
Supporting Information
Hammer et al. 10.1073/pnas.1109300108
SI Materials and Methods
Two-Population Model. Estimating demographic parameters. For each
pair of sub-Saharan African populations we consider the fol-
lowing demographic model: an ancestral panmictic population
having effective population size, Ne = 104 splits at time T1 into
two descendant panmictic populations each also having Ne =
104. Given a per-generation migration rate m, these descendant
populations exchange migrants at the scaled migration rate M =
4 Ne m until the present day. The two populations have 100-fold
population growth starting at times g1 and g2, respectively (Fig.
1A, main text).
We use previously published composite-likelihood methodol-

ogy (1, 2) to estimate parameters ψ = (g1, g2, T1, M). This
method uses information from levels of diversity and the joint
frequency spectrum—but not linkage disequilibrium (LD)—for
estimating (composite) likelihoods. Likelihoods are calculated
over a grid of parameter values, with increments of 2,000 y for g1
and g2, 5,000 y for T1, and 1 for M. Scaled recombination rates
were assumed to be fixed within loci but to vary across loci,
within-locus recombination rates were chosen from a Γ distri-
bution with mean equal to half of the average mutation rate as
estimated by θW (3). We ran 5 ×105 simulations for each pa-
rameter combination.
First, we simulated 15 replicates under each of the following

three scenarios: ψ1 = (0, 4, 450, 10), ψ2 = (0, 4, 35, 5), and ψ3 =
(0, 4, 25, 0). The first scenario corresponds to the Mandenka-
Biaka maximum-likelihood estimates from the data, whereas ψ2
and ψ3 are comparable parameter values (with the same values
of g1 and g2) that produce roughly the same average value of FST.
A summary of the simulation results is shown in Table S1. We
note that the approximate 95% confidence intervals (CIs) (based
on asymptotic likelihood assumptions) cover the true parameter
value roughly 93% of the time (167 of 180), which suggests that
CIs based on standard assumptions are reasonably accurate. For
analyzing the actual data, we empirically determined a new
likelihood-ratio cutoff value for estimating 95% CIs. This cutoff
(which takes log-likelihood values within 2.8 of the maximum-
likelihood estimate) has the correct coverage level for the sim-
ulated data.
Detecting archaic admixture. For each pair of African populations,
we used the parameters estimated above as a null model and
tested for the presence of additional ancient population structure
(2). If archaic admixture occurs at a locus, then “archaic” SNPs
on introgressed sequences would be in strong LD with each
other. Simulations suggest that both the number of such SNPs
and the total distance spanned by such SNPs are elevated when
archaic admixture occurs (4). To exploit these two observations,
and to account for the effects of intragenic recombination (1), we
calculated, for each locus, a statistic, S*, shown to be sensitive to
archaic admixture (1). S* looks for population-specific SNPs
(excluding singletons) that are in strong LD with each other
(e.g., the square correlation r2 z 1). We determine the signifi-
cance of S* values from the actual data by running simulations
using the previously estimated demographic parameters to ob-
tain a distribution of S* values under the null hypothesis of no
(archaic) admixture. Significantly high S* values are interpreted
as departures from the null model in the direction of some un-
known ancient population structure. We estimate P values for
each locus by running 104 simulations under the null model. The
P values across loci were combined (assuming independence)
using the method of Fisher (5).

Three-Population Model. To more closely model our population
sampling strategy, we introduce a second, more comprehensive
three-population model (Fig. 1B, main text). Our goal is to es-
timate simultaneously the time of admixture (Ta), the ancestral
split time (T0), and the admixture proportion (a). Our approach
has several modeling assumptions, including that the San are
ancestral to the Mandenka and Biaka (6), that the migration rate
between all three populations is symmetric and constant, that
recent population growth leads to a 100-fold increase in effective
population size, and that generation time is 25 y The model is
specified by the parameters ψ = (NA, T1, T2, g1, g2, M, Ta, T0, a),
where

� NA is the ancestral effective population size,
� T1 is the time when the San split from the Biaka-Mandenka,
� T2 is the time when the Biaka and Mandenka split,
� g1 is the time since the start of population growth in the San,
� g2 is the time since the start of population growth in the
Biaka and Mandenka, and

� M is the scaled migration rate.

Summary Statistics. To identify candidate introgressed sequences,
we adopt the following approach. For each locus, we cluster all
sequences into two (putatively basal) groups, G1 and G2, as
follows:

1. Identify the two most diverged sequences.
2. Assign the remaining sequences to one of two groups ac-

cording to genetic similarity to the two individuals identified
in step 1.

3. For a tie in step 2, calculate the average genetic distance
between the target individual and all individuals in each
group. Assign membership to the closer group. In case of
a tie, assign group membership randomly.

Then, define the statistics:

� Kmax, the number of differences between the sequences cho-
sen in step 1,

� Ss, the number of polymorphisms shared between the two
groups,

� S, the total number of polymorphisms, and
� d, the number of fixed differences between human and
chimpanzee sequence.

We now define our summary statistics for inference D1 = Ss/S,
D2 = Kmax/d, and D3 = min {jG1j, jG2j}.
Because our null model of no admixture, H0, is a subspace of

our alternative model of admixture, H1, we can make inference
using likelihood ratio tests. Further, we can use χ23, the χ2 sta-
tistic with three degrees of freedom, as a test statistic for the
difference in log-likelihood values under H0 and H1. This is
a conservative approximation, however, because the null space
represents a corner of our alternative space. Unless otherwise
stated, P values are those that come from this approximation.
We approximate the likelihood of the summary statistics D =

(D1, D2, D3) using tolerance levels δ= (δ1, δ2, δ3). Thus, for each
set of model parameters ψ we estimate

Prψfjd1 −D1j< δ1; jd2 −D2j< δ2; jd3 −D3j< δ3g;
where d1, d2, and d3 are calculated from data simulated under
the parameter values ψ. The initial tolerances were selected to
maximize power for 1% admixture. Loci are assumed to be in-
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dependent, so likelihoods for the full data are computed as the
product of the 61 locus-specific likelihoods.
To simulate the data to compute approximate likelihoods, we

first need to determine fine-scale estimates of recombination. To
this end, we used Phase 2.1 (7, 8) using two qualitatively different
strategies. We examined genotypes for our loci in 30 HAPMAP
(9) Yoruba parent–offspring trios. For each trio we replaced
genotype calls at SNPs showing Mendelian inconsistencies with
“missing data.” Using parental genotypes, we constructed Phase
files for each locus, adding an additional 10 kb of flanking data to
mitigate any possible edge effects in our estimate of ρ. Using all
individuals to estimate ρ, we used a 10,000-step burn-in and
sampled 100,000 points in the posterior. We then estimated ρ for
each locus according to the median per-SNP ρ estimates from
Phase. To validate this approach we performed 100 coalescent
simulations using ms (10) of a single Wright-Fisher population
using a recombination rate of 1 cM/Mb over 40 kb of sequence,
and then we ran Phase on these simulations. We contrasted
computing the mean vs. the median recombination rate esti-
mates, to the per-SNP and to the per-locus estimates, and found
that the per-SNP median estimate better recovered, although
slightly underestimated, the simulated value.
In the second strategy we used Phase to estimate ρ using the

major clade of each locus in our own resequencing data using the
same Phase parameters as above. This approach is, in general,
less powerful because of the locus trio design. With only z6 kb
of data collected over a z20-kb genomic window, the ability to
infer the recombination rates will be hampered by the small
number of segregating sites. In addition, we are restrained to the
assumption that ρ at the locus trio is constant across a 20-kb
region. We used the same validation approach as in the first
strategy, modified to run Phase on the major clade of each
simulation using an archetype locus-trio design, and again found
that the median per-SNP estimate better recovered the simu-
lated value. Despite numerous attempts, Phase failed to com-
plete on locus 1pMB4, and thus this locus was dropped from all
subsequent analyses.

Rejecting the Null Hypothesis. We simulated ancestral recom-
bination graphs (ARGs) over a grid of parameter values to es-
timate each locus’s approximate likelihood using the re-
combination rate estimates described above and tolerances δ1 =
0.06, δ2 = 0.05, and δ3 = 2. Parameter values ranged from 6,000
to 16,000 for NA, 60 to 120 kya for T1, 30 to 60 kya for T2, 20 to
40 kya for g1 and g2, 0 to 10 for M, 10 to 100 kya for Ta, 0.125 to
1.5 Mya for T0, and 0 to 8% for a.
To provide a coarse-grained likelihood surface, we generated

5,000 ARGs over a reduced grid of the parameter space. We use
a goodness of fit (GOF) test to identify loci for finer-scale esti-
mation. This yielded three loci (4qMB105, 16pMB17, and
13qMB64) with poor fit GOF (P < 0.05) across our entire pa-
rameter space, with P values of 0.022, 0.015, and 0.026, re-
spectively. These three loci were then rerun using the major
clade fine-scale estimate of recombination, and all three ex-
hibited improved GOF, with P values of 0.400, 0.145, and 0.526,
respectively. Further, in the initial run, two additional loci,
13qMB107 and 18qMB73, had fine-scale estimates of recom-
bination that were exceedingly high (estimates for ρ per locus are
147.97 and 118.73, respectively), leading to coalescent runtimes
that were prohibitively long. For all future simulations the major
clade estimate was used for these loci. (Estimates for ρ per locus
are 95.46 and 107.28, respectively.)
To obtain a more refined point estimate, we reduced the pa-

rameter space to the null space and to those values within the 99%
CI of the coarse-grain estimates. We then ran simulations using
100,000ARGs for each parameter value. In addition, we store, for
each parameter value, an approximation of the summary statistic

distribution in a 3D histogram (for our three summaries) using
a reduced tolerances δ1 = 0.01, δ2 = 0.01, and δ3 = 0.
The result is a maximum-likelihood estimate of Ta= 40 kya,

T0 = 750 kya, and a = 1% with a log-likelihood ratio of −2.01. To
estimate the significance of this value we drew 10,000 points from
the maximum-likelihood location under H0 using our 3D histo-
gram and tabulated the probability of observing a log-likelihood
ratio as small (or smaller) than −2.01 with an archaic split time no
more recent than 750 kya. The bootstrapped P value for this is
0.0493, allowing us to reject the null hypothesis. Although this P
value is only marginally significant, as seen in the sections that
follow, more refined analyses yield even smaller P values under
the conservative χ2 approximation of the likelihood ratio test.

Describing H1. We chose two different approaches to describing
our alternative model. The first, and simplest, uses the minimum
tolerances for each of the summary statistics, D1, D2, and D3,
keeping the other two at their original tolerances. This gave us
three sets of three likelihood profiles (for each of the three ad-
mixture parameters). Minimizing the tolerance for δ1 best re-
stricted the parameter space. Under this method, the point
estimates are: T0 = 375 kya, Ta = 20 kya, and a = 2% with a log-
likelihood ratio of −4.14 (P = 0.04). Moreover, this method al-
lowed us to estimate the following 95% CIs for T0, Ta, a: 125 kya <
T0 < 1.5 Mya, 0 < Ta < 70 kya, and 0 < a < 1.
There was one exception to this analysis. The log-likelihood

difference between the parameter value for Ta = 100 kya (T0 = 1
Mya, a= 0.5%) and the maximum is −1.915, marginally inside of
our CIs based on the χ2 approximation. To assess the accuracy of
this approximation, we drew 10,000 samples from this point in
the alternative space and estimated the probability of observing
a maximum log-likelihood ratio at or more extreme than −1.915
at an introgression time at most 20 kya. The bootstrapped
probability of this occurring by chance is 0.021, allowing us to
place this single point in the alternative model outside of our
95% CI. As seen in Fig. 2 (main text) and Fig. S5, the alternative
space can best be described as multimodal.
Custom tolerances. From our bootstrap analysis, we found that
locus-specific critical values are largely determined by the basal
recombination rate. More precisely, loci with higher recom-
bination rates required much smaller likelihood ratios to reject
H0. To determine optimal tolerance values to discriminate be-
tween values in the parameter space, given a fixed number of
ARGs, we chose at random 100 parameter values for each locus.
For each pair of values, we evaluated tolerance levels from the
minimal tolerance up to our original level of acceptable toler-
ance. We then asked the question: what is the level of tolerance
that maximizes our discriminatory power given that 1% of the
points will yield an observed likelihood of 0?
Applying these custom tolerances to our loci yielded pro-

nounced evidence of two distinct maxima: T0 = 375 kya, Ta = 10
kya, and a = 0.5% and T0 = 750 kya, Ta = 40 kya, and a = 2%,
with essentially equal log-likelihood values of −468.48 and
−468.67, respectively, and the former yielding a log-likelihood
ratio of −5.02 (P < 0.02). Four loci (1pMB101, 12qMB46,
5pMB35, and 5qMB123) had fewer than 10 ARGs that matched
their empirical values in either of the maxima, and for these loci
an additional 100,000 ARGs were generated, elevating the
minimum number of matching simulations to 10 for all loci. This
slightly adjusted the likelihood surface, favoring instead the
older archaic split time as the maximum likelihood estimate
(likelihoods of −468.78 and −468.51), giving a likelihood ratio of
−5.00, P < 0.02 (Fig. 2, main text). The same strategy was used to
elevate the minimum number of matching ARGs to 20, this time
favoring the local maxima T0 = 500 kya, Ta = 20 kya, and a =
2% and T0 = 750 kya, Ta = 40 kya, and a = 2%, with the first of
the two points moving perhaps more than expected.
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At least 20 matches. To test whether this movement was due to the
sampling variance associated with estimating exceedingly small
likelihoods, we designed an iterative variant to the above pro-
cedure designed ensure that all loci have at least 20 matching
ARGs for each point within our 95% CI using the χ2 approxi-
mation. To accommodate this, we used our initial set of custom
tolerances, and rather than keeping the tolerances static and
adding more simulations as needed, we instead relaxed toler-
ances for all loci having fewer than 20 matches and looked at the
minimum number of matching ARGs over the 95% confidence
region. The 2D likelihood surface shows two distinct maxima:
T0 = 625 kya, Ta = 30 kya, and a = 3% and T0 = 250 kya, Ta =
10 kya, and a = 5%, the latter of which has estimated times
similar to those discovered in our two population approach.

Goodness of Fit.We used a parametric bootstrap to address GOF.
In particular, we drew 1,000 samples from our 3D histogram for
each locus for both maxima in H1. We then estimated the like-
lihood of each of our 1,000 samples and calculated the proba-
bility of our empirical likelihood value in this distribution. This
generated a probability value for each locus, and these proba-
bility values were combined using the method of Fisher (5) to
give a single GOF P value for the data set. This procedure was
run on the at least 20 matches maxima, yielding GOF P values of
0.059 and 0.071 for the earlier and later archaic split maxima,
respectively. These P values are conservative, because any max-
ima we find will only be a maximum with respect to our pa-
rameter space discretization; finer discretization will likely result
in higher maxima and, thus, in an improved fit of the model.
Uncertainties in our recombination rate estimates also influence
the fit. Notably, results that are based on the deCODE estimates
of recombination, which are estimated over much larger physical
distance, produced a substantially smaller GOF (P < 10−4).

Likelihood Ratios of Individual Loci. Although this approach
examines the likelihood of the set of 61 loci together, it also can be
used to evaluate whether a particular locus better fits the alter-
native model. To identify individual loci that are likely to harbor

archaic lineages, we allow all nine parameters to vary freely
among loci. In addition, rather than selecting points from the 3D
histogram, which are only defined for our initial estimate of the
99% CI for all loci together, we instead selected our maxima and
calculated our bootstrapped P values from our original coarse
scan of the parameter space. Table 1 (main text) describes the
three loci exhibiting the lowest P value.

Describing Two Maxima. Throughout our attempts to describe the
alternative space we have seen pronounced evidence for two
peaks in our likelihood surface: one with more recent time
characteristics (ψrecent), with T0 z 375 kya and Ta z 15 kya and
the other at an older time (ψold), T0 z 700 kya and Ta z 35 kya.
This leads to the question: do some loci favor one maximum over
the other, and if so, which ones? To address this we compute the
likelihood ratio:

LðψoldjdataÞ=LðψrecentjdataÞ
for each locus (Fig. S2) using the approach guaranteeing at least
10 matching simulations for each locus. Notably, the three loci
that individually favor H1 (Table 1, main text) are among four
most extreme likelihood ratios.

Genotyping Candidate Alleles. A sample of z500 individuals from
14 sub-Saharan African populations was genotyped at a single
insertion and two SNPs that marked divergent alleles at the three
loci exhibiting the lowest P value in the likelihood test described
above. A 4-nt insertion (GCCA) at position 179598847 (hg18)
within 4qMB179 was genotyped by using an allele-specific PCR.
We obtained the DNA sequence of all samples containing the
insertion to confirm heterozygosity. A G/A nucleotide poly-
morphism site at 107495053 (hg18) within 13qMB107 was gen-
otyped via a PCR and subsequent restriction enzyme digestion
(ApoI, NEB catalog no. R0566). An A/G nucleotide poly-
morphism site at site 60718922 (hg18) within 18qMB60 was
genotyped via a PCR and subsequent restriction enzyme di-
gestion (DdeI, NEB catalog no. R0175).
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Fig. S1. Quantile–quantile plots for the P values for S*, calculated for each locus. Results are shown for the (A) Biaka and (B) San, in pairwise analyses with the
Mandenka.

Fig. S2. The likelihood ratios, L(ψoldjdata)/L(ψrecentjdata), of each locus in the distinct two maxima in H1. The loci 18qMB60, 13qMB107, and 4qMB179 all favor
Hold, and all three are loci, individually, favor the H1.
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Fig. S3. Schematic of a simple isolation model (A) and 4qMB179 profile likelihood curves (B) for estimates of the split time T0 and the admixture time Ta, in
thousands of years ago.

Fig. S4. (A) Sharing of SNPs between Neandertal and human divergent lineage at RRM2P4. (B) Asterisk indicates sharing of derived state in Neandertal and
human divergent lineage on the phylogenetic tree shown in Garrigan et al. (1).

1. Garrigan D, Mobasher Z, Severson T, Wilder JA, Hammer MF (2005) Evidence for archaic Asian ancestry on the human X chromosome. Mol Biol Evol 22:189e192.
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Fig. S5. Likelihood profiles for the archaic admixture parameters for (A) amount of admixture, (B) archaic split time, and (C) time of introgression. Horizontal
line represents the 95% CI cutoff using the χ2 approximation. The Ta = 100 kya point was shown to be outside of our confidence region using a parametric
bootstrap.

Table S1. Point estimates (simulation-based 95% CI) for the
actual data

Parameter Man–Bia Man–San Bia–San

g1 (kya) 0 (0–5.2) 0 (0–5.5) 10 (0–22)
g2 (kya) 4 (0–11) 2 (0–11) 4 (0–20)
T (kya) 450 (280–690) 100 (64–500) 55 (40–230)
M 10 (8.2–12) 3 (1.6–4.2) 1.5 (0–5.3)

Table S2. Mean values of parameter estimates on simulated data (g1 = 0, g2 = 4 kya)

Model T1 = 25, M = 0 T1 = 35, M = 5 T1 = 450, M = 10

g1 0.9 2.3 2.4
g2 4.1 5.9 7.7
T1 25 44 580
M 1.1 4.3 9.6
Coverage* (%) 97 88 93

*Coverage denotes the fraction of times that the estimated 95% CIs contained the true parameter value.
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Table S4. Probability of /b
3 37 for the Biaka data as a function of ρ

ρ/kb Pr (/b
3 37)

0.00 0.271
0.25 5.8 * 10−3

0.50 3.7 * 10−4

0.75 3.0 * 10−5

1.00 8. * 10−6

1.25 1.4 * 10−6

1.50 << 10−6

lb refers to the maximum numbers of pairwise congruent sites (1).

1. Wall JD, Lohmueller KE, Plagnol V (2009) Detecting ancient admixture and estimating demographic parameters in multiple human populations. Mol Biol Evol 26:1823e1827.
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