Automated Real-Space Refinement of Protein Structures Using a Realistic Backbone Move Set

Esmael J. Haddadian,[†] Haipeng Gong,[†] Abhishek K. Jha,^{†‡§} Xiaojing Yang,[†] Joe DeBartolo,[†] James R. Hinshaw,^{‡§} Phoebe A. Rice,[†] Tobin R. Sosnick,^{†¶} and Karl F. Freed^{‡§||}

[†]Department of Biochemistry and Molecular Biology, [‡]Department of Chemistry, [§]James Franck Institute, [¶]Institute for Biophysical Dynamics, and [∥]Computation Institute, University of Chicago, Chicago, Illinois

Supplemental Methods

Statistical potentials

Four energy functions are employed, including our TSP along with native contact energy (NCE), a metric for the similarity to the input reference structure, a hydrogen bond potential (HB) (1), the repulsive portion of the C_{β} -level statistical potential (2) (called rDOPE- C_{β}) that is designed to prevent steric clashes, and a neighbor-independent torsional statistical potential TSP1. Each substage employs a slightly different combination of energy functions (E) as follows

$$E_{I} = 5 \times E_{TSP1} + 20 \times E_{TSP} + 2 \times E_{NCE}(\upsilon = 1) + 50 \times E_{HB}, \qquad (1)$$

$$E_{II} = 10 \times E_{TSP1} + 10 \times E_{TSP} + 1 \times E_{NCE} (\upsilon = 0) + 100 \times E_{HB} + E_{rDOPE - C_{\beta}},$$
(2)

$$E_{III} = 10 \times E_{TSP1} + 20 \times E_{TSP} + 1 \times E_{NCE} (\upsilon = 0) + 200 \times E_{HB} + E_{rDOPE-C_{g}},$$
(3)

The NCE energy is defined as

$$E_{NCE}(\upsilon) = \sqrt{\sum_{i=1}^{N} \sum_{j=i+1}^{N} \frac{\overline{b}^2}{b_i b_j} \cdot \frac{(d_{ij} - d_{ij}^0)^2}{(d_{ij}^0)^{\upsilon}}},$$
(4)

where d_{ij} and d_{ij}^{0} are the distances between the α carbons of residues i and j for the current conformation and for the reference conformation (e.g., the initial model), respectively. N is the total number of residues, and the adjustable parameter ν controls the relative weights of contributions from local and non-local separations. The b_i and b_j are the crystallographic

temperature B factors for the C_{α} carbons of residue i and j, while \overline{b} is the average B factor for all C_{α} carbons.

To optimize the backbone hydrogen bonds, a modified form of the geometry-dependent hydrogen bond potential of Kortemme et al. (1) is used. The DOPE-C_{β} statistical potential is a distance dependent potential which has been derived from high-resolution PDB structures. Here, only the repulsive terms in DOPE-C_{β} are retained to mimic a soft-sphere potential and prevent steric clashes. The attractive terms from DOPE-C_{β} are unnecessary as the NCE term maintains the backbone close to the starting structure.

Structure refinement against the electron density. Our real space refinement is performed with respect to the weighted 2mFo-DFc maps in one asymmetric unit. The program Phenix (3) is used to calculate the 2mFo-DFc maps in CNS file format, choosing the starting structure and reflections as the inputs. These maps are then converted to the Situs file format using the program Situs 2.5 (4), and the maps are then converted to a 3-D potential in NAMD in the DX file format using a grid spacing of 1 Å. If present, the electron density of any ligands is removed (including the DNA in the DNA-binding protein). The electron densities are retained for all explicit bound water molecules in the crystal structures. Secondary structures are maintained by constraining the backbone hydrogen bonds and dihedrals angles to the initial values of the first stage backbone-refined model. Peptide bonds are restrained to their pre-existing *cis* or *trans* configurations. All chiral centers are also restrained to their

original handedness. The file preparations are performed using the program VMD 1.8.8a1 (5).

The protein structures (without ligands) plus their explicit bound water molecules are energy minimized for 20,000 steps within a uniform solvent having a dielectric constant of 80, along with an extra energy term dependent on the overlap between the electron density and the model (6). Explicit water molecules are not moved during minimization. We modified the Charmm force field parameters to maintain the backbone bond lengths and angles closer to their ideal values by using two- to five-fold stronger force constants and slightly shifted mean positions. The relative weighting for the MDFF energy function is adjusted to optimize two competing metrics, ideal bond lengths and angles versus agreement with the density. Better agreement with the electron density improves the crystallographic R factors. During the initial stages of model building, maintaining an ideal bond lengths and angles may be more important than the detailed fit to the electron density because subsequent adjustments improves the fit to the density.

Disulfide brides are ignored in Stage 1. In Stage 2, they are handled according to standard molecular dynamics protocol, which puts in an explicit disulfide bond term (and can recover a bridge broken in Stage 1, if it existed in the input structure).

Calculation of crystallographic metrics.

Both manual intervention and TOP are real space refinements to the electron densities, usually using the 2mFo-DFc map; except that the former is a (tedious) residue-by-residue method, while the latter is a fully automated global procedure incorporating knowledge-based restraints. Moreover, manual refinement can be applied after the TOP procedure for further structural improvements. This extra step is not performed here because our goal is to assess the automated process although one example is provided to illustrate the possible improvement to a TOP-refined structure.

The R-work, R-free, and map correlation indices for the starting and ending structures are calculated using the program Phenix 1.7 (3). For each diffraction data set, 5% of the total observed reflections are randomly chosen and set aside for calculating the R-free for cross-validation. Phenix is applied to determine the bulk solvent correction and the temperature (B) factor refinement including individual atomic displacement parameters (ADP) and TLS, starting from randomized B values to remove bias (allowing Phenix to recalculate the B values). The TLS groups are assigned either by chain ID or by Phenix default (for 2E74.pdb). No positional refinements are involved. The same Phenix protocol is used to calculate the R-work, R-free, and map correlation indices for TOP's two stages, using the same initially assigned reflections.

Comparison to other methods

We compare TOP to the Phenix program implementing the "discard_psi_phi=false" option which keeps the dihedral angles restrained according to the CCP4 monomer library definitions. As a representative application, we chose a 1001 aa α/β protein at 2.85 Å

resolution currently undergoing refinement. The TOP & Phenix algorithms, respectively, increase the number of ϕ,ψ angles in the preferred region (according to COOT) from 76% \rightarrow 87% & 81%; the average TSP score improves from 3.59 \rightarrow 1.13 & 3.53, while the number of hydrogen bonds increases from 354 \rightarrow 398 & 351 (Table S4). Only the TOP algorithm generates a map with distinct β and PPII basins, as is observed in high resolution structures (Fig. S6).

The CNS program is capable of constraining a given ϕ, ψ pair to stay near a user-specified value during its refinement procedure. Because *a priori* knowledge of the proper angles across the entire sequence is unfeasible (except in cases of molecular replacement where the model in question has previously been refined at high resolution), CNS's capabilities are not comparable to those of the TOP procedure.

The Coot program offers a real space refinement feature with torsional restraint option based on secondary structure. However, we find that it leads to locally distorted structures in regions with poor electron density and it is intended for segments shorter than 20 aa. To test Coots' regularize/real space refinement capability, we apply it to two regions of a 3.4 Å resolution protein at an early stage of refinement and obtain the following results. A 44 aa curved helix is refined/regularized in three separate segments due to the length limit. With "Use torsion restraints" and "alpha-helix restraints" options, the helix becomes straight and fails to fit into the electron density. For real space refinement against low-resolution map with poor side chain density such as in our starting model, Coot forces atoms of long side chains into the main chain densities, or even into densities of neighbor secondary structures. When Coot is applied to a second region, a 22 aa anti-parallel sheet-loop-sheet, the resulting densities in the 9 aa connecting loop are poor. Side chains atoms are completely misplaced after real space refinement and overlap with the main chain atoms, as observed with the curved helix. Consequently, the main chain hydrogen bonds are destroyed.

In the Program O, the Lego_loop tool allows the user to pick endpoints of a loop and scroll through possible options "rented" from a library of fragments from high-resolution structures. This procedure differs from our method in that it is manual, local, and relies on the existence of suitable fragments. Some regions of the protein may be amenable to this tool but not the entire protein.

Although the 'Backrub move" (7) appears similar to our double crank move, it is in fact entirely different, e.g., it does not involve ϕ,ψ moves taken from a library of values in non-redundant high-resolution PDB structures. Rather, it focuses on rigid body motions about two C α -C α atoms in two residues separated by 1-11 amino acids with a specific side chain compensation (e.g., see Figure 1 in (7)).

References

1. Kortemme, T., A. V. Morozov, and D. Baker. 2003. An orientation-dependent hydrogen bonding potential improves prediction of specificity and structure for proteins and protein-protein complexes. J. Mol. Biol. 326:1239-1259.

- 2. Fitzgerald, J. E., A. K. Jha, A. Colubri, T. R. Sosnick, and K. F. Freed. 2007. Reduced Cbeta statistical potentials can outperform all-atom potentials in decoy identification. Protein Sci. 16:2123-2139.
- Adams, P. D., R. W. Grosse-Kunstleve, L. W. Hung, T. R. Ioerger, A. J. McCoy, N. W. Moriarty, R. J. Read, J. C. Sacchettini, N. K. Sauter, and T. C. Terwilliger. 2002. PHENIX: building new software for automated crystallographic structure determination. A. Crys. D Biol. Crys. 58:1948-1954.
- 4. Wriggers, W. 2010. Using Situs for the integration of multi-resolution structures. Biophys. Rev. 2:21-27.
- 5. Humphrey, W., A. Dalke, and K. Schulten. 1996. VMD: visual molecular dynamics. J. Mol. Graph. 14:33-38, 27-38.
- 6. Trabuco, L. G., E. Villa, K. Mitra, J. Frank, and K. Schulten. 2008. Flexible fitting of atomic structures into electron microscopy maps using molecular dynamics. Structure 16:673-683.
- Smith, C. A., and T. Kortemme. 2008. Backrub-like backbone simulation recapitulates natural protein conformational variability and improves mutant sidechain prediction. J Mol Biol 380:742-756.
- 8. Emsley, P., B. Lohkamp, W. G. Scott, and K. Cowtan. 2010. Features and development of Coot. Acta Crys. D Biol. Crys. 66:486-501.

Move type	Example move	Location: helix (1ubq.pdb)	RMSD to original structure
Pivot move on 1 aa (single ϕ, ψ change)	$(\phi_i,\psi_i) \rightarrow (\phi_i+70,\psi_i+17)$	K27:(-134,-52) →(-64,-35)	4.9 Å
Single-crank move on 2 as's: i-1,i	$(\psi_{i-1},\phi_i) \rightarrow (\psi_{i-1}-70,\phi_i+70)$	V26: (-98, 30) →(-98, -40) K27:(-134 ,-52) →(-64 ,-52)	0.8 Å
Single-crank move on 2 as's: i,i+1	$(\psi_i,\phi_{i+1}) \rightarrow (\psi_i+17,\phi_{i+1}-17)$	K27:(-134, -52) →(-134, -35) A28:(-58 ,-46) → (-75 ,-46)	0.2 Å
Double-crank move on 3 as's: i-1,i,i+1	$(\psi_{i-1},\phi_i) \rightarrow (\psi_{i-1}-70,\phi_i+70)$ $(\psi_i,\phi_{i+1}) \rightarrow (\psi_i+17,\psi_{i+1}-17)$	V26: (, 30) →(, -40) K27:(-134,-52) →(-64,-35) A28:(-58 ,) → (-75 ,)	0.7 Å

Table S1. Different moves and the resulting effects on the overall ubiquitin fold

Table S2	. TOP	Structure	refinement
----------	-------	-----------	------------

Protei	n	APC22750						
		Initial Stage 1		TOP^1	Initial	ТОР		
				Stage 2	miniai	Stage 1	Stage 2	
Resolution			2.09-2	5.0 Å	2.09-25.0 Å			
Number of r	residues		46	5		480		
Starting n	nodel		During ref	finement	Deposited (1VR4)			
C _a -RMSD) (Å)	N/A	0.71	0.42	N/A	0.46	0.14	
<tsp:< th=""><th>></th><th>3.31</th><th>-0.4</th><th>0.08</th><th>0.45</th><th>-1.2</th><th>-0.9</th></tsp:<>	>	3.31	-0.4	0.08	0.45	-1.2	-0.9	
no. of hydroge	en bonds ²	162	190	214	239	249	263	
R-wor R-free	k e	0.3091 0.3537	0.3880 0.4233	$\begin{array}{c} 0.2979\ (0.2983)^3\\ 0.3163\ (0.3403)\end{array}$	0.2061 0.2647	0.3150 0.3507	$\begin{array}{c} 0.2087 \left(0.2074 \right)^3 \\ 0.2372 \left(0.2589 \right) \end{array}$	
Map Corre	lation	0.76	0.66	0.77	0.85	0.76	0.85	
RMSD from ideal	Bond length (Å) Angle (°)	0.045 2.567	0.047 2.904	0.040 3.130	0.014 1.692	0.017 1.935	0.016 1.810	
		Ram	achandra	n Map statistics (%	6)			
TSP-Favored: [-6,0)		31	76	67	50	80	73	
TSP-Allowed: [0,5)		16	70	13	21	10	16	
TSP-Gener	ously-	10	2	4	8	4	5	
allowed:	5,10)	34	16	16	11	6	7	
TSP-Scarce	$e: \geq 10$	_	-			-		
Preferre	ed*	79	88	88	92	92	93	
Allowe	ed	6	3	4	5	5	4	
Outlie	rs	15	9	8	3	3	3	
			MolProb	oity Evaluation				
Clashscore, a	ll atoms	98	182	25	18	87	6	
Poor Rota	mers	8%	8%	10%	14%	14%	5%	
Ramachandra	n Outliers	11%	7%	7%	1%	1%	1%	
Ramachandran Favored		81%	88%	89%	94%	93%	95%	
Cβ Deviations	> 0.25 Å	0	0	15	3	0	4	
MolProbity	Score	3.86	3.98	3.23	3.05	3.71	2.21	
Residues with	bad bonds	0.00%	0.00%	0.43%	0.21%	0.21%	0.00%	
Residues with bad angles		0.86%	0.86%	1.08%	0.21%	0.21%	0.00%	

¹Stage 1 and Stage 2 refer to backbone refinement using MCSA/double-crank algorithm and all-atom energy minimization using the electron density, respectively.

²Backbone hydrogen bonds are defined when the amide nitrogen and carbonyl oxygen are within 3.5 Å and the angle between the N-H and O=C bond vectors exceeds 145°.
³ The values in parentheses are the R and R-free values calculated where the more stringent maps generated after excluding the free reflections are used in the real space refinement stage of TOP.
⁴ As defined by the program COOT (8).

Protein		C	YTOCH	ROME b ₆ f	A-COBRATOXIN-ACHBP			
	Jem	COMPLEX			COMPLEX			
		Initial		TOP ¹	Initial		TOP ¹	
		minuar	Stage 1	Stage 2		Stage 1	Stage 2	
Reso	lution		3.00-3	39.30Å	4.20-25.0 Å			
Number	of residues		95	59		1356		
Startin	ig model	Deposited (2E74)			Deposited (1YI5)			
C _a -RN	1SD (Å)	N/A	0.78	0.40	N/A	0.8	0.62	
<t< th=""><th>SP></th><th>2.92</th><th>-0.9</th><th>-0.7</th><th>4.35</th><th>0.09</th><th>0.68</th></t<>	SP>	2.92	-0.9	-0.7	4.35	0.09	0.68	
no. of hydr	ogen bonds ²	410	445	468	332	481	513	
R-v R-	vork free	0.2248 0.2704	0.3515 0.3760	$\begin{array}{c} 0.2423 \ (0.2395)^3 \\ 0.2726 \ (0.2802)^3 \end{array}$	0.2529 0.3128	0.3404 0.3863	$\begin{array}{c} 0.2531 \left(0.2506 \right)^3 \\ 0.2857 \left(0.3107 \right)^3 \end{array}$	
Мар Со	orrelation	0.8	0.7	0.75	0.68	0.59	0.68	
RMSD from ideal	Bond length (Å) Angle (°)	0.029 2.659	0.039 3.162	0.035 2.831	0.012 1.579	0.036 2.125	0.026 2.093	
	R	lamachan	dran Map	o statistics (%)				
TSP-Favored: [-6,0) TSP-Allowed: [0,5) TSP-Generously- allowed: [5,10)		41 18 15 27	76 10 5 10	72 13 5 11	31 17 18 34	67 15 8 10	59 21 9 11	
Prefe	erred ⁴	83	91	91	85	91	91	
Alle	owed	11	5	6	10	6	6	
Out	tliers	6	4	4	5	2	3	
	Ν	IolProbity	y Evaluati	ion				
Clashscor	e, all atoms	55	140	14	17	121	11	
Poor R	otamers	9	9	7	17%	17%	7	
Ramachano	lran Outliers	3	2	2	3%	2%	2	
Ramachand	lran Favored	84	93	93	87%	93%	94	
Cβ Deviati	ons > 0.25 Å	9	0	2	4	0	8	
MolProl	bity Score	3.60	3.78	2.73	3.28	3.93	2.62	
Residues wi	th bad bonds	0.00%	0.00%	0.00%	0.00%	0.00%	0.44	
Residues with bad angles		0.94%	0.94%	0.52%	0.37%	0.37%	1.03	

Table S2. TOP Structure refinement (cont.)

Buotain		A-	NDING	A-PROTEIN-LIPID				
Protei	n		IN	COMPLEX				
		Initial		TOP ¹	Initial	TOP^1		
		IIIItiai	Stage 1	Stage 2	miniai	Stage 1	Stage 2	
Resolut	ion		3.35-20	.0	2.60-43.5 Å			
Number of 1	residues	364				376		
Starting r	nodel	Early stage			Final stage (30V6)			
C _α -RMSI) (Å)	N/A	0.85	0.97	N/A	0.74	0.32	
<tsp< th=""><th>></th><th>3.33</th><th>-2.0</th><th>-1.5</th><th>2.92</th><th>-0.1</th><th>0.13</th></tsp<>	>	3.33	-2.0	-1.5	2.92	-0.1	0.13	
# of hydroge	n bonds ²	147	187	192	168	181	193	
R-wor	·k	0.2890	0.3874	$0.3136(0.3079)^3$	0.2285	0.3611	$0.2323(0.2341)^{3}$	
R-fre	e	0.3722	0.4418	0.3562 (0.3830)	0.2851	0.4076	0.2551 (0.2760)	
Map Corro	elation	0.75	0.68	0.74	0.88	0.78	0.86	
RMSD from ideal	Bond length (Å) Angle (°) ³	0.007 1.218	0.014 1.689	0.016 1.837	0.009 1.401	0.026 2.147	0.017 1.944	
	Ramachandran Map statistics (%)							
TSP-Favore	d: [-6,0)	38	86	75	12	60	64	
TSP-Allowe	ed: [0,5)	18	80	16	19	15	19	
TSP-Gener	ously-	16	2	4	18	8	7	
allowed:[5,10)	28	5	5	22	8	10	
TSP-Scare	$e: \geq 10$			-				
Preferr	ed⁴	81	94	94	93	94	95	
Allowe	ed	11	3	3	5	4	3	
Outlie	rs	8	3	3	1	2	2	
	MolProbity Evaluation							
Clashscore, a	all atoms	29	119	14	65	248	5	
Poor Rota	imers	6%	5%	13 %	8%	38%	4%	
Ramachandra	Ramachandran Outliers		1%	2%	4%	2%	1%	
Ramachandran Favored		95%	96%	96%	82%	95%	96%	
Cβ Deviations > 0.25 Å		2	0	5	1	0	2	
MolProbity	Score	2.89	3.31	2.82	3.68	4.38	1.99	
Residues with	bad bonds	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	
Residues with	bad angles	0.80%	0.80%	0.00%	0.27%	0.27%	0.80%	

Table S2. TOP Structure refinement (cont.)

Prote	in	PaBphP-PCD			
Resolu	tion	2.60-49.0 Å			
Number of	residues	3827			
Starting	model			Final stage	
		T		TOP ¹	Manual
		Initial	Stage 1	Stage 2	After Top
C _a -RMS	D (Å)	N/A	0.73	0.33	0.3
<tsf< th=""><th>></th><th>2.91</th><th>-0.6</th><th>-0.2</th><th>1.28</th></tsf<>	>	2.91	-0.6	-0.2	1.28
# of hydroge	en bonds ²	1352	1814	1909	1754
R-wo	rk	0.2244	0.3551	$0.2338(0.2375)^{3}$	0.2198
R-fre	ee	0.2820	0.3854	$0.2567 (0.2803)^3$	0.2613
Map Corr	elation	0.80	0.69	0.80	0.82
RMSD from idealBond length(Å)Angle (°)		0.004 0.946	0.017 1.894	0.016 1.893	0.005 0.973
TSP-Fa TSP-Al TSP-G allow TSP-S	vored: [-6,0) lowed: [0,5) enerously- red:[5,10) carce: ≥ 10	41 19 15 25	74 11 4 11	70 15 4 11	54 18 12 16
A Howed Allowed Outliers		90 8 2	94 4 2	94 4 2	95 5 0.3
Clashsco Poor Ramachand Ramachand Deviatio MolPro Residues w	re, all atoms Rotamers adran Outliers ran Favored Cβ ons > 0.25 Å obity Score vith bad bonds vith bad angles	37 11% 1% 92% 2 3.32 0.00% 0.50%	133 11% 2% 94% 0 3.77 0.00% 0.52%	7.3 9% 1% 95% 28 2.47 0.03% 1.36%	2280.29632.830.00%0.52
	Prote Resolut Number of Starting t C _α -RMS <tsf< td=""> # of hydroge R-woo R-free Map Corr D from ideal TSP-Fav TSP-AI TSP-G allow TSP-Se Pre AI Ot Clashsco Poor Ramachand Deviatio MolPro Residues w Residues w</tsf<>	$\begin{tabular}{ c c c } \hline Protein & Resolution & Number of residues & Starting model & Starting model & C_{\alpha}-RMSD (Å) & Starting model & C_{\alpha}-RMSD (Å) & Starting model & Starting & Starting model & Starting & Starting & Starting model & Starting & Starting model & Starting & $	ProteinResolution Number of residues Starting modelInitialC_α-RMSD (Å)N/AC_α-RMSD (Å)N/A< TSP>2.91# of hydrogen bonds²1352R-work0.2244O.222440.2820Map Correlation0.80D from idealBond length (Å) Angle (°)0.004 0.946TSP-Favored: [-6,0)41 15 25TSP-Favored: [-6,0)41 19 15 25TSP-Generously- allowed: [5,10) TSP-Scarce: ≥ 1037 19 25Preferred ⁴ Qutliers90 2Allowed Outliers37 2Clashscore, all atoms Poor Rotamers Ramachandran Gutliers37 2 2Ramachandran Favored Cβ Deviations > 0.25 Å 2 MolProbity Score Residues with bad bonds 0.50%3.32 0.00% 0.50%	ProteinResolution Number of residues Starting modelInitialInitialC_c-RMSD (Å)N/A0.73C_c-RMSD (Å)N/A0.73C_c-RMSD (Å)N/A0.73C_c-RMSD (Å)N/A0.73C_c-RMSD (Å)N/A0.73C_c-RMSD (Å)N/A0.73C gramma colspan="2">C stage 1C gramma colspan="2">ON AN/A0.291-0.6# of hydrogen bonds ² 13521814R-work0.22440.3551R-free0.28200.3854Map Correlation0.800.004D from idealMol length (Å) Angle (°)0.0040.0117TSP-Faulowed: [0,5)19TSP-Generously- allowed: [5,10)25111TSP-Scarce: ≥ 10 2Clashscore, all atoms Poor Rotamers Ramachandran Outliers3.77Residues with bad bonds 0.00%0.00%OUTLINE COLS Å 22Clashscore, all atoms 	Protein PaBphP-PCD Resolution Number of residues Starting model $2.60-49.0$ Å 3827 Starting model 3827 Final stage 3827 Final stage 3827 Initial TOP ¹ Initial Stage 1 Stage 2 C _α -RMSD (Å) N/A 0.73 0.33 <top<sup>1 1814 1909 R-work 0.2244 0.3551 0.2338 (0.2375)³ R-work 0.2820 0.3854 0.2567 (0.2803)³ Map Correlation 0.80 0.69 0.80 D from ideal Bond length (Å) Angle (°) 0.004 0.946 0.017 0.894 0.016 0.893 TSP-Favored: [-6.0) TSP-Generously- allowed: [5,10) 41 25 74 11 70 15 Preferred ⁴ 90 94 4 94 4 Outliers 2 2 2 Clashscore, all atoms Poor Rotamers Ramachandran Outliers 37 11% 1133 2.77 7.3 2.47 Residues with bad bonds 0.00% 0.00% 0.00% 0.00% <th< th=""></th<></top<sup>

Table S3. TOP Structure refinement¹

Table S4. Comparison between TOP and Phenix applied to a bacteriophytochrome

Structure	Rwork/Rfree	Ramachandran Statistics ¹	<tsp></tsp>	H-bonds
Starting model	0.266/0.305	76/11/13	3.59	354
Post TOP	0.251/0.289	87/6/7	1.13	398
Post Phenix using discard Phi_Psi=False ²	0.244/0.300	81/10/9	3.53	351
Post Phenix using discard Phi_Psi =true ²	0.245/0.300	79/11/1	3.79	356
Phenix Autobuild	0.279/0.364	71/15/14	4.64	334

¹As defined by the program COOT (Preferred /Allowed/Outliers). ²Using Wxc_scale=0.5 and Wxu_scale=2.0

Figure S1. TOP selects native-like angles. Starting from a low resolution crystal structure of HIV reverse transcriptase (3HVT), the first, backbone-only refinement, stage of TOP selects angles that on average are closer to those observed in a medium resolution crystal structure, as illustrated with RamaMaps.

Dihedral angle difference, before versus after (°)

Figure S2. TOP selects native angles. Starting from an NMR structure of barnase (2KF3), the first, backbone-only refinement, stage of TOP selects angles that on average are closer to those observed in a medium resolution crystal structure, as illustrated with Ramachandran maps and histograms.

Figure S3. TOP is applied to APC22750 at an early stage (465 aa) and late stage (480 aa) of refinement. Right side: The backbone moves during the torsional refinement stage but returns closer to the initial structure during the real space refinement using the electron density. The C_{α} -RMSD between the initial and final refined structures is 0.42 and 0.14 Å when starting from the early stage and the deposited structures, respectively. Variability exists across the protein, and there are regions with poor TSP scores that move by up to ~2 Å during the refinement of the early stage structure. But most displacements are under 0.5 Å after refinement against the electron density. Displacements starting from the deposited structure are significantly less.

Acetylcholine receptor pore (10ED, 4 Å)

Figure S5. Improved cryoEM structures for TMV and Acetylcholine receptor pore using TOP. Coloring of structures reflects TOP score (see Figure S1, red =10, blue = -6).

