Supporting Information

Synthesis and Characterization of Conformationally-Preorganized, MiniPEG-Containing γPNAs with Superior Hybridization Properties and Water Solubility

Bichismita Sahu, Iulia Sacui, Srinivas Rapireddy, Kimberly J. Zanotti, Raman Bahal, Bruce

A. Armitage and Danith H. Ly*

Department of Chemistry and Center for Nucleic Acids Science and Technology (CNAST),

Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213.

Contents	Page
Figure S1. UV-absorption profiles of PNA11-13 after serial dilutions	3
Figure S2. ¹ H-NMR spectrum of compound 2	4
Figure S3. ¹³ C-NMR of 2	5
Figure S4. ¹ H-NMR of 3	6
Figure S5. ¹³ C-NMR of 3	7
Figure S6. ¹ H-NMR of 4	8
Figure S7. ¹³ C-NMR of 4	9
Figure S8. ¹ H-NMR of 5	10
Figure S9. ¹³ C-NMR of 5	11
Figure S10. ¹ H-NMR of 6a	12
Figure S11. ¹³ C-NMR of 6a	13
Figure S12. ¹ H-NMR of 6b	14
Figure S13. ¹³ C-NMR of 6b	15
Figure S14. ¹ H-NMR of 6c	16
Figure S15. ¹³ C-NMR of 6c	17
Figure S16. ¹ H-NMR of 6d	18
Figure S17. ¹³ C-NMR of 6d	19
Figure S18. ¹ H-NMR of 7a	20
Figure S19. ¹³ C-NMR of 7a	21
Figure S20: ¹ H-NMR of 7b	22
Figure S21. ¹³ C-NMR of 7b	23
Figure S22. ¹ H-NMR of 7c	24
Figure S23. ¹³ C-NMR of 7c	25
Figure S24. ¹ H-NMR of 7d	26
Figure S25. ¹³ C-NMR of 7d	27
Figure S26. ¹ H-NMR of 8	28
Figure S27. ¹³ C-NMR of 8	29
Figure S28. ¹ H-NMR of 9	30
Figure S29. ¹³ C-NMR of 9	31
Figure S30. ¹ H-NMR of 10	32
Figure S31. ¹³ C-NMR of 10	33
Figure S32. Reinjected HPLC trace of PNA1	34
Figure S33. MALDI-TOF spectrum of PNA1	35
Figure S34. Reinjected HPLC trace of PNA2	36
Figure S35. MALDI-TOF of PNA2	37
Figure S36. Reinjected HPLC trace of PNA3	38
Figure S37. MALDI-TOF of PNA3	39
Figure S38. Reinjected HPLC trace of PNA4	40
Figure S39. MALDI-TOF of PNA4	41
Figure S40. Reinjected HPLC trace of PNA5	42
Figure S41. MALDI-TOF of PNA5	43
Figure S42. Reinjected HPLC trace of PNA6	44
Figure S43. MALDI-TOF of PNA6	45
Figure S44. Reinjected HPLC trace of PNA7	46
Figure S45. MALDI-TOF of PNA7	47
Figure S46. Reinjected HPLC trace of PNA8	48
Figure S47. MALDI-TOF of PNA8	49
Figure S48. Reinjected HPLC trace of PNA9	50
Figure S49. MALDI-TOF of PNA9	51
Figure S50. Reinjected HPLC trace of PNA10	52
Figure S51. MALDI-TOF of PNA10	53

Figure S52. Reinjected HPLC trace of PNA1X	54
Figure S53. MALDI-TOF of PNA1X	55
Figure S54. Reinjected HPLC trace of PNA1Y	56
Figure S55. MALDI-TOF of PNA1Y	57
Figure S56. Reinjected HPLC trace of PNA4X	58
Figure S57. MALDI-TOF of PNA4X	59
Figure S58. Reinjected HPLC trace of PNA4Y	60
Figure S59. MALDI-TOF of PNA4Y	61
Figure S60. UV-melting curves of PNA5 with PM and MM DNA	62
Figure S61. UV-melting curves PNA5 with PM and MM RNA	63
Figure S62. CD-melting curve of PNA2	64
Figure S63. CD-melting curve of PNA3	65
Figure S64. CD-melting curve of PNA4	66
Figure S65. CD-melting curve of PNA5	67
Figure S66. SPR sensorgrams of PNA1-5	68

Figure S1. UV-absorption profiles of saturated solutions of PNA11-13 after serial dilutions. The result shows that PNA12, which contained a single unit of L-alanine-derived γ PNA, is more water soluble than the parent oligomer (PNA11). When fully-modified (PNA13), methylene group installed at every γ -backbone position, significantly decreased compared to PNA10 and PNA11.

Figure S2. ¹H-NMR spectrum of Boc-(2-(2-methoxyethoxy)ethyl)-L-serine (2)

4

Figure S3. ¹³C-NMR of Boc-(2(-2-methoxyethoxy)ethyl)-L-serine (2)

a Impurity peak

Figure S5. ¹³C-NMR of Boc-(2-(2-methoxyethoxy)ethyl)-L-serine-ol (3)

a Impurity peak

Figure S6. ¹H-NMR of Boc-(2-(2-methoxyethoxy)ethyl)-L-serine -Ψ[CH₂N(o,p-diNBS)]Gly-OEt (**4**)

Figure S7. ¹³C-NMR of Boc-(2-(2-methoxy)ethyl)-L-serine -Ψ[CH₂N(o,p-diNBS)]Gly-OEt (4)

Figure S9. ¹³C-NMR of Boc-(2-(2-methoxyethoxy)ethyl)-L-serine backbone ethyl ester (5)

Figure S10. ¹H-NMR of Boc-(2-(2-methoxy)ethyl)-L-serine thymine ethyl ester (6a)

a Impurity peak

Figure S13. ¹³C-NMR of Boc-(2-(2-methoxyethoxy)ethyl)-L-serine Adenine(Cbz) ethyl ester (6b)

Figure S14. ¹H-NMR of Boc-(2-(2-methoxyethoxy)ethyl)-L-serine Guanine(Cbz) ethyl ester (6c)

a Impurity peak

Figure S16. ¹H NMR of Boc-(2-(2-methoxyethoxy)ethyl)-L-serine Cytosine(Cbz) ethyl ester (6d)

Figure S17. ¹³C-NMR of Boc-(2-(2-methoxy)ethyl)-L-serine Cytosine(Cbz) ethyl ester (6d)

Figure S18. ¹H-NMR of Boc-(2-(2-methoxyethoxy)ethyl)-L-serine Thymine monomer (7a)

Figure S20. ¹H-NMR of Boc-(2-(2-methoxy)ethyl)-L-serine Adenine(Cbz) monomer (7b)

Figure S22. ¹H NMR of Boc-(2-(2-methoxyethoxy)ethyl)-L-serine Guanine(Cbz) monomer (7c)

Figure S23. ¹³C-NMR of Boc-(2-(2-methoxy)ethyl)-L-serine Guanine(Cbz) monomer (7c)

Figure S26. ¹H-NMR of 3-[2-(2-methoxy-ethoxy)-ethoxy]-2-(3,3,3-trifluoro-2-methoxy-2-phenyl-propionylamino)-propionic acid (**8**).

a Impurity peaks

Figure S27. ¹³C-NMR of 3-[2-(2-methoxy-ethoxy)-ethoxy]-2-(3,3,3-trifluoro-2-methoxy-2-phenyl-propionylamino)-propionic acid (**8**).

Figure S29. ¹³C-NMR of 3,3,3-trifluoro-N-{2-hydroxy-1-[2-(2-methoxy-ethoxy)-ethoymethyl]-ethyl}-2-methoxy-2-phenyl-propionamide (**9**).

Figure S30. ¹H-NMR of {[3-[2-(2-Methoxy-ethoxy)-ethoxy]-2-(3,3,3-trifluoro-2-methoxy-2-phenyl-propionylamino)-propyl]-[2-thymine-acetyl]-amino}-acetic acid (**10**).

Figure S31. ¹³C-NMR of {[3-[2-(2-Methoxy-ethoxy)-ethoxy]-2-(3,3,3-trifluoro-2-methoxy-2-phenyl-propionylamino)-propyl]-[2-thymine-acetyl]-amino}-acetic acid (10)

- * Peaks are merged together
- a Impurity peaks

Figure S32. Reinjected HPLC trace of PNA1.

PNA1: H-GCATGTTTGA-NH2 (Unmodified PNA)

Figure S33. MALDI-TOF MS of PNA1

Calculated Mass = 2764.9

Figure S34. Reinjected HPLC trace of PNA2

PNA2: H-GCATG<u>T</u>TTGA-NH2

Figure S35. MALDI-TOF MS of PNA2

Figure S37. MALDI-TOF MS of PNA3

Calculated Mass = 3119.1

PNA 4: H-GCATGTTTGA-NH2

Figure S39. MALDI-TOF MS of PNA4

Calculated Mass = 3201.1

Figure S40. Reinjected HPLC trace of PNA5

PNA 5: H<u>-GCATGTTTGA</u>-NH₂

Figure S41. MALDI-TOF MS of PNA5

Calculated Mass = 3945.2

Figure S42. Reinjected HPLC trace of PNA6

 $H\text{-}ACGGGTAGAATAACAT\text{-}NH_2$

Figure S43. MALDI-TOF MS of PNA6

Calculated Mass: 4421.12

Figure S44. Reinjected HPLC trace of PNA7

Figure S45. MALDI-TOF MS of PNA7

Figure S46. Reinjected HPLC trace of PNA8

$PNA \ 8. \ H-\underline{A}CGGGTA\underline{G}AATAAC\underline{A}T-NH_2$

Figure S47. MALDI-TOF MS of PNA8

Calculated Mass = 4783.1

Figure S48. Reinjected HPLC trace of PNA9

$H\text{-}AC\underline{G}GG\underline{T}AG\underline{A}AT\underline{A}AC\underline{A}T\text{-}NH_2$

Figure S49. MALDI-TOF MS of PNA9

Calculated Mass = 5055.1

Figure S51. MALDI-TOF MS of PNA10

Calculated Mass = 5428.1

Figure S52. Reinjected HPLC trace of PNA1X

PNA 1X: H-^LOrn(X)-^LLys-GCATGTTTGA-NH₂

Figure S53. MALDI-TOF MS of PNA1X

Calculated Mass = 3360.1

Figure S54. Reinjected HPLC trace of PNA1Y

Figure S55. MALDI-TOF MS of PNA1Y

Calculated Mass = 3413.2

Figure S56. Reinjected HPLC trace of PNA4X

 $H^{-L}Orn(X)^{-L}Lys-G\underline{C}A\underline{T}G\underline{T}T\underline{T}G\underline{A}-NH_2$

Figure S57. MALDI-TOF MS of PNA4X

Calculated Mass = 3964.1

Figure S58. Reinjected HPLC trace of PNA4Y

Figure S59. MALDI-TOF MS of PNA4Y

Calculated Mass = 4010.2

Figure S61. UV-melting curves of PNA5 with perfect match and mismatch RNA

Figure S62. CD-melting curve of PNA2 (monitored at 260 nm, 5 μ M strand concentration, prepared in 10 mM NaPi buffer at pH 7.4)

Figure S63. CD-melting curve of PNA3 (monitored at 260 nm, 5 μ M strand concentration, prepared in 10 mM NaPi buffer at pH 7.4)

Figure S64. CD-melting curve of PNA4 (monitored at 260 nm, 5 μ M strand concentration, prepared in 10 mM NaPi buffer at pH 7.4)

Figure S65. CD-melting curve of PNA5 (monitored at 260 nm, 5 μ M strand concentration, prepared in 10 mM NaPi buffer at pH 7.4)

Figure S66. SPR sensorgrams (solid black lines) and fits (red dotted lines) for hybridization of PNA probes to immobilized perfect match DNA target. Solutions contained 10-50 nM PNA in 10 nM increments. Error bars at t = 420 sec illustrate standard deviations for three separate trials.

