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Supporting Material I: Figures S1 and S2 
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Figure S1. Optimized free energy as a function of R and θ. The energy contour map is given for 
homologous (upper panel) and non homologous (lower panel) molecules. The free energy was 
calculated from Eqs. (3)-(8) of the main text at a=11.2 Å, Dλ  = 7 Å, f1=0.4, and f2=0.6. 
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Figure S2. Pairing energy landscapes as a function of total portion of the adsorbed (condensed) 
counterions in the grooves (f1 + f2) and the relative weight of the minor group population,  f1 /(f1 + f2) , 
for the indicated values of the charge compensation parameter θ. All other parameters were the same 
as in Fig. 3 of the main text. Left column: nonhomologous pairs, right column: homologous pairs. 
The empty upper left landscape shows that pairing of nonhomologous DNA molecules is 
energetically unfavorable at θ = 0.6 regardless of the pattern of bound counterions. 
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Supporting Material II: Theory of Braided Pairs of Charged Helical Molecules 
 
 
In this Supporting Material we derive expressions for the 
electrostatic and free energy of symmetric, straight DNA 
braids. In Part A, we develop an electrostatic theory for 
ideal, symmetric braids of charged helical molecules. We 
begin by considering braided pairs of molecules with 
arbitrary patterns of discrete surface charges and then 
demonstrate the theory’s application to ideal helical 
chains and double helices. In part B, we discuss effects 
of sequence-related and thermal fluctuations in the 
double helix structure and calculate the corresponding 
free energy of DNA braids.  

To avoid disrupting the main line of the presentation, 
we provide clarifying auxiliary arguments in shaded 
boxes. We utilize the Gaussian system of units for the 
electrostatic equations. 

A. ELECTROSTIC ENERGY 
A.1 General Strategy 

Our calculation of electrostatic energy of braided pairs 
of molecules is based on the following general ideas. We 
represent the energy of braid formation as 

( ) ( ) ( )BRE R E R E= − ∞ . (S1) 

Here R is the braid diameter defined at the centerlines of 
the molecules (Fig. 2 of the main text) and 

( ) 31 ( ) ( )
2

E R dϕ ρ= ∫ r r r  (S2) 

is the energy of all fixed charges of the molecules 
(charge density ρ (r)) in the electrostatic potential ϕ (r) 
created by these charges.  

For braids immersed in an electrolyte solution, we 
utilize a model, in which all bound and condensed 
counterions within the nonlinear screening layer are 
treated as part of the surface charge of the molecules and 
contribute to ρ (r) (1). Hereafter, we refer to these 
counterions as bound. We assume that the molecules 
have cylindrical dielectric cores with a dielectric 
constant much smaller than that of water. We also 
assume that the fixed charges and bound counterions lie 
at the core-water interface. Within this model, the 
electrostatic potential ϕ (r) outside and at the surfaces of 
the dielectric cores may be calculated from the Debye-
Huckel equation, 

2 4( ) ( ) ( ) ( )ind
D

πϕ κ ϕ ρ ρ
ε

⎡ ⎤Δ − = − +⎣ ⎦r r r r , (S3) 

in which we account for the effects of the dielectric 
cores on ϕ (r) by introducing the density ρind(r) of 
induced charges at the surfaces of the cores (often 
referred to as “image charges”). Here ε is the dielectric 
constant of water and κD is the inverse screening 
(Debye) length. The density of the induced (image) 

charges is calculated by solving the Laplace equation for 
the potential inside the cores and using appropriate 
boundary conditions at the core-water interface (6). 

From Eqs. (S2) and (S3), we find that 

( )
2

3
2 2

, 1

( ) ( ) ( )2

D

ind

E R d
k

μ μ ν

μ ν

ρ ρ ρπ
ε κ=

⎡ + −
=

⎤⎣ ⎦
+∑ ∫

k k k
k  (S4) 

where ( )νρ k , ( )μρ k and ( )ind
μρ k  are Fourier transforms 

·
3/2

31( ) )
(2 )

( ie dρρ
π

= ∫ k rk r r  (S5) 

of the densities of fixed )(νρ r  and induced )(ind
νρ r  

charges at the surface of the dielectric cores of the 
molecules ν and μ (ν,μ = 1,2). 

To calculate the electrostatic energy, we exploit the 
fact that for helical charge patterns ( )νρ k  and ( )ind

νρ k  
are not zero only within a limited set of k, allowing us to 
calculate the integral in Eq. (S4). Specifically, we 
represent ( )ind

νρ k  by a series of image charges (Box 1). 
After truncation of this series and utilizing the 
reciprocity of electrostatic interactions, we arrive at the 
following approximation (for derivation, see Box 1) 

1,2 1,1 2,2( ) ( ) ( ) ( )BRE R E R E R E R= + +  (S6) 

where 
(0) (0)

1 1,1 2 2,2
1,2

3
2 2

( ) ( ) ( ) ( )
( 4)

D
d

k
E R

ρ ρ ρ ρπ
ε κ

⎡ ⎤ ⎡ ⎤+ − + −⎣ ⎦ ⎣ ⎦
+

≈ ∫
k k k k

k

 (S7) 

is the energy of fixed charges of molecule 2 in the 
electric field created by molecule 1 (which is equal to 
the energy of fixed charges of molecule 1 in the field 
created by molecule 2); 
 

(1) (0)
, ,3

2 2,

( ) ( ) (
(

)
) 2

Dk
E dR ν μ μ μ μ

ν ν

ρ ρ ρπ
ε κ

⎡ ⎤− + −⎣ ⎦
+

≈ ∫
k k k

k  

 (S8) 

is the energy of the dielectric core of molecule ν in the 
electric field created by molecule μ (here ν≠μ); (0)

, ( )ν νρ k  
is the Fourier transform of the charge density induced on 
the dielectric core of molecule ν in the absence of the 
second molecule; and (1)

, ( )ν μρ k  is the first order term in 
the series of image charges induced on the dielectric core 
of molecule ν by molecule μ.  

The energy of braids in non-polar media, e.g., α-
helix coiled coils, may also be calculated from Eqs. (S6)
-(S8) by utilizing the corresponding ε and setting 

( )ind
νρ k =0 as well as κD=0 (see Ref. (1)). 
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Below we derive expressions for ( )νρ k  and 
(0)
, ( )ν νρ k  to the first order in small tilt angle α of the 

molecules in the braid (Section A.2) and calculate E1,2(R) 
for molecules with helical patterns of surface charges 
(Section A.3). An expression for Eν,ν (R) for two parallel 
molecules, which corresponds to the braid with α = 0, 
has been published before (1,6). At least for DNA braids, 
we found ∂Eν,ν (R)/∂α to be negligible compared to 
∂E1,2 (R)/∂α (R. Cortini and D.J. Lee, unpublished 
calculations). Given the negligible contribution of 
∂Eν,ν (R)/∂α, here we present only the final expression 
for Eν,ν (R) at small α. The full derivation of this 
expression, which is rather cumbersome, will be 
reported elsewhere.  

A.2 Fourier Transform of the Charge Density 

A.2.1 Coordinate frames and transformations 
To calculate ( )νρ k  and (0)

, ( )ν νρ k , we utilize multiple 
coordinate frames (Fig. S3): (i) laboratory Cartesian 
frame r; (ii) local Cartesian frame , jν′r  for each charge j 
on molecule ν ; and (iii) local cylindrical frame 
( ) ,, , jR z νφ′ ′ ′ , which corresponds to the , jν′r  frame. The 

laboratory frame has the z-axis that coincides with the 
braid axis. The origin and orientation of each local frame 
are defined so that: (a) the origin lies on the centerline of 
the molecule; (b) the z'-axis is tangential to the 
centerline; (c) the charge j lies within the z'=0 plane; (d) 
the x' (φ'=0) axis points away from the z-axis of the 
laboratory frame (Fig. S3). 

Box 1: Summation of image charges and image-charge interactions 

The density of induced charges at the surface of molecule ν may be calculated with the help of the following series 

(2 ) (2 1)
, ,

0

ind n n
v

n
ν ν ν μ ν μ

ρ ρ ρ
∞

+

≠
=

⎡ ⎤= +⎣ ⎦∑           (B1.1) 

Here (0)
,vνρ  ~ ρν is the charge density on the dielectric core ν induced by the electric field of ρν in the absence of the second 

molecule, (1)
,ν μρ  is the charge density on the core ν induced by the electric field of (0)

,μ μ μρ ρ+ . At m > 1, (2 )
,
n
vνρ  and (2 1)

,
n

ν μρ + are 

the charge densities on the core ν induced by the electric field of (2 1)
,
n
vμρ −  and  (2 )

,
n

μ μρ , respectively. Since the electric field of 
(0)

,μ μ μρ ρ+  propagates through electrolyte to induce (1)
,ν μρ , we find that ( )(1)

, 2 exp Ddν μ μρ ρ κ< − , where d is the surface-to-

surface separation between the molecules. In general, ( )(2 )
, 2 exp 2n
v Dn dν νρ ρ κ< −  and   ( )(2 1)

, 2 exp 2 1n
Dn dν μ μρ ρ κ+ < − +⎡ ⎤⎣ ⎦ . Due 

to rapid, exponential convergence of this series, the contribution from (3)
,ν μρ  and higher order images into the electrostatic 

energy can usually be neglected. After the corresponding truncation of the series, we find  

1,2 2,1 1,1 2,2( ) ( ) ( ) 2 ( ) ( )BRE R E R E R E R E R≈ ⎡ + ⎤ + +⎣ ⎦         (B1.2) 

where 
(0) (1)
, ,3

2, 2

( ) (
(

) ( ) (
)

)4

D

E R d
k

ν ν ν μ ν μ
ν μ ν μ

ρ ρ ρ ρπ
ε κ≠

⎡ ⎤
=

+ + −⎣ ⎦
+∫

k k k k
k        (B1.3) 

and 
(1) (2)

,3
2

,
2,

( ) ( ) ( )
( ) 2

D

E R d
k

μ ν ν ν ν
ν ν

ρ ρ ρπ
ε κ

⎡ ⎤+ −⎣ ⎦
+

= ∫
k k k

k .        (B1.4) 

In Eq. (B1.3), we have taken into account that the contribution into EBR(R) originating from (2)
, ( ) ( )ν ν μρ ρ −k k  is of the same 

order as the contribution from (3)
, ( ) ( )μ ν μρ ρ −k k  in Eq.(B1.4), so that both should be neglected. 

Eqs. (B1.2)-(B1.4) may be further simplified by taking into account the reciprocity of electrostatic interactions, i.e., that 
the energy of charge j1 in the electric field created by charge j2 is equal to the energy of the charge j2 in the electric field created 
by the charge j1. We may then use that E1,2(R)=E2,1(R). Furthermore, E1,2(R) defined by Eq. (B1.3) is equal to the energy of 
molecule 2 in the electric field created by the density of fixed charges *

1ρ  immersed directly in the electrolyte solution, where 
* (0)
1 1 1,1( ) ( ) ( )ρ ρρ = +k k k . From the reciprocity, this energy is equal to the energy of fixed charges *

1ρ  in the electric field 
created by the molecule 2 (in the absence of the dielectric core of molecule 1). The latter energy is given by Eq. (S7). The 
same reciprocity argument shows that the energy defined by Eq. (B1.4) is equal to the energy defined by Eq. (S8). 
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The relationship between the r and , jν′r  coordinates 
is given by 

, ,( )c
j j js T Tν ν α ν′= +r r r . (S9) 

Here sj is the coordinate of the origin of the local 
coordinates along the centerline of molecule ν ,  

,

,

cos

( ) sin

cos

j
c

j j

j

b

s b

s

ν

ν ν

ω

ω

α

⎛ ⎞
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎝ ⎠

r   (S10) 

is the coordinate of the same point in the laboratory 
frame and the rotations  

1 0 0
0 cos sin
0 sin cos

Tα α α
α α

⎛ ⎞
⎜ ⎟= −⎜ ⎟
⎜ ⎟
⎝ ⎠

 (S11) 

and 

, ,

, , ,

cos 0
cos 0

0 0

sin
sin

1

j j

j j jT
ν ν

ν ν ν

ω ω
ω ω

⎛ ⎞
⎜ ⎟= ⎜
⎜
⎝

−

⎟
⎟
⎠

,  (S12) 

realign the axes of the coordinates after the shift by 
( )c

jsνr . In Eqs. (S10)-(S12), b=R/2 is the radius of the 
braid (distance from the braid axis to the centerline),  

, j c jQ sν νω ψ= + , (S13) 

ψν is the azimuthal orientation of the centerline in the 
laboratory frame at s=0 (intersection of the centerline 
with the z=0 plane of the laboratory frame), 2π /Qc is the 

distance along the centerline corresponding to one full 
turn of the braid, and α is the tilt angle of the molecules 
in the braid. The relationship between Qc and the 
reciprocal pitch of the braid Q as well as other important 
geometrical characteristics of ideal braids are discussed 
in Box 2. 

To calculate ( )
,
0( ) ( )ν ν νρ ρ+k k , we first determine the 

Fourier transform for each point charge and its image in 
( ) ,, , jR z νφ′ ′ ′  coordinates associated with this charge. 

Then we recalculate the Fourier transforms in the 
laboratory frame, using the relationships between the 
coordinate frames discussed below. Finally, we sum the 
contributions of all point charges.  

A.2.2 Arbitrary patterns of surface charges 
The Fourier transform of each image contributing to 

(0)
,ν νρ  is most conveniently determined in ( ) ,, , jR z νφ′ ′ ′  

coordinates. Indeed, the surface density of a point charge 
j in these coordinates is 

( ) ( )0
,( , ; ) j
j

e q
z j z

aν νσ φ δ δ φ φ′ ′ ′ ′ ′= − . (S14) 

Figure S3. Schematic illustration of laboratory (x,y,z) 
and local (x',y',z') coordinate frames.

Box 2: Braid geometry 
To characterize the geometry of an ideal, straight braid 

formed by two molecules ν and μ, we use its reciprocal 
pitch Q (2π /pitch), radius b, and the tilt angle α  of the 
molecules with respect to the braid axis (Fig. S3). We 
define Q as positive for right-handed and negative for left-
handed braids. We define α  as positive for right-handed 
and negative for left-handed crossovers between the 
molecules and braid axis. The sign of α is opposite to Q, 
since right-handed crossovers occur in left-handed braids 
and left-handed crossovers in right-handed braids. The 
value of α  is related to Q as 

tanQb α= − . (B2.1) 

In our calculations, we neglect the second and higher 
order terms in expansion with respect to small sinα. We 
thus neglect the difference between the arc length s along 
the centerline of molecule ν and the corresponding length 
z along the braid axis, because 

1 cosds dz α= . (B2.2) 

Similarly, we neglect the difference between Q and Qc 
(2π /centerline-arc-length per one turn of the braid), since 

coscQ Q α= . (B2.3) 

Finally, we neglect effects associated with the centerline 
curvature, which is given by 

( )22

2

sin( )cd s
bds

ν α
=

r , (B2.4) 

where ( )c sνr  is the coordinate of point s on the centerline. 
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Here a is the dielectric core radius; e0 is the elementary 
charge; qj is the charge number (valence), which may be 
negative or positive; δ (x) is the Dirac delta function; and 

, jνφ′  is the azimuthal coordinate of the charge. The 

cylindrical Fourier transform of ( , ; )z jνσ φ′ ′  is  

( ) ,0, ;
2

jimj
z

e q
k m j e

a
νφ

νσ
π

′′ = , (S15) 

where 

( ) ( )
2

0

1, ,
2

zim ik z
zk m d dz z e

π φσ φ σ φ
π

∞ ′ ′ ′+

−∞
′ ′ ′ ′ ′= ∫ ∫  (S16) 

and 

( ) ( )1, ,
2

zim ik z
z z

m

z dk k m e φσ φ σ
π

∞ ∞ ′ ′ ′− −

−∞
=−∞

′ ′ ′ ′= ∑ ∫ . (S17) 

The cylindrical Fourier transform of the corresponding 
image charge (0)

, ( , ; )z jν νσ φ′ ′  is given by (6) 

( )(0)
, ( , ; ) ( , ; )z m z zk m j t k k m jν ν νσ σ′ ′ ′≈ , (S18) 

where 

( ) ( )
( ) ( )

2 2 2 2

2 2 2 2
( )

m m

m m

D D

m

D D

K a x I a x
t x

I a x K a x

κ κ

κ κ

′+ +
= −

′+ +
, (S19) 

Km(x), Im(x), ( )mK x′ , and ( )mI x′  are the modified Bessel 
functions of the order m and their derivatives, 
respectively.  

Note that Eq. (S18) was derived for straight cylinders 
with a dielectric constant much smaller than the 
dielectric constant of water (6). Dielectric cores of 
braided DNA molecules are curved rather than straight, 
but this curvature is proportional to (sinα)2 (Box 2).  

To the first order in sinα, the effect of this curvature 
on the charge density may be neglected. The volume 
density ( ); jνρ ′r  of charge j on molecule ν in its , jν′r  

coordinate frame is related to ( , ; )z jνσ φ′ ′  by 

( ) ( ); ( , ; )j R a z jν νρ δ σ φ′ ′ ′ ′= −r . (S20) 

The Fourier transform ( )νρ k  in laboratory 
coordinates is related to Fourier transforms ( ); jνρ ′k  of 

( ); jνρ ′r  in , jν′r  coordinates by 

( )1 1
,) · ( ) ;( exp c

j j
j

i s T T jν ν ν α νρ ρ − −⎡ ⎤= ⎣ ⎦∑k k r k , (S21) 

as follows from substitution of Eq. (S9) into Eq. (S5). To 
the first order in sinα at |sinα| << 1,  

( ),co· ( ) sc
j j z jKb ss kν νφ ω− +≈ Kk r , (S22) 

where , )( ,zK k φ≡ Kk  in cylindrical coordinates and we 
replaced sjcosα with sj. After substitution of Eq. (S22) 
into Eq. (S21) and utilizing the Jacobi-Anger series 

( )2cos ( ) inix

n
ne x eJ φ πφ

∞
− −

=−∞

= ∑ , (S23) 

where Jn(x) is the Bessel function of the order n, we find 

( ) ( ) ( ), 2 1
,( ) ;j z jiin
j

k s
n

jn

J K T jb Te ν π
ν ν α ν

φ ωρ ρ− −
∞

− −
−

=−

+

∞

≈ ∑∑ Kk k

 (S24) 

To the first order in sinα, substitution of Eqs. (S11), 
(S12), (S17), and (S20) into Eq. (S5) yields 

______________________________________________________________________________________________ 

( ) ( ) ( )( ), sin1 2 cos s
,

in
/ 0, 3 2; sin , ;

(2
n

)
sij ziKa ik

j
m

z
ma i

j d kaT T j e mK jνω α φ
ν α ν ν ν

π φ φ φρ σφ φ ω α
π

∞
′− −−

−
′−

−∞

′ +

=

⎡ ⎤≈ −′ −⎣ ⎦∫ ∑ K
Kk . (S25) 

______________________________________________________________________________________________ 
 
After two additional applications of the Jacobi-Anger 
series, Eqs. (S24), (S25) may be reduced to 

( ) ( ) ( )

( )( )
( )( ),

1/2
, ,

, ,

2

) sin
(2 )

sin ,

(

s ;in

j z j

n n n z

z

i

n n n

j l
j

i n sn k

J Kb J Ka J k a

k K

e

a

n n j

ν

ν

ν ν

ω πφ

ρ α
π

σ ω αφ

∞

′ ′′
′ ′′

=−

+

∞

− +′+

≈

′′ ′× − +⎡ ⎤−⎣ ⎦

×

∑

∑
K

K

k

. 

 (S26) 

The relationship between (0)
, ( )ν νρ k  and (0)

, ( , ; )zk m jν νσ ′  is 
exactly the same. Then, the substitution of Eqs. (S13) 
(S15), (S18) into Eq. (S26) leads to  

( ) ( ) ( )

( )( )
( )( ) ( ) ,

(0)
,

0
3/2

, ,

2

) )

sin
(2 )

(

1 si

(

nsin

j zj j

n n n

n n
j

i n n i n n
j

n n n z

z j

Qs ik s

J Kb J Ka J k a

k K Qs

e

e

t

q ν ν

ν ν ν

πφ φ

ν

ψ

φ ψ

ρ ρ

α
π

α

∞

′ ′′=−∞

′′ ′+

′ ′′

+ + +′ ′ ′′ ′+ − + +

+

≈

⎡ ⎤× + −

×

− −⎣ ⎦

∑

∑
K

K

k k

, 

 (S27) 

where we used that Qc ≈ Q, to the first order in sinα 
(Box 2). Eq. (S27) defines ( )

,
0( ) ( )ν ν νρ ρ+k k  for an 

arbitrary pattern of discrete charges on the surface of the 
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dielectric core of molecule ν, to the first order in sinα. 
For sufficiently long molecules, the sum over j can be 
calculated, simplifying Eq. (S27) and enabling us to 
calculate the other sums and integrals in Eq. (S7). The 
simplest example of ideal helical chains of equally 
spaced charges is discussed in Box 3. 

A.2.3 Ideal, DNA-like double helices 
For DNA, we calculate the Fourier transforms of the 

charge density separately for phosphate groups and 
bound counterions. We begin from an approximation in 
which we assume that phosphate groups form an ideal 
helical pattern with the reciprocal pitch g. Then, 
phosphate group locations may be described with  

,2 1 2 ,2l l s lgsν ν νφ φ ω−′ = + Φ − −  (S28) 

,2 2 ,2l l s lgsν ν νφ φ ω′ = + Φ + −  (S29) 

2 1 2l ls s− =  (S30) 

Here the index l labels DNA base pairs, j=2l-1 and j=2l 
are two phosphate groups within the same base pair l, Φν 
is the orientation of the center of the minor groove at 
s=0), 0.4sφ π≈  is the azimuthal half-width of the minor 
groove. The subtraction of ων,j accounts for the rotation 
of the local ( ) ,, , jR z νφ′ ′ ′  coordinate frame, so that the 

molecule retains its intrinsic twist g in the braid (rotation 
angle of phosphate chains around the centerline per unit 
length of the centerline).  

Setting qj = -1, substituting Eqs. (S13), (S28)-(S30) 
into Eq. (S27), and using that Qc≈Q (Box 2) we find  

( ) ( ) ( )

( )( ) ( ) ( ) ( ) ( )( )

( )( )

(0)
,

3/2
, ,

2

0

) )

sin
(2 )

1 sin in

( (

s

z j

z n n
n n n

i k n n Q n n g si n n i n n i n n

j

n n z l

n n nKb Ka k a

e

e

e

J J

K

J

t k Qs

ν νφ

ν ν ν

π ψ

ν

ρ ρ

α ζ
π

α φ ψ

∞

′ ′′+
′ ′′=−∞

′′ ′ ′′+ − + +′ ′′ ′ ′′+ − + − + + Φ

′

′

′+

′′

′

+

≈

×

⎡ ⎤× + − − −⎣ ⎦

∑

∑K

K

k k

, 

 (S31) 

where ( )cos sm mζ φ= − . 

To the first order in sinα, Eq. (S31) may then be 
rewritten as 

( ) ( ) ( )

( ) ( ) ( )
( )( ) ( ) ( )

( ) ( )

(0)
,

3/2
, ,

0

2
,

) )

sin
(2 )

1 sin

(

si

(

2

n

z

n z
n n n

n n z n n z n n

i n n i n n i n n
k n n Q g

n

n n

n
Le

J J JKb Ka k a
h

t k K t k

e ν ν

ν ν

ν

φ

ν

π ψ

ρ ρ

α
π

α φ ψ ζ

δ

∞

′ ′′=−∞

′ ′′ ′ ′′ ′ ′′+ + +

′ ′′ ′ ′′+ − + −

′

+ + Φ
′′ ′ ′′− +

′′

− +

+

≈

′× + − −⎡ ⎤⎣ ⎦

×

∑

K

K

k k

, 

 (S32) 

where ( ) ( )m z m z zt k t k k′ ≡ ∂ ∂ . Here, we have taken into 
account that for molecules with the length L >> 2π /Q, 

Box 3: Crick’s formula for ideal helical chains 
Consider the simplest example of ideal helical chains formed by equally spaced charges with qj=1 and sj=lcj, where lc is the 
spacing between the charges along the centerline. When braiding of such chains does not introduce extra twist deformation 
within each chain, e.g., when the chains have free ends and can relax the twist, we find 

, ,j c jg l jν ν ν νφ φ ω′ = + −  (B3.1) 

Here φν is the phase of the charges within chain ν and gν is the reciprocal helical pitch of the chain. The subtraction of ων,j 
accounts for the rotation of the local coordinate system, preserving the intrinsic twist of the chain.  

For such chains, substitution of qj=1, sj=lcj, Eq. (S13), and Eq. (B3.1) into Eq. (S26) yields 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )20
3/2

, ,

) s
(2

( in
)

z ck Q l j
n

i n n n n gi n n i n n

jn
n z

n n
nJ Kb J Ka J k a e ee ν νψπ

ν
φρ α

π

∞
′′ ′′ ′+ − +⎡ ⎤′ ′′+ − + − ⎣ ⎦

′ ′′=

+
′ ′

∞
′

−

= ∑∑ Kk . (B3.2) 

For chains containing a large number of charges Nν, this equations reduces to  

( ) ( ) ( ) ( )( ) ( )
( ) ( )

20
3/2

,
, 2

,

) sin
(2 )

(
z c

i n n i n n
n n n n g

n n n
n n n z k Q J l

J

J Kb J Ka J k a eN e νφ ψ
π

πν
νρ α

π
δ

∞
′ ′′+ − + −

′′ ′′ ′− + −

∞

′
′

′′ − +
=−∞′′=−∞

= ∑∑ Kk . (B3.3) 

Here we used that, for equally spaced charges, the sum over j yields Nν for any kz satisfying the following selection rule 

( ) ( ) 2z ck Q ln n n n g Jν π′′ ′′ ′+ − + =⎡⎣ + ⎤⎦ , (B3.4) 

where J is an arbitrary integer.  
An analogue of Eq. (B3.3) for the Fourier transform of the density of atoms in supercoiled ideal helical chains, which 

may be obtained by replacing e0 with 1, was originally derived by F. Crick (5). It played an important role, e.g., for 
understanding x-ray diffraction from coiled coils of α-helices. 
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,0
2jixs

x
j

Le
h

δ≈∑ , (S33) 

where h  is the average axial rise per base pair and δx,y is 
the Kroenecker delta (δx,y = 1 at x = y and δx,y = 0 at x ≠ y). 
For ideal helical chains with equally spaced charges, one 
must also account for xsj = 2π J  with nonzero integer 
values of J (Box 3). For DNA, however, the Fourier 
modes with J≠0 are suppressed by sequence-related and 
thermal fluctuations in the twist and rise between 
adjacent base pairs (see (1) and Box 4). 

Note that the specific locations of phosphate charges 
within the double helix are determined entirely by the 
coefficient ( )cos sm mζ φ= − . All other factors in Eq. 

(S32) simply reflect the general helical symmetry of 
DNA and the braid.  

For bound counterions, we cannot assume fixed 
locations on DNA surface. Instead, we suppose that 
these charges are mobile and their density is determined 
primarily by the molecule to which they are bound. In 
this case, we may expect the average surface charge 
density of bound counterions to follow the helical 
symmetry of the molecule.  

Within these assumptions, the total (phosphate and 
counterion) charge density ( )

,
0( ) ( )ν ν νρ ρ+k k  in DNA 

braids is described by Eq. (S32) as well. However, for 

the total charge density 

( )cosm m smζ ζ φ+= − , (S34) 

where mζ +  determines the counterion contribution.  
Similar to our previous studies of interactions 

between straight DNA molecules (1), we utilize a 
phenomenological model for mζ + , which distinguishes 
three types of counterion binding sites: (i) random, (ii) in 
the middle of the minor groove, and (iii) in the middle of 
the major groove. Within this model (1)  

( ) ( ) ( )1 2 1 2 ,01 1 cosm
m m sf f f f mζ δ θ φ⎡ ⎤= + − + − − −⎣ ⎦ , 

 (S35) 

where f1, f2, and (1-f1-f2) are the fractions of ions bound 
in the minor groove, major groove and randomly, and θ 
is the total fraction of negative charge compensated by 
bound counterions.  

A.3. Interaction Energy 

A.3.1 Direct interactions 
Substitution of Eq. (S32) into Eq. (S7) yields 

( )1,2
1 2 3

( )

B

E R
L

k T
≈ ϒ + ϒ + ϒ . (S36) 

where to the first order in sinα 

______________________________________________________________________________________________ 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( )
( ) ( ) ( )1 1 2 2

2

1 2 2 2 20 0
, , ,

2
,

1

1 1

m m m
z

c z Dn n m m

i n n m m in in im im
n z m z n m zn m g n m Q

n n mB Kb Ka Kb Ka
dk KdK d

l k

t k t k e k nQ g

J Jl

n

J J
K

π

φπ ψ ψ

π κ

ζ δ

φ

ζ δ

∞∞ ∞ ′+ ′

−∞
′ ′=−∞

′ ′ ′ ′+ + + − + Φ + + Φ +
′ ′ ′ ′ ′ ′+ −

′

+

⎡ ⎤
ϒ = ⎢ ⎥

+ +⎣ ⎦

′× ⎡ + ⎤ ⎡ + − ⎤ + +⎣ ⎦ ⎣ ⎦

−∑∫ ∫ ∫
K

K
, (S37) 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( ) ( ) ( )1 1 2 2

2

2 2 2 2 20 0
, , , , ,

2

sin
2

1

1

1

m m m
z z

c z Dn n n m m m

i n n m m i n

n

n i n n i m m i m m
n n z m m z n

mB

n m

n

m

Kb Ka Kb Kaa k dk KdK d
l k

t k t

K

e

J J J Jl

k φ

π

π ψ ψ

α
π κ

φ

ζ ζ

∞∞ ∞ ′+ ′

−∞
′ ′′ ′ ′′=−∞

′ ′ ′ ′′ ′′ ′ ′′ ′′+ + + − + + Φ + − + + Φ + −
′ ′′ ′ ′′ ′ ′′ ′ ′′+ +

′

+ +

⎡ ⎤
ϒ = ⎢ ⎥+ +⎣ ⎦

× + + −⎡ ⎤ ⎡ ⎤⎣

−

⎦ ⎣ ⎦

×

∑∫ ∫ ∫
K

K

( ) ( ) ( ) ( ) ( ),0 ,1 , 1 ,0 ,1 , 1 ,m n n n m m zn n m m Q n n m m g k n g n gδ δ δ δ δ δ δ δ′′ ′′ ′′ ′′ ′′ ′′− − ′′ ′′ ′ ′′ ′ ′′− + − + + +⎡ ⎤ ′ ′′− − − + +⎣ ⎦

, (S38) 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ){ } ( )( ) 1 1

22
3 ,2 2 2 20 0

, , ,

2
2 1

sin

1 sin 1 sin

1 m m m
z zn m g n m Q

c z Dn n m m

i n n m m in in im
m z n z n z m z

n n m

m

B

n

Kb Ka Kb Ka
dk K dK d k n g

l k

t k t k

J J

t k t k e

J Jl
K

φ

π

π ψ

α δ δ
π κ

φ ψ φ ψ ζ ζ

φ
∞∞ ∞ ′+ ′

′ ′+ − +−∞
′ ′=−∞

′ ′ ′ ′+ + + − + Φ + + Φ
′ ′ ′ ′ ′ ′

′⎡ ⎤
′ϒ = +⎢ ⎥

+ +⎣ ⎦

′ ′× − ⎡

−

+ ⎤ − − ⎡ + − ⎤ −⎣ ⎦ ⎣ ⎦

∑∫ ∫ ∫
K

K K

K

2 2imψ+

. 

 (S39) 
______________________________________________________________________________________________ 
 
Here ( )2

0B Bl e k Tε=  is the Bjerum length (≈ 7 Å in 
water) and lc is the length along the DNA centerline per 
one phosphate charge (≈ 1.7 Å). To obtain Eqs. (S37)-
(S39), we used that to the first order in sinα 

( ) ( ),0 ,1 , 1
sinsin
2

z
m z m m mJ k ak a αα δ δ δ −≈ + −  (S40) 

and 

sinQ bα≈ −  (S41) 

(see Box 2) as well as that 
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( ) ( ) [ ] [ ]( ),2 z zk n n Q n n g k n n QL n n g
π

δ δ′′ ′ ′′− − + + ′′ ′ ′′≈ + − + +  

 (S42) 
at L/2π >> Q-1, g-1. 

To calculate the integrals in Eqs. (S37)-(S39), we 
utilize that 

( )2

,00
2i n n m m

n n m me d
π φ πφ δ′ ′ ′′− + + +

′ ′ ′′+ + +=∫ K
K . (S43) 

After eliminating most of the sums with the help of the 
delta indices, we take into account that

 

( ) ( ) ( ) ( )2m N m N N
m

J Kb J Kb J Kb J KR
∞

−
=−∞

= ≡∑ , (S44) 

as well as that ((7), Eq. 8.11.51) 

( ) ( ) ( )

( ) ( ) ( ) ( )

2 20

1

m

m
m

n m n

n m n

J J J
K

KR Ka Ka
KdK

K R I a aI

κ

κ κ κ

−
∞

−

+

= −

∫   (R > 2a) (S45) 

and 

( ) ( )
( ) ( )

2 2
22

11 n n
n n

n
n

It ng a
a K a

κ
κ κ

− =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦
′⎡ ⎤⎣ ⎦

, (S46) 

where 

2 2 2
n D n gκ κ= + . (S47) 

After straightforward algebra, we find 

( ) ( )1
1,2

2
( )

1 cosn
n

B n

E R
L

k
nu

T

∞

=−∞

≈ − Φ − Φ⎡ ⎤⎣ ⎦∑  (S48) 

where 

( ) ( )

( ) ( )

1
2

2

22

0

2

sin
2

2 n
n n

n

n

B

n
n

c n

K
lu

n R
K R ga

a

a K al

κ
ζ κ α

κ

κ κ

⎡ ⎤
+⎢ ⎥

⎣ ⎦
′⎡ ⎤⎣ ⎦

≈ . (S49) 

Note that at α=0 we recover the expression reported 
before for parallel, straight helices (1, 6). The series 
rapidly converges and, under most conditions, only the 
terms with |n| ≤ 3 are relevant. 

A.3.1 Image-charge interactions 
A calculation of E1,1(R) and E2,2(R) yields (R. Cortini 

and D.J. Lee, unpublished) 

1,1 2,2( ) ( )

B n

im
n

E R E R
L u

k T

∞

=−∞

+
≈ ∑ , (S50) 

where 

( ) ( )

( ) ( )

2
,

22

2
,

22

2

2

( , )

(
s

2

4 , )
in

n nim B
n

c n

n

n n n

n n

n n n

n n

nB

c n

R a

a K a

n R a
ag

lu
l

a

l
l a K

ζ κ κ

κ κ

ζ κ κ
α

κ κ

Ω

′⎡ ⎤⎣ ⎦
Ω

+

≈

′⎡ ⎤⎣ ⎦

, (S51) 

( ) 2
,

( )
, ( )

( )
j

n n n j
jj

I y
x y K x

K y

∞

−
=−∞

′
⎡ ⎤Ω = − ⎣ ⎦ ′∑  (S52) 

1
, 2

2

2

( ) ( )
( , )

( )

1 2 ( ) ( )

j

n j n j
n

j j

n
j y K

K

K x K x
x y

y

jjI y y
y

∞
+ + +

=−∞

Ω =
⎡ ⎤⎣ ⎦

′× +

′

⎡ ⎤
′⎢ ⎥

⎣ ⎦
+

∑
 (S53) 

The first term in Eq. (S51), which describes image-
charge interactions between straight, parallel helices, 
was described previously (1, 6). The second term in Eq. 
(S51) provides a negligible contribution to EBR(R) and 
may be omitted for the purpose of the present study. Its 
derivation, which is more complicated than for the 
corresponding term in Eq. (S49), will be reported  
elsewhere.  

B. FREE ENERGY OF DNA BRAIDS 
B.1 Nonideal Double Helices 

Our first step in evaluating the free energy of DNA 
braids is to account for sequence-related and thermal 
distortions of the double helix, since the structure of real 
DNA is neither ideal nor rigid. These distortions may 
involve twisting, stretching, and undulations. We base 
their analysis on lessons from previous studies of 
parallel pairs and columnar assemblies of DNA (1-3, 8). 
These studies revealed that torsional (twisting) and 
stretching distortions of the double helix are always 
important since they affect the alignment of charged 
helical strands on opposing surfaces. Undulations do not 
have a significant effect on this alignment and contribute 
to the free energy only at larger interaxial distances. At 
distances expected in DNA braids (Fig. 3 of the main 
text), undulations are suppressed by electrostatic 
interactions and their contribution to the free energy is 
small (2). In braids, undulations are further suppressed 
by winding of the molecules around each other. Given 
the expectation of only a small contribution of 
undulations to the free energy and the complexity of 
their calculation within braid geometry, here we simply 
neglect this contribution. In other words, we assume that 
DNA centerlines form an ideal, symmetric braid.  

To account for torsional and stretching distortions of 
DNA within such braids, we utilize the same approach as 
in previous studies of interactions between parallel 
molecules (1-3, 8). Based on the arguments summarized 
in Box 4, we approximate the electrostatic interaction 
energy within a braid composed of nonideal double 
helices as 

( )
0

cos( 1)
L n im

n n
BR

B n

n s u u
k
E ds

T

∞

=−∞

⎡ ⎤ΔΦ +⎡ ⎤⎣ ⎦⎣ − ⎦≈ ∑∫ . (S54) 

This expression is similar to Eqs. (S6), (S48)-(S53), 
except here ΔΦ(s)=Φ1(s) - Φ2(s), where 
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( )2 0 2 2
0

0

( ) ( ) ( )

( ) ( )(0)

l

l m m
m
s

s s s gh s

ghd
h

ν ν ν ν

ν ν
ν

τ ττ

=

Φ = Φ + Ω −⎡ ⎤⎣ ⎦

Ω −
≈ Φ +

∑

∫
 (S55) 

is the helical phase of molecule ν at base pair l, Φν (0) is 
the azimuthal orientation of the center of the minor 
groove of molecule ν  at s=0, Ων (s2m) and hν (s2m) are the 
twist and rise per base pair along the centerline (between 
base pairs m and m - 1). Similar to Eqs. (S6), (S48)-
(S53), ΔΦ(s) is equal to the difference between 
azimuthal orientations of the centers of the minor 
grooves of the two molecules at any s. In addition, in Eq. 

(S54) compared to Eqs. (S6), (S48)-(S53), the average 
reciprocal pitch of DNA g  replaces g, and integration of 
the energy per unit length over the length of the 
molecules replaces multiplication of the same energy by 
L (c.f., Eq. (S48)). Both torsional and stretching 
deformations affect the value of ΔΦ(s).  

B.2 Energy Functional 

We describe the elastic energy EER associated with these 
deformations as well as with bending of DNA necessary 
to form the braid within the elastic rod model, which is 
defined by Eq. (1) of the main text. After substitution of 
Eq. (S55) and Eq. (B2.4) into Eq. (1), we find 

Box 4: Interaction between nonideal double helices 
To account for twisting and stretching distortions of the double helix, we describe the locations of phosphate groups with 

,2 1 2 ,2 ,2l l l s lgsν ν νφ φ ω−′ = + Φ − − ,   ,2 2 ,2 ,2l l l s lgsν ν νφ φ ω′ = + Φ + −  (B4.1) 

Similar to Eqs. (S28)-(S30), s2l = s2l-1 is the centerline coordinate of base pair l, but Φν, 2l ≡ Φν (s2l)  is now the helical phase of 
base pair l, which is defined by Eq. (S55) and depends on l. Instead of Eqs. (S36)-(S39), we then find  

( )

( ) ( ) ( ) ( ) ( ) ( )( )( ) ( )( )2 2 2,2 2,22 1,2 2,2

21,2
, , , , ,0 0

, , , , ,

( )
, ,

z l l l ll l l

z n n n m m m z
B n n n m m m

i k m m Q m m g s s i m mi n m n m Q n m n m g s i n n i m m

l l

e

E R
dk KdK d k

e

K
k T

π
φ φ

′ ′′′ ′ ′′ ′ ′′′′ ′′ ′ ′ ′′ ′′ ′ ′′ ′ ′′ − + − + + − + + Φ −Φ+ − − + + +

∞ ∞

′ ′′ ′ ′′
−∞

′

+ + + Φ + + Φ⎡ ⎤⎣

′ ′ ′

⎦

′

′ ′

×

≈ ∑∫ ∫

∑

∫

∑

K KG
, (B4.2) 

where the summation is performed over base pairs and 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( )

2, , , , , 2 2 2

1 2

8,
sin sin
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,
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z D
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′ ′′ ′ ′′
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×
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( ) ( ) ( )1 22 i n n i m mπ ψφ ψ− + − + −′′ ′′K

. (B4.3) 

We may now take into account that the variation of Φν, l with l is relatively slow. For individual DNA molecules,  

2
,2 ,2l l

c

l l
hν ν λ′
′−

⎡Φ −Φ ⎤ =⎣ ⎦ , (B4.4) 

where λc is the helical coherence length of DNA; intermolecular interactions only reduce <[Φν,2l - Φν,2l']2> (2-4). Since 

c hλ ~ 30, λcκD >> 1 and only |n' + n'' | ≤ 3 are important for intermolecular interactions in the braid (section A.3), the sums 
over l and l' in Eq. (B4.2), contribute significantly to the energy only at 

( ) ( )n m n m g n m n m Q′ ′ ′′ ′′ ′′ ′′+ + + ≈ + − −    and   ( ) ( )zk m m Q m m g′′ ′ ′′≈ − + + . (B4.5) 

After substituting Eq. (B4.5) into Eq. (B4.2) and replacing the sums over l and l' with integrals, we find 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 2 2

,

21,2
, , , , ,0 0

, , , , ,

0 0

( )
, ,

zz

n n n m m m
B n n n m m m

L

z

n m n m g n m n m Q

L i n n s i m m s i m m s iq s i m m siq s

m m Q m m
E R

K g

ds e e e e
h

dK d K
k T

dsdq
h

π
φ φ δ ′ ′ ′′ ′′ ′′

∞

′ ′′ ′ ′′
′ ′′ ′

′′+ + + + − −

′ ′′ ′ ′′ ′ ′

′′

∞

−∞

′ ′ ′ ′′ ′+ Φ + + Φ − + Φ − + + Φ

′′ ′ ′′− + +⎡ ⎤⎣ ⎦

⎡ ⎤×

≈

⎢ ⎥⎣

′

⎦

∑∫ ∫

∫∫ ∫

K KG
, (B4.6) 

where ( ) ( )z zq k m m Q m m g′′ ′ ′′= − − + + . Taking into account that  

( ) ( ) ( ) ( )2 2

0
2z z i mL m s i m m siq s i

z
q se e e edq ds π′ ′′ ′ ′ ′′+ Φ + Φ′−∞

−∞
⎡ ⎤′ ⎣ ⎦ =∫ ∫  (B4.7) 

and calculating the remaining sums and integrals in Eq. (B4.6) as described in section A.3, we arrive at Eq. (S54).  
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 (S56) 

where b
pl  is the bending persistence length of DNA 

( b
p Bl B k T= , B is the bending modulus), 

2
h t s B
p

s t

C C k Tl
C g C

=
+

 (S57) 

is the helical persistence length of DNA (Cs and Ct are 
the stretching and torsional elasticity moduli of DNA, 
respectively), 

( )
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⎝ ⎠

⎛ ⎞ −
+ ⎜ ⎟

⎝ ⎠

 (S58) 

is an independent twist-stretch deformation, which does 
not affect the helical phase, 0 ( )sνΩ  is the intrinsic twist, 
and 0( )h sν  is the intrinsic rise per base pair along the 
centerline. After introducing 0 0 0

1 2( ) )) (( s ss = −ΔΩ Ω Ω , 
0 0 0

1 2( )( ) ( )s sh s h h= −Δ , and combining Eq. (S56) with 
Eq. (S54), we may represent the total energy of the braid 
in the following form 
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4
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ds s u u
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∞
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≈ +

−⎛ ⎞ΔΦ ΔΩ Δ
+ −⎜ ⎟

⎝ ⎠

⎡ ⎤ΔΦ +⎡+ − ⎤⎣ ⎦⎣ ⎦∫

∫

∑

, (S59) 

where E0 combines all components of the energy 
independent of R and ΔΦ(s). These energies are not 
affected by DNA braiding and therefore they do not 
contribute to the free energy of braid formation.  

Note that in Eq. (S59) we account for the bending 
energy proportional to (sinα)4 while we neglect 
electrostatic energies proportional to (sinα)2. The reason 
behind this approximation is the large bending 
persistence length of DNA, which may make the 
bending energy comparable to the first order terms in the 
expansion of the electrostatic energy with respect to sinα 
at relevant α. For additional discussion of this 
approximation, see the main text. 

B.3 Variational Approximation 

We calculate the free energy of braid formation as 

described in the Supplementary Material of (2). Briefly, 
we separate different contributions to fluctuations in the 
helical phase, 

(0)( ) ( ) ( )s s sδΔΦ = ΔΦ + Φ , (S60) 

where the first term describes static (e.g., sequence-
related) distortions in the double helix structure and the 
second term describes thermal fluctuations. We 
introduce an effective energy cost of δ Φ(s) 

[ ]
2

2

0

( ) ( )
2 2

hL pB
eff

lk T d sE ds s
ds

δ β δ
⎡ ⎤Φ⎛ ⎞= + Φ⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥⎣ ⎦
∫ , (S61) 

where β is a variational parameter, and approximate the 
free energy of braid formation as 

( )

0

ln exp eff
DNA B

B

DNA eff

E
F k T

k T

E E E

δ
⎡ ⎤⎛ ⎞−

≈ − Φ⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

+ − −

∫ D
. (S62) 

Here ( )δ ΦD  indicates path integral over all possible 
“trajectories” of δ Φ(s) and double brackets indicate 
averaging over thermal fluctuations with the weight 
factor ( )exp eff BE k T−  plus averaging over possible 

realizations of 0 0( ) ( )s gh sν νΩ − .  
To account for DNA flexibility we optimize the free 

energy of braid formation not only with respect to β but 
also with respect to (0) ( )sΔΦ . Specifically, we look for 

(0) ( )sΔΦ  among the following trial functions (3) 
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0 0
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 (S63) 

where ΔΦ  is the average difference between the helical 
phases of the two molecules within the braid and λh is a 
second variational parameter of the theory.  

After minimizing with respect to both λh and β, as 
described in Supplementary Material of (2), we arrive at 
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 (S64) 

where the structural adaptation length, hλ �  and the 
difference in the average helical phases of the molecules, 
ΔΦ  should be found from 

0DNA h DNAF Fλ∂ ∂ = ∂ ∂ΔΦ =� . (S65) 

The value of λ depends on the relationship between the 
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sequences of the two molecules in the braid. When the 
molecules have homologous sequences, 

0 ) 0(sΔΩ ≈  and 0 0( )h sΔ ≈  (S66) 

and 
h
plλ = . (S67) 

When the two molecules have unrelated (and therefore 
uncorrelated) sequences, 

2
0 0
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s c

s s
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⎝ ∫  

 (S68) 
and 

(0)

(0)

h
p c

c h
p c

l
l

λ
λ λ

λ
= =

+
, (S69) 

where λc (≈ 105 Å (4, 9)) is the helical coherence of 
DNA and (0)

cλ  (≈ 150 Å (9)) is its intrinsic component 
(1, 2, 9). 

Equations (S64)-(S69) are utilized in the main text 
of the paper for analysis of DNA braiding under different 
conditions. 
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