentation (smaller fD) leads to a steeper relation
between the burst rate and sampling block size.
As another measure of burst dissipation, we computed the pair

cross-covariance between activities of deafferented neurons,
plotting these results vs. the distance Dij (on lattice) between the
neurons. If burst propagation is hampered by the asynchronous
activity of intact neurons, we would expect the cross-covariance
to decrease with the increasing distance between the neurons. As
before, the steepness of this relation is expected to depend on
the drop rD in afferent excitation rate as well as on the fraction of
deafferented neurons fD, with greater rD leading to a faster decay
of cross-covariance.
To compute the cross-covariance, each neuron in the binary

spike time series {ti} was convolved with the Gaussian function
(μG = 0, σG = 1.5) to obtain smooth presentation of neuronal
spiking activity, {Si}. The cross-covariance Cij was then esti-
mated as (Eq. S18)

Cij ¼
D�

Si − μSi
��

Sj − μSj

�E
σSiσSj

; [S18]

where μSi and σSi are the mean and SD of Si.
Applying the above algorithm, a set of (Cij, Dij) pairs is ob-

tained for all pairs of neurons under consideration. Data pre-
sented in Fig. S2B were generated by first distributing the pair
distances in bins, each of 1.5 lattice constants width, and then
computing the mean cross-covariance for all (Cij, Dij) pairs in the
given distance bin. The Y values in Fig. S2B are, therefore, an

estimate of pair cross-covariance for neuronal pairs separated by
the distance D ± 1.5 lattice constants.
Fig. S2B shows that cross-covariance of electrical activity is

negatively correlated with the lattice distance between the neu-
rons, with lower values attained for neurons that are farther
apart. As expected, cross-covariance is lower for weaker drops in
afferent excitation rate (higher values of rD) and milder deaf-
ferentation (smaller values of fD), lending additional support to
the hypothesis of burst dissipation by asynchronous activity.
Thus, we conclude that bursts that are nucleated by the network
are dissipated as they propagate through the intact tissue. An
immediate corollary is that the spatial organization of intact vs.
deafferented regions is expected to critically affect the chances
to observe epileptic seizures in posttraumatic cortical network.

Posttraumatic Reorganization of Activity in Severely Traumatized
Network Depends on the Spatial Distribution of Intact Neurons.
Results for severely deafferented network (Fig. 2F) indicate
that posttraumatic reorganization of electrical activity might
depend on the spatial distribution of intact neurons. We set out
to elaborate on the network mechanisms of this relation. Results
presented below were obtained for simulations of very severe
deafferentation scenarios in which only a relatively small number
of model neurons, Ni, was left intact (we considered the cases of
Ni = 100 and Ni = 400 intact neurons of 6,400 neurons total). In
different simulations, the remaining intact neurons were uni-
formly distributed within a square of different side length, li, that
was varied between experiments, thus resulting in networks with
different spatial density of intact neurons, ρi ¼ Ni=l2i

(Fig. S3A).
In Fig. S3C, the dependence of burst rate on the spatial

density (ρi) of intact neurons is shown. The rate with which
bursting events could be nucleated in the network depended on
the spatial density of intact neurons, with low spatial density
(more diffuse distribution of intact neurons) resulting in low
burst rates. Both the mean firing rate of the remaining intact
neurons (Fig. S3E) and fluctuations in collective activity over
time (Fig. S3B) strongly depended on the spatial distribution of
intact neurons. More compact distribution of intact neurons
(larger ρi) required less HSP to bring the network back to the
steady state (Fig. S3D). This finding is consistent with the notion
that a sufficiently compact distribution of intact neurons pro-
motes the formation of intact recurrent circuits. In the absence
of strong asynchronous activity in the surrounding deafferented
neurons, these intact recurrent circuits can amplify the afferent
excitation to the point of burst nucleation. Consistent with this
explanation, when the number (Ni) of remaining intact neurons
was increased, the rate of network bursts slightly increased for
the same spatial density of intact neurons (Fig. 3 C–E, black
squares vs. red circles).
These results show that, in the case of very severe deaf-

ferentation, when most of the neurons in the network are de-
prived of afferent excitation, a small number of remaining intact
neurons can strongly affect the propensity of a network to gen-
erate seizure-like activity; this propensity strongly depends on the
spatial density of intact neurons. This conclusion offers a testable
hypothesis of the variability in the incidence of trauma-induced
epilepsy, which should be higher when relatively intact groups of
neurons are embedded into traumatized brain area.
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Fig. S1. Effects of spike frequency adaptation on the activity in model pyramidal neurons. (Left) Average firing rate of pyramidal neuron not connected to
the network vs. the strength of afferent synaptic conductance, GEX. Blue diamonds, gad = 3 mS/cm2; red circles, gad = 1 mS/cm2; dashed line, gad = 0 mS/cm2 (as
used in modeling of inhibitory interneuron). (Center) Average subthreshold membrane potential vs. the strength of afferent synaptic conductance, GEX, over
model neurons and over time. Symbols are the same as in Left. (Right) Average SD of neuronal membrane potential vs. the strength of afferent synaptic
conductance, GEX, over model neurons. Symbols are the same as in Left.

Fig. S2. Dissipation of network burst by asynchronous activity of intact neurons. (A) Apparent burst rate vs. the size of the sampling region (parameterized
here as the side of the sampling block) for different scenarios of deafferentation: fD = 0.66 (Left), fD = 0.72 (Center), and fD = 0.78 (Right). In all subpanels, black
bars denote the case rD = 0.1, and gray bars denote the case rD = 0.3. (B) Averaged (over pairs) cross-covariance Cij of neuronal activities vs. the averaged
distance Dij between neurons for different scenarios of deafferentation: fD = 0.66 (Left), fD = 0.72 (Center), and fD = 0.78 (Right). In all subpanels, black squares
denote the case rD = 0.1, and red circles denote the case rD = 0.3.
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Fig. S3. Spatial density of intact neurons determines the reorganization of electrical activity after nearly complete deafferentation. (A) Distributions of intact
neurons (black dots): Ni = 100 and ρi = 0.02 (Left), Ni = 100 and ρi = 0.06 (Center), and Ni = 100 and ρi = 1 (Right). (B) Temporal variations in network-averaged
firing rate of intact neurons. Different panels are the same as in A. (C) Burst rate vs. the density of intact neurons. Black squares, Ni = 100; red circles, Ni = 400.
Data points are mean ± SEM (n = 5). (D) Synaptic scaling factor (PY–PY) plotted vs. the density of intact neurons. Symbols are same as in C. Data points are mean ±
SEM (n = 5). (E) Network averaged firing rate of intact neurons vs. their spatial density. Symbols are same as in C. Data points are mean ± SEM (n = 5).

Table S1. Values of biophysical parameters used in modeling of cortical network

Parameter Value Parameter Value Parameter Value

V1 −1.2 mV EK −100 mV τF 2 ms
V2 23 mV EL −70 mV τS 80 ms
V3 −2 mV α 5.10−3 ms−1 τR 800 ms
V4 21 mV β 0 mV τEX 5 ms
C 1 μF/cm2 γ 5 mV U 0.07
ϕ 0.15 GPY ) PY 74.4 μS/cm2 [Mg] 0.8
gNa 10 mS/cm2 GIN ) PY 89.28 μS/cm2 EAMPA 0 mV
gK 10 mS/cm2 GPY ) IN 372 μS/cm2 ENMDA 0 mV
~gL 1.3 mS/cm2 GIN ) IN 74.4 μS/cm2 EGABA −70 mV
σg 0.08 mS/cm2 GNMDA 8.928 μS/cm2 PC 0.6
gad 3 mS/cm2 GEX 300 μS/cm2 αHSP 0.01
ENa 50 mV τD 5 ms v0 5 Hz
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