Web Figure 1. The PAGE results browser grid plot. The gridplot display shows pvalues across SNPs and phenotypes. Different color palettes indicate positive and negative associations. Preliminary PAGE data were used for this plot.

Web Figure 2. The PAGE results browser box plot. The boxplot display shows the 1st, 2nd, and 3rd quantiles by genotype for SNPs and (quantitative) phenotypes. Preliminary PAGE data were used for this plot.

Web Figure 3. The PAGE results browser forest plot. The forest plot display shows effect estimates and 95% confidence intervals across studies. Simulated data were used for this plot.

Web Figure 1

SNP x Phenotype x A	Ancestry x Sex x Stud	dy <u>Downle</u>	<u>oad Data</u>		
Positive Effect	.05 < <i>p</i> < 1.0	.01 < <i>p</i> < .05	.001 < <i>p</i> < .01	.0001 < <i>p</i> < .001	p < .0001
Negative Effect	.05 < <i>p</i> < 1.0	.01 < <i>p</i> < .05	$.001$.0001 < <i>p</i> < .001	p < .0001

\$

Phenotype	Ancestry	Sex	Study	RS	R F S S	R R S S	RS	RS	R I S S	R F 5 5	R R S S	RS	R S	RS	R F S S	R R S S	R S	RS	R R S S	RS	R F S S	R R S S	RS	RS	RS	R F S S	R R S S	RS	R S	R I S !	R R S S	RSS	RS	R S	R S	R I S :	R R S S	RS
APASIU01 (apolipoprotein ai in mg/l)	BLACKS	Male+Female	CALICO ARIC																																			
APASIU01 (apolipoprotein ai in mg/l)	WHITES	Male+Female	CALICO ARIC																																			
APBSIU01 (apolipoprotein b in mg/l)	BLACKS	Male+Female	CALICO ARIC																																			
APBSIU01 (apolipoprotein b in mg/l)	WHITES	Male+Female	CALICO ARIC																																			
CHMA16 (insulin (uu-ml))	BLACKS	Male+Female	CALICO ARIC																																			
CHMA16 (insulin (uu-ml))	WHITES	Male+Female	CALICO ARIC													Τ													\square									Г
TRGSIU01 (total triglycerides in mmol/l)	BLACKS	Male+Female	CALICO ARIC																																			
TRGSIU01 (total triglycerides in mmol/l)	WHITES	Male+Female	CALICO ARIC																																			
UDTA09 (mean systolic bp)	BLACKS	Male+Female	CALICO ARIC																																			
UDTA09 (mean systolic bp)	WHITES	Male+Female	CALICO ARIC																																			

Web Figure 2

SNP x Study x Phenotype x Sex [Download Data]

	Phenotype	coregluc - Core Glucose (Mg/dl)	corehdl3 - Core High-Density Lipoprotein-3 (Mg/dl)	coreldlc - Core LDL Cholesterol (Mg/dl)
SNP	Study\Sex	Female	Female	Female
rs	WHI	Asian/Pacific Islander Black Hispanic White	Asian/Pacific Islander Black Hispanic	American Indian Asian/Pacific Islander Black Hispanic
rs	WHI	Asian/Pacific Islander Black Hispanic White	Asian/Pacific Islander Black Hispanic White	American Indian Asian/Pacific Islander Black Hispanic

Web Figure 3

SNP x Study x Phenotype x Sex [Download Data]

	Phenotype	cataract - History of Cataract Surgery from Baseline Questionnaire	glaucoma - History of Glaucoma from Baseline Questionnaire	ulcer - History of Ulcer (Stomach or Duodenal) from Baseline Questionnaire			
SNP	Study\Sex	Male+Female	Male+Female	Male+Female			
rs	MEC	HAWAIIAN JAPANESE MEXICAN AMERICAN NON-HISPANIC BLACK NON-HISPANIC WHITE 0.52 0.50 0.79 1.26 2.00 Log Odds Ratio	HAWAIIAN JAPANESE MEXICAN AMERICAN NON-HISPANIC BLACK NON-HISPANIC WHITE 0.52 0.50 0.79 1.26 2.00 Log Odds Ratio	HAWAIIAN JAPANESE MEXICAN AMERICAN NON-HISPANIC BLACK NON-HISPANIC WHITE 0.32 0.50 0.79 1.26 2.00 Log Odds Ratio			
rs	MEC	HAWAIIAN JAPANESE MEXICAN AMERICAN NON-HISPANIC BLACK NON-HISPANIC WHITE 0.52 0.50 0.79 1.26 2.00 Log Odds Ratio	HAWAIIAN JAPANESE MEXICAN AMERICAN NON-HISPANIC BLACK NON-HISPANIC WHITE 0.52 0.50 0.79 1.26 2.00 Log Odds Ratio	HAWAIIAN JAPANESE MEXICAN AMERICAN NON-HISPANIC BLACK NON-HISPANIC WHITE 0.52 0.50 0.79 1.26 2.00 Log Odds Ratio			

Web Table 1. PAGE-wide power to replicate and generalize SNPs previously associated with LDL-C levels.

A total of 19 SNPs previously associated with LDL-C levels were genotyped by at least two PAGE study sites. Each SNP, its chromosomal and base-pair location (based on Genome Build 37), its putative function based on location, and the nearest gene are given in the first four columns of the table. The number of PAGE study sites that genotyped each SNP is denoted, with four PAGE study sites representing the maximum. The expected genetic effect size (β) is based on the literature, and the reference is indicated in the Table. For each test of association, we calculated the power to detect the expected effect size assuming a significance threshold of 0.005 and the coded allele frequency observed in the population. In the power columns, "(+)" denotes that the sample size for that test of association has sufficient power (>80%) to detect the expected effect size at *P* = 0.005.

SNP	Chr. (Location)	Function	Nearest Gene	# PAGE Studies ^a	Effect Size [‡] (mg/dl)	Reference	EA CAF (Power)	AA CAF (Power)	AI CAF (Power)	MA/H CAF (Power)
rs11206510	1 (55495789)	Intergenic	PCSK9	4	3.04	Willer et al 2008^1	0.81 (+)	0.86	0.93	0.88
rs11591147	1 (55505397)	Non- synonymous	PCSK9	3	-17.1	Kathiresan et al 2009 ²	0.02 (+)	4.10E-03 (-)	0.01 (+)	001 (-)
rs646776	1 (109818280)	Downstream	CELSR2/PSRC/ SORT	4	6.18	Kathiresan et al 2008 ³	0.78 (+)	0.65 (+)	N/a	0.81 (+)
rs599839	1 (109821916)	Downstream	CELSR2/PSRC/ SORT	3	5.48	Willer et al 2008 ¹	0.77 (+)	0.28 (+)	0.78 (+)	0.78 (-)
rs693	2 (21231945)	Synonymous	APOB	4	2.44	Willer et al 2008^1	0.50 (+)	0.24 (-)	0.34 (+)	0.38 (-)
rs562338	2 (21288071)	Intergenic	APOB	4	-4.89	Willer et al 2008 ¹	0.19 (+)	0.59 (+)	0.09 (+)	0.16 (+)
rs754523	2 (21311441)	Intergenic	APOB	4	-2.78	Willer et al 2008^1	0.68 (+)	0.78 (-)	0.66 (+)	0.72 (-)
rs6544713	2	Intronic	ABCG8	4	5.1	Kathiresan	0.31	0.17	0.11	0.18

	(44073631)					et al 2009 ²	(+)	(+)	(+)	(+)
rs12654264	5	Intronio	HMCCP	4	2.86	Kathiresan	0.62	0.67	0.58	0.62
1812034204	(74648353)	muome	IIMOCK	4	-3.80	et al 2008 ³	(+)	(+)	(+)	(+)
rs1501008	5	Intorgonio		2	2 28	Kathiresan	0.64	0.37	0.85	0.76
181301908	(156397919)	Intergenie	11MD4	5	2.38	et al 2009 ²	(+)	(-)	(-)	(-)
rs2650000	12	Intergenic	HNF14	3	2 38	Kathiresan	0.35	0.12	0.41	0.37
152050000	(121388712)	mergenie	11101/174	5	2.30	et al 2009 ²	(+)	(-)	(+)	(-)
r=6511720	19	Intronio		4	6.00	Teslovich	0.12	0.13	0.07	0.08
180311/20	(11202056)	muome	LDLK	4	-0.99	et al 2010 ⁴	(+)	(+)	(+)	(+)
ra7778671	19	Suponumous		2	0.14‡	Aulchenko	0.12	0.04	N/a	0.08
152220071	(11210662)	Synonymous	LDLK	2	-0.14	et al 2009 ⁵	(+)	(-)		(-)
rs16006148	19	Downstroom	CILP2/PBX4/N	4	2 2 2	Willer et al	0.08	0.15	0.04	0.06
1810990148	(19658222)	Downstream	CAN	4	-3.32	2008^{1}	(+)	(+)	(-)	(-)
rs/1802750	19	Unstroom	RCI 3	2	10.02+	Sandhu et	0.93	0.92	N/a	0.86
154603730	(45247627)	Opsiteani	DCLJ	2	10.92	al 2008 ⁶	(+)	(+)		(-)
rs10402271	19	Downstream	APOE/C1/C4	2	2.62	Willer et al	0.67	0.84	N/a	0.61
1510402271	(45329214)	Downsticam	gene cluster	2	-2.02	2008 ¹	(+)	(-)		(-)
rs4420638	19	Downstream	APOE/C1/C4	4	7 14	Teslovich	0.82	0.79	0.90	0.90
	(45422696)		gene cluster	4	-/.14	et al 2010 ⁴	(+)	(+)	(+)	(+)
rs2075650	19	Intronio	TOMM40	2	0.16 [‡]	Aulchenko	0.88	0.87	N/a	0.90
152075050	(50087459)	muome	10/////40	2	-0.10	et al 2009 ⁵	(+)	(-)		(-)
rs6102050	20	Intergenic	MAER	3	2.04	Kathiresan	0.30	0.43	N/a	0.29
150102039	(39228784)	mergenie	WIAT'D	3	-2.04	et al 2009 ²	(+)	(-)		(-)

Abbreviations: Base(-)pair (bp), untranslated region (UTR); coded allele frequency (CAF); European American (EA); African

American (AA); American Indian (AI); Mexican American /Hispanic (MA/H)

^aNumber of PAGE studies that genotyped the SNP. PAGE studies include CALiCo, EAGLE, MEC, and WHI.

[‡]Effect size (β) is reported in s.d. (standard deviation) units

†Effect size originally expressed in mmol/L

Maximum sample sizes: EA = 21,986; AA = 9,328; AI = 6,144; MA/H = 2,532

References

- Willer, C.J., Sanna, S., Jackson, A.U., Scuteri, A., Bonnycastle, L.L., Clarke, R., Heath, S.C., Timpson, N.J., Najjar, S.S., Stringham, H.M. et al. (2008). Newly identified loci that influence lipid concentrations and risk of coronary artery disease. Nat Genet 40, 161(-)169.
- Kathiresan, S., Willer, C.J., Peloso, G.M., Demissie, S., Musunuru, K., Schadt, E.E., Kaplan, L., Bennett, D., Li, Y., Tanaka, T. et al. (2009). Common variants at 30 loci contribute to polygenic dyslipidemia. Nat Genet 41, 56(-)65.
- Kathiresan, S., Melander, O., Guiducci, C., Surti, A., Burtt, N.P., Rieder, M.J., Cooper, G.M., Roos, C., Voight, B.F., Havulinna, A.S. et al. (2008). Six new loci associated with blood low(-)density lipoprotein cholesterol, high(-)density lipoprotein cholesterol or triglycerides in humans. Nat Genet 40, 189(-)197.
- Teslovich, T.M., Musunuru, K., Smith, A.V., Edmondson, A.C., Stylianou, I.M., Koseki, M., Pirruccello, J.P., Ripatti, S., Chasman, D.I., Willer, C.J. et al. (2010). Biological, clinical and population relevance of 95 loci for blood lipids. Nature 466, 707(-)713.
- Aulchenko, Y.S., Ripatti, S., Lindqvist, I., Boomsma, D., Heid, I.M., Pramstaller, P.P., Penninx, B.W., Janssens, A.C., Wilson, J.F., Spector, T. et al. (2009). Loci influencing lipid levels and coronary heart disease risk in 16 European population cohorts. Nat Genet 41, 47(-)55.
- Sandhu, M.S., Waterworth, D.M., Debenham, S.L., Wheeler, E., Papadakis, K., Zhao, J.H., Song, K., Yuan, X., Johnson, T., Ashford, S. et al. (2008). LDL(-)cholesterol concentrations: a genome(-)wide association study. Lancet *371*, 483(-)491.