FOLDING AND HOMODIMERIZATION OF WHEAT GERM AGGLUTININ

María del Carment Portillo-Téllez, Martiniano Bello, Guillermo

Salcedo, Gabriel Gutiérrez, Virginia Gómez-Vidales, and Enrique García-Hernández

Fig. S1. Deconvolution analysis of DSC endotherms of WGA (0.09 mM) at pH 2, 30 mM Gly/HCl, in varying concentrations of GndHCl: **(A)** 0 M and **(B)** 2 M. The best fitting to the calorimetric trace of a model of two independent transitions is shown in the inset of panel **(A)**.

Fig. S2. Unfolding enthalpies (upper panel) and melting temperatures (lower panel) as a function of GndHCl concentration for each of the independent transitions exhibited by WGA monomer at pH 2 (Table 1).

Fig. S3. Isothermal dilution calorimetry. Dilution isotherms of WGA at pH 3 (50 mM Gly/HCl, 0.1 M NaCl) as a function of temperature (from bottom to top: 30, 33, 35, 40 and 43 °C). Consecutive 10- μ l aliquots of 0.7-0.9 mM protein solution were diluted into 1.44 mL of buffer solution. Typically, a total of 30 injections were applied. The solid lines represent the best-fitting curves of a dimer dissociation model (equations 2-3).

Table S1. Independent *vs.* sequential unfolding parameters for the unfolding transitions exhibited by WGA monomer at pH 2, as determined by DSC

	1	2	3
Independent transitions			
T_m (°C)	68.0 ± 0.7	79.0 ± 0.6	91.1 ± 0.4
$\Delta H_{U}\left(kcal/mol\right)$	31 ± 2	43 ± 3	42 ± 1
Sequential transitions			
T_{m} (°C)	66.3 ± 0.1	79.6 ± 0.1	92.5 ± 0.1
ΔH_U (kcal/mol)	34 ± 2	44 ± 2	43 ± 1