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Web Appendix A: Gibbs Sampler

Common elements of M1-M4

We take a Gibbs sampler data augmentation approach to the censored observations (Tanner
and Wong, 1987). Lindley and Smith (1972) present posterior distributions for a general
linear model and Carlin and Louis (2000) give the posterior distributions for a normal
random-effects linear model. We introduced one auxiliary variable to simplify calculations.
Let Vij |σ2 iid∼ INV−χ2(5, σ2). It can be shown (p. 303-304, Gelman et al., 2004) that

T ∗ij |β, bi, Vij , σ2 ind∼ N
(
X>ijβ + Z>ij bi, Vij

)
Let t∗ denote the vector of event times for all individuals, t∗i the vector of event times for
family i, V the diagonal matrix of {Vij}i,j and Vi the diagonal matrix of {Vij}j . Also,
let trunc −N (m, s2, l, u) be the N (m, s2) distribution truncated to the interval [l, u) and
φ2(x,m, S) be the density of a bivariate normal vector with mean m and variance matrix
S evaluted at x. Suppose we have current estimates of all parameters from time r. Then
the Markov chain Monte Carlo (MCMC) algorithm proceeds as follows, letting “←” denote
stochastic assignment and “=” denote deterministic assignment, the latter included only
for notational convenience:

1. t∗(r+1)
ij ← trunc−N

(
X>ijβ

(r) + Z>ij b
(r)
i , V

(r)
ij , tL∗ij , t

U∗
ij

)
2. V (r+1)

ij ← INV − χ2
(

6,
[
(t∗(r+1)
ij −Xijβ

(r) − Zijb(r)i )2 + 5σ2(r)
]
/6
)

3. β(r+1) ← N
(

(X>V (r+1)−1
X)−1X>V (r+1)−1

(t∗(r+1) − Zb(r)), (X>V (r+1)−1
X)−1

)
(4a) νi =

(
Z>i V

(r+1)−1
(t∗(r+1)
i −Xiβ

(r+1)) + Σ(r)

d
(r)
i

−1
µ

(r)

d
(r)
i

)
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(4b) Λi =
(
Z>i V

(r+1)−1
Zi + Σ(r)

d
(r)
i

−1
)−1

4. b(r+1)
i ←MVN (Λiνi,Λi)

5. σ2(r+1) ← G
(

5n
2 + 1, 5

2Trace
(
V (r+1)−1

)
+ .01

)
It remains to sample from the conditional distributions of the parameters governing the
distribution of the bi’s. M1, M2, and M3 can be grouped together, as the former two are
special cases of the latter. In the case of M4, the MCMC algorithm branches slightly, and
we present it separately.

Unique elements of M1-M3

Because the dimension of the parameter space in M3 potentially changes at each iteration,
we use methodology developed by Stephens (2000) to achieve this.

Conditional on {b(r+1)
i }i, new components {π̃, µ̃, Σ̃} are “born” to Equation (2) in the

text in continuous time at some constant, user-supplied rate (the mixture proportions
{π(r)

1 , . . . , π
(r)
k , π̃} are normalized to sum to unity); the birth distributions are the priors.

Simultaneously, each existing component “dies” in continuous time at a rate inversely
related to how well it explains {b(r+1)

i }i. This is collectively referred to as the birth-death
process. Components which fit the random effects well will die slowly, while those which
have poor fit will die quickly. Run this process for a fixed time to propose a mixture
distribution of (potentially) different dimensionality (step s+ δ), and then, conditional on
the new dimensionality, k(r+1) ≡ k(s+δ), sample new values of the mixture components
(step s+ 1), to improve mixing of the chain. Readers are referred to the Stephens paper,
particularly Algorithm 3.1 for further details.

6. (M3 only) {k(r+1), {π(r+δ)
` , µ

(r+δ)
` ,Σ(r+δ)

` }`}
← birth-death process({b(r+1)

i }, ξ(r), κ(r),Ψ(r))

(7a) (M3 only) λi` = π
(r+δ)
` φ2(b(r+1)

i , µ
(r+δ)
` ,Σ(r+δ)

` )

7. (M3 only) d(r+1)
i ←MULT INOM(1;λi1, λi2, . . . , λik(r+1))

(8a) θ` =
∑N

i 1[d(r+1)
i = `]

8. (M3 only) (π(r+1)
1 , π

(r+1)
2 , . . . , π

(r+1)

k(r+1))
← DIR (1 + θ1, 1 + θ2, . . . , 1 + θk(r+1))

(9a) Ξ` =
(
θ`Σ

(r+δ)
`

−1
+ κ(r)

)−1
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(9b) b̄` =
∑

i:d
(r+1)
i =`

b
(r+1)
i /θ`

(9c) ω` =
(
θ`Σ

(r+δ)
`

−1
b̄` + κ(r)ξ(r)

)
9. µ(r+1)

` ←MVN (Ξ`ω`,Ξ`)

10. Ψ(r+1) ←WISH
(

2g + 8k(r+1),

(
2h+ 2

∑k(r+1)

`=1 Σ(r+δ)
`

−1
))

11. Σ(r+1)
`

−1

←WISH
(

8 + θ`,
(

2Ψ(r+1) +
∑

i:d
(r+1)
i =`

(b(r+1)
i − µ(r+1)

` )(b(r+1)
i − µ(r+1)

` )>
)−1

)
12. ξ(r+1) ←MVN

(∑
` µ

(r+1)
` /k(r+1),

(
k(r+1)κ(r)

)−1
)

13. κ(r+1) ←WISH
(

2 + k(r+1),
(

2I2×2 +
∑

`(µ
(r+1)
` − ξ(r+1))(µ(r+1)

` − ξ(r+1))>
)−1

)
It is easy to make a draw of bN+1, the random effects of a newly observed pedigree, con-
ditional upon current parameter estimates, or to calculate the posterior predictive density
(marginalizing over the mixture in the case of M3).

Unique Elements of M4

Recall the Dirichlet Process mixture (DPM) prior on bi can be written as

bi|di, µdi
,Σdi

∼MVN (µdi
,Σdi

)

µdi
,Σ−1

di
|G ∼ G

G|α,G0 ∼ DP(α,G0(µ,Σ))

where α is the precision parameter and G0(µ,Σ) the base distribution of the Dirichlet

Process prior. It is required then to sample {µ(r+1)
` ,Σ(r+1)

`

−1
}`, {d

(r+1)
i }i, α(r+1), G(r+1)

0 ,
and the necessary hyperparameters, all conditional on {b(r+1)

i }i. We use the DPdensity
function found in the R package, DPpackage (Jara, 2007), which is an implementation of
Algorithm 8 in Neal (2000). We refer readers to the paper for details, but the process is
actually quite similar in spirit to the birth-death process proposed by Stephens. m draws
of {µ̃, Σ̃} are made from G

(r)
0 (µ,Σ), where m is an integer pre-set by the user. b

(r+1)
i is

assigned to an existing cluster proportional to the product of the cluster’s current size
and the cluster density evaluated at b(r+1)

i or to a new cluster proportional to the product
of α(r+1)/m and the density of the normal distribution with parameters {µ̃, Σ̃} evaluated
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at b(r+1)
i (because of exchangeability, it does not matter which of the m draws of {µ̃, Σ̃}

is used). Once the assignments have been shifted in this way, Gibbs steps can be used
(assuming conjugacy) to draw α(r+1), G(r+1)

0 (µ,Σ), etc., similar to above.

The one significant change between M1-M3 and M4 is in the posterior predictive density
of bN+1: because M4 allows for a countably infinite number of clusters, a newly observed
pedigree should, with positive probability, be within a new cluster of families. Specifically,
we wish to draw from

p(b(r+1)
N+1 |{b

(r+1)
i }i)

=
∫ ∫

p(bN+1|{µ(r+1)
dN+1

,Σ(r+1)
dN+1

−1
}

dp({µ(r+1)
dN+1

,Σ(r+1)
dN+1

−1
}|{µ(r+1)

` ,Σ(r+1)
`

−1
}`, {b

(r+1)
i }i)

dp({µ(r+1)
` ,Σ(r+1)

`

−1
}`, {b

(r+1)
i }i).

See for example MacEachern and Müller (1998). To approximate this integral, at each
iteration, let θ` =

∑N
i 1[d(r+1)

i = `] and draw dN+1 such that

Pr(dN+1 = `) =

{
α(r+1)(N + α(r+1))−1 ` = k(r+1) + 1
θ`(N + α(r+1))−1 ` ≤ k(r+1)

If dN+1 ≤ k(r+1), then set {µ(r+1)
dN+1

,Σ(r+1)
dN+1

−1
} to correspond to its existing cluster. Other-

wise, draw {µ(r+1)
dN+1

,Σ(r+1)
dN+1

−1
} fromG

(r+1)
0 (µ,Σ). Finally, make a draw from bN+1|{µ(r+1)

dN+1
,Σ(r+1)

dN+1

−1
}

, which is just a bivariate normal distribution.

Web Appendix B: Figures

• Figure 1 displays the external data used to create the pseudo-AOO data (Engholm
et al., 2010). Each birth cohort has a piecewise incidence rate for colorectal cancer.

• Figure 2 gives kernel density estimates of b1i for all families from each model. Qual-
itatively, neither M3 nor M4 was able to cluster the mutation subtypes.
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Figure 1: Pictorial representation of colorectal incidence data for males by birth cohort
taken from NORDCAN (Engholm et al., 2010).
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Figure 2: Kernel density estimates of b1i for all families from each model, grouped by
mutation subtype.
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