Supplemental data

The periplasmic membrane proximal domain of MacA acts as a switch in stimulation of ATP hydrolysis by MacB transporter

Sita D. Modali and Helen I. Zgurskaya*

Department of Chemistry and Biochemistry

University of Oklahoma

101 Stephenson Parkway

Norman, OK 73019

* Corresponding author: Helen I. Zgurskaya, Department of Chemistry and Biochemistry,
University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019. Phone: (405) 325-1678.
Fax: (405) 325-6111. E.mail: elenaz@ou.edu

	Mass of MacA and i	Mass of MacA and its peptides (Da) based	
Peptide	on:		
	MALDI-TOF	AA sequence	
MacA ^{wr} whole length	41,155	41,443	
M1-K139	15,338	15,511	
A140-Q371 + 6His	26,094	25,950	
MacA ^{G353A} whole length	41,500	41,457	
M1-R334	36,666	36,804	
M1-K326	36,022	35,862	
M1-K324	35,883	35,634	
A140-Q371 + 6His	26,096	25,950	
A140-R334	20,455	20,141	

Table S1. Peptide masses of whole-length MacA^{wt} and MacA^{G353A} and their major tryptic fragments

Figure S1 Modali and Zgurskaya

Figure S1. *In vivo* tryptic digest of MacA and MacB produced in cells with different genetic backgrounds. A, B, C. *E. coli* W4680AD ($\Delta acrAB$, $\Delta acrD$) and ECM2115 (MC4100 $\Delta acrAB \Delta tolC$) cells carrying plasmids producing MacA variants alone (A^{WT} , A^{353} , A^{357}) or in the presence of MacB ($A^{WT}B$, $A^{353}B$, $A^{357}B$) were treated with trypsin at indicated concentrations and analyzed by anti-MacA immunoblotting. **D.** *E. coli* W4680AD ($\Delta acrAB$, $\Delta acrD$) and ECM2115 (MC4100 $\Delta acrAB \Delta tolC$) cells carrying plasmids producing MacB alone or in the presence of MacA^{wt} were treated with trypsin at indicated concentrations and analyzed by anti-MacA immunoblotting. **E.** *coli* W4680AD ($\Delta acrAB$, $\Delta acrD$) and ECM2115 (MC4100 $\Delta acrAB \Delta tolC$) cells carrying plasmids producing MacB alone or in the presence of MacA^{wt} were treated with trypsin at indicated concentrations and analyzed by anti-MacB immunoblotting. **E**, **F.** The same as **D** but MacB was co-expressed with MacA^{G353A} and MacA^{G357A} variants ($A^{353}B$, $A^{357}B$). The composition of complexes is shown above the patterns with TolC indicated by "C" when present in cells.

Figure S2 Modali and Zgurskaya

Experiment 1

Experiment 2

Figure S2. Differences in proteolytic patterns of MacA are highly reproducible. The *in vivo* proteolytic profiles of MacA^{WT} generated by treatment with PK are shown (see Fig. 3 for details). The composition of complexes is shown above the patterns with MacB and ToIC indicated by "B" and "C" when present in cells. Two independent experiments are shown.