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SUPPORTING INFORMATION (SI) 
 

 
 

Figure S1: Example of spike isolation from one electrode. a) Three units discriminated 

based on their different waveform envelopes. Multielectrode arrays of single microwires 

allow for massive single-unit recording but some multi-unit activity may also be recorded 

(green waveforms). b) Waveform cluster separation in 3D principal component space. c) 

The panel on the left shows histograms of waveform clusters for each isolated unit. In the 

three panels to the right, ellipsoid superposition indicates the stability of the waveforms 

sampled regularly throughout the recording session (time in the z axis). d) Examples of 

units sorted in different channels from the same animal. 
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Figure S2: Placement of arrays within V1 and S1. a) The arrays targeted restricted 

portions of V1 and S1. AP for antero-posterior, ML for medial-lateral. Grey shading 

indicates the extent of V1 and S1 in stereotaxic coordinates (Paxinos, 1997). Red dots 

indicate array positioning. b) Arrays were aimed at cortical layer V (depth 1.5 mm for S1 

and 1.4 mm for V1). Cresyl-stained sections were used to verify the anatomical placement 

and depth of the electrodes. Note the parallel tracks stained in dark blue, due to gliosis 

around the electrodes. c) Cytochrome-oxidase (CO) histochemistry was used to determine 

the V1 and S1 boundaries. Electrode tracks indicated by blue arrows. d) Transitions from 

high to low staining in thresholded CO images facilitate visualization of the V1 and S1 

borders, indicated by red circles. 
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Figure S3: Object classification based on neuronal ensemble activity did not differ 

between V1 and S1 for any of the five binary classifier models employed. The data 

were analyzed with the following models: naive Bayes classifier (NB), radial basis 

functions (RBF); support vector machines (SVM), multilayer perceptron (MLP) and 

decision tree (DT). No statistically significant difference was observed between classifier 

models across all objects for neuronal ensembles recorded in V1 (two-tailed Wilcoxon 

signed-rank, p≥0.1143 with alpha corrected for 40 comparisons = 0.00125) or S1 (two-

tailed Wilcoxon signed-rank p≥0.0286 with alpha corrected for 40 comparisons = 0.00125). 

Therefore, it is safe to assume that there is no model-related artifact. 
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Figure S4: Poisson surrogation of the data impairs object classification. Results from a 

representative animal, depicting the progressive decay of AUROC values as the proportion 

of Poisson surrogated neurons increases. 
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Figure S5: Distribution of latencies for S1 and V1 responses in the tactile 

discrimination task. In V1, latencies are widely distributed and in average larger than 

latencies in S1. Notice however that the early peak indicated by the arrow was identical for 

these areas. 
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Figure S6: Cross-correlations around NP (± 300ms), within and across primary 

sensory areas. To address the issue of change in cross-correlations as a function of 

distance from S1, we calculated cross-correlations (1) for neuronal pairs recorded across 

electrodes within the same area (intra-area long-range interactions, 0.25-1 mm apart) or 

across the S1/V1 areas (inter-area very long range interactions, 3.3-5.6 mm apart). Cross-

correlations were higher for S1 x S1 neuronal pairs than for V1 x V1 or V1 x S1 neuronal 

pairs (Wilcoxon test, p<<0.01), i.e. synchrony decays as the distance from S1 increases, as 

previously shown in monkeys subjected to tactile stimulation (2). 
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Supporting Methods 1: Electrophysiological recordings. After 1-week recovery from 

surgery, animals were recorded under various conditions. Continuous extracellular 

recordings were performed for up to 6 hours using a software package for supervised real-

time spike sorting (SortClient 2002, Plexon Inc, USA). Up to 4 templates per channel were 

sorted online and validated offline to detect spikes (Offline Sorter 2.3, Plexon Inc, USA) 

using the following cumulative criteria: a) voltage thresholds > 3 standard deviations of 

amplitude distributions; b) signal-to-noise ratio >2.5 (as verified on the oscilloscope 

screen); c) less than 0.5% of inter-spike intervals (ISI) smaller than 1.0 ms; d) stereotypy of 

waveform shapes, as determined by a waveform template algorithm and principal 

component analysis. Behaviors were continuously recorded under visible or infrared light 

with a CCD camera connected to a videotracking system (Cineplex) synchronized to the 

neural recordings. Illuminance in the visible spectrum was measured inside the recording 

chambers with lights off using a Minipa Electronics luximeter, model MLM - 1011. 

 

Supporting Methods 2: Histological confirmation of electrode placement. After 

recordings animals were killed with pentobarbital, and the brains were removed, quickly 

frozen in embedding medium (Tissue Tek, Sakura Finetek, USA), frontally sectioned at 50 

µm in a criostat (Micron HM 550, Germany) and thaw-mounted following a serial 

distribution over glass slides (Super Frost Plus - VWR International, USA). The brains 

were frozen fresh and post-fixed after sectioning. To reveal cytochrome oxidase activity 

(3), brain sections were washed in 0.1M phosphate buffer (PB) during 10 min and 

incubated in a solution containing 0.05% diaminobenzidine (DAB), 0.03% cytochrome c 

and 0.02% catalase in 0.1M PB (Sigma Company, USA). The reaction was monitored 

every 30 min and was interrupted by washing sections in 0.1M PB. Alternate sections were 

stained with cresyl violet. Sections were dehydrated and coverslipped with Entellan 

(Merck, Germany). The anatomical placement of individual electrodes within target areas 

was confirmed by histological reconstruction of electrode tracks in cresyl-stained sections. 

The boundaries of V1 and S1 were determined by the transition between high and low 

cytochrome-oxidase staining. The mapping and superposition of electrode tracks and 

cytochrome-oxidase rich areas was performed using a Neurolucida system (MBF 

Bioscience Inc., USA). 

 

Supporting Methods 3: Free exploration of novel objects. Objects for tactile exploration 

were constructed from toys and raw materials, and the movie for visual exploration was 

generated using scenes of other rats feeding and exploring. Free exploration sessions lasted 

10-20 min; pre and post-exposure periods of up to 6 hours were recorded, as previously 

described (4). LFP spectral maps for the separation of waking and sleep states were 

employed to sort waking periods (5). Times of contact between whiskers and objects were 

determined by slow-motion inspection of video recordings. 

 

Supporting Methods 4: Statistical analysis of spike responses. In animals subjected to 

object exploration in the dark or exposed to movie presentation, spike trains were subjected 

to Kruskal-Wallis comparisons calculated for 10 min intervals before and after stimulus 

with alpha=0.05. Spike trains identified as modulated by the stimulus were then subjected 

to a post-hoc two-tailed Wilcoxon signed-rank test with alpha corrected within each animal 
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for the total number of S1 and V1 neurons that reached significance in the Kruskal-Wallis 

test. In animals subjected to the tactile discrimination task (range 69-102 trials), we used 

500ms intervals before and after the breaking of an infrared discrimination beam positioned 

to mark the initial contact of the whiskers with the metal bars. For the cumulative sum 

analysis, we used the Neuroexplorer software (Plexon Inc., USA) to identify statistically 

significant responses from the PSTHs using cumulative deviations from baseline firing rates 

(6-9). To identify the onsets of significant deviations, we calculated the deviation of the 

poststimulus cumulative summed firing rate from the expected cumulative sum, based on 

the average baseline firing rate. The latency to the first peak was used to determine the 

onset time of the response. In animals subjected to the tactile discrimination task, 500ms 

periods with respect to the nose poke were considered for the cumulative sum analysis. 

 

Supporting Methods 5: Data preparation for binary classifiers. From any given 

electrode, up to 4 neurons can be recorded. All neurons recorded from V1 or S1 were 

pooled together, yielding N neurons. Let rn denote the response of the n neuron (n=1,...,N) 

throughout the time observed, where each element on rn denotes the time in which an 

action potential occurred on neuron n. For the spike data, we explored a family of codes 

based on spike counting (10) in successive bin sizes w. This parameter controls the time 

resolution of the code; its default value on this study is w=250ms. Having defined the bin 

size w, each neuron contributes W bins to the input data matrix. For a given animal, the k-th 

time interval of contact with an object, Ik, is defined by Ik = [ak, bk]. If (W.w)≤(bk-ak), it is 

possible to make more than one sample from that contact interval, so the next samples are 

built sliding (by w seconds) into interval Ik. If (W.w)>(bk-ak), then the interval, Ik, is too 

short and cannot be used as input data for the given bin size w. Therefore, using the spike 

counting to define the code, given an interval, Ik = [ak, bk], where (W.w)≤(bk-ak), and a 

given neuron n, we define the response vector r(ak, bk) as r(ak, bk) = h(un,w,ak, bk) = [ r0  r1 

…  rl], where: un, is a vector which stores the firing times of the neuron n; h is defined as 

the histogram (11) of the vector un, between ak and bk, using as bin size w; and l is the 

number of bins on that given interval, Ik, which can be computed by l=(bk-ak)/w. Given W, 

as the time length of the observation, the input data samples from r(ak, bk) are obtained by 

taking all consecutive W-width vectors from r(ak, bk). These samples were used as input 

data to the decoding classifier. When considering the responses of multiple electrodes, we 

concatenated the corresponding response samples and used the result as input to the 

classifier (12). Therefore, the input data dimensionality to the classifier is W.N, where N is 

the number of neurons used to build the input data. Depending on the analysis, and the 

animal, we used N=1,..,144 neurons. For training and testing, the data were always divided 

into a training set and a test set, using always the same number of samples for all animals. 

In all cases the training set comprised 70% of the available contact samples of each object, 

while the test set included the remaining 30%. Positive samples for a given object comprise 

moments when the animal was in contact with that object, and negative samples for a given 

object are moments in which the animal was in contact with other objects. The training and 

test sets were built using M positive samples and 2.M negative samples, randomly chosen 

from all available samples. 

 

Supporting Methods 6: Surrogated datasets. The Poisson point process (13) is well 



 9

established as a model of neuronal firing (14-16), and was used to surrogate our spike 

datasets. Given a neuron n, the approach used to surrogate the original pattern of neuronal 

activation was to replace the original spike counts within each 250ms bin by random firing 

following a Poisson distribution with the same mean found in the original samples. Figure 

S4 shows that average AUROC decays as the percentage of surrogated neurons increases. 

 

Supporting Methods 7: Object recognition under different sensory conditions. Rats 

were handled for 4 consecutive nights, then exposed to 4 identical novel objects on the 5
th

 

night for 10 minutes, placed in the home cage for 10 minutes, and tested for 10 minutes 

with two identical familiar objects and two identical novel objects. The objects with 

different shapes and visual appearances comprised a mug and an ice-cream cup. Soda cans 

with different colors served as objects with identical shapes and different visual 

appearances. The experimental design adopted allowed for a comparison of the relevant 

sensory conditions without having to resort to the removal of sensory organs, which 

triggers major plastic changes in the brain (17) and may jeopardize spontaneous exploratory 

behavior (18). Interestingly, in the visuo-tactile condition rats explored for longer periods 

of time but discrimination was only marginally better than in the tactile-only condition 

(compare the first and second panels in Fig. 4; p=0.0001 for discrimination ratio in both 

cases, calculated by dividing the time spent in exploration of novel objects by the time 

spent in exploration of familiar objects). 

 

Supporting Methods 8: Tactile discrimination task. Animals were submitted to an 

automated task for the tactile discrimination of wide and narrow apertures defined by two 

metal bars lateral to the whisker pads, randomly repositioned at every trial (9, 19-20). 

Water-deprived animals were trained over 10-20 days to learn to poke their nose through 

the center of an aperture and then report behaviorally the relative width of this opening, in 

exchange for liquid reward offered at a left or right dispenser hole depending on whether 

the aperture was “wide” or “narrow”. Animals were trained to perform above 80% of 

correct trials per session before surgery, and re-trained to that level before neural recordings 

began. The temporal references recorded in each trial comprised the opening of the central 

door (CD), a nose-poke infrared beam (NP) placed inside a hole placed between the two 

metal bars, and reward delivery (RW). Typically, well-trained animals performed ~100 

trials per session.  

 

Supporting Methods 9: Cross correlations. Pairwise neuronal cross-correlations were 

calculated using 100ms sliding windows around different trial epochs (CD, NP, RW). Units 

from the same electrode were not considered. Results were compared for S1, V1, and S1 x 

V1 neuronal pairs. Normalized correlations were obtained from the paradiagonals of the 

normalized joint PSTHs matrices. These matrices were obtained from raw joint PSTHs by 

subtracting their cross-product, and then dividing by the product of the two corresponding 

standard deviations (1). Significance was set at two standard deviations from peak 

correlations obtained with shuffled data (all spikes shuffled according to a uniform 

distribution, 20 shuffles per neuronal pair). Only significant peak cross-correlations 

between 0.07 and 0.4 were considered. 
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