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Intuitive description of t-SNE algorithm 
The algorithm takes as parameters the set of N H-points and a positive integer K, which is 
known as the ʻperplexityʼ. The first stage is to identify the K nearest neighbours of each H-
point. This is achieved by assigning nearest neighbour scores that are between 0 and 1: 

the neighbour score of a point  from  is proportional to , where 

€ 

d (hi ,h j )  

is the distance between  and , and  is a scale parameter chosen individually for 
each point , in proportion to the distances to its neighbours. A key property of these 
nearest neighbour scores is that they decline rapidly with distance in H-space. (To 
accomplish this  is adjusted for each  so that the entropy of the neighbor scores for 

€ 

hi, 
normalized to be a probability distribution, is K. In effect, this is a ʻsoftʼ version of choosing 
K nearest neighbors.)  
 
Each pair of H-points,  and , is then given a neighbour score by averaging the 
neighbour scores of  from , and  from . (Note that 

€ 

σ i and 

€ 

σ jmay be different, in 
which case the neighbour scores from  to  and from  to  are different.) Averaging 
the scores in both directions gives a symmetric weight matrix. Importantly, this improves 
the visualization because a point that is outlying or isolated in H-space will have a large σ, 
giving high neighbour scores for quite distant points in H-space. In V-space, the isolated 
point will typically be placed close to one of its neighbours in H-space; this avoids the 
visualization being dominated by widely spaced isolated or outlying points. Isolated points 
and outliers can be identified from the neighbour plot, instead of by their spatial position in 
the visualization. 
 
The second stage of the algorithm is to arrange the V-points. Starting from a random 
arrangement of V-points, their positions are then optimized by gradient descent, to 
minimize a matching penalty for the neighbour-scores of the V-points with the neighbour-
scores of the H-points.  
 
The neighbour scores of the V-points are calculated in a subtly different way: the score for 

 and  is proportional to , where  is the current distance between the 

V-points  and  in the scatter plot. The point of this definition is that these V-neighbour 
scores decline gradually with distance, so that the scatter plot may be expanded to spread 
out the high-dimensional neighbour relationships more faithfully. Previous visualization 
methods such as SNE (1) suffered from a ʻcrowding problemʼ, in which many points were 
crowded together in the centre of the visualization, surrounded by outliers. t-SNE avoids 
this by having neighbour scores scale differently with distance in V-space and H-space.  
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The matching score that is optimized is the Kullback-Leibler divergence between the H and 
V neighbour scores, when both sets of scores are normalized to sum to 1. Key intuitive 
properties of this measure of divergence are that points that are close in H-space are 
dragged towards each other in V-space; points that are close in V-space but far from each 
other in H-space are dragged apart, but less strongly; and finally that there is negligible 
penalty for mismatches between distances that are large in both H-space and in V-space. 
If two points that are close in H-space are separated in the optimization, the strength of the 
attractive ʻforceʼ between them declines with distance, so that, for example, a spherical 
shell of points is ʻrippedʼ and mapped into a single sheet in the plane, rather than being 
ʻsquashedʼ as in a linear projection.  
 
The optimization is non-convex: many local optima are possible, and different runs give 
different results, but the overall matching score may be used to select the best of a number 
of runs. We have found that this is usually unnecessary: most runs are similar. 
 
The non-convexity of the optimization, together with the symmetrisation of neighbour 
scores in H-space, enables outlying points to be visualized in a neat way. An outlying point 
in H-space can have a high neighbour score with several well-separated points, in different 
places in the visualization. The non-convexity of the optimization criterion causes the 
outlier to be put close to one of its neighbouring points – an outlier thus tends to ʻattach 
itselfʼ to the nearest cluster, even though it may not strictly be part of the cluster.  
 
This phenomenon of ʻattachment of outliersʼ is good for the visualization in that outliers 
place themselves close to clusters, instead of spacing themselves out and distorting or 
dominating the whole visualization. Display techniques such as the neighbour plot enable 
the user to identify the outliers in the visualization, and distinguish them from points that 
are genuinely well placed relative to their neighbours. If there is a cloud of outliers, there 
may be no good way to place them in the visualization in a way that preserves neighbour 
relationships: outliers may distort and dominate PCA, for example. t-SNE tends to place 
the outliers compactly close to their nearest cluster: this enables the cluster relationships 
to be displayed correctly, while the outliers can be identified using alternative display 
modalities, such as neighbour plots. 
 
Sensitivity of t-SNE to noise 
A problem encountered with some non-linear dimension reduction methods is that they 
can be sensitive to noise within a dataset. To examine the robustness of t-SNE to noise we 
investigated the performance of t-SNE on a synthetic dataset. This dataset consisted of 
300 points in 6-dimensional space, 30 points from each of ten Gaussian clusters, giving 
300 points in all. The cluster centres were generated from an isotropic Gaussian 
distribution with variance 9 in each dimension; each cluster had variance 2 in each 
dimension. Most clusters were therefore well separated in six-dimensional space.  
 
A scatter plot of the first and second principal components, with points coloured according 
to the clusters from which they were generated indicated that some clusters could be 
discerned, but not reliably delineated by eye (Supplementary Figure 1a). By contrast, a t-
SNE visualisation of the same dataset (using the standard parameter settings, 
perplexity=30) separated the clusters much more widely (Supplementary Figure 1b). 
Moreover a neighbour plot (first and second closest neighbours) further aided the 
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interpretation of this visualisation: it merged two of the generative clusters but all other 
distinctions were clearly visible (Supplementary Figure 1c). For comparison Supplementary 
Figure 1d shows the t-SNE scatter plot coloured according to classes discovered by k-
means clustering, with k set to 10, the correct number of classes. This method merged two 
pairs of the generative classes and incorrectly split two of the generative classes.  
 
To test the effect of noise on the visualisation produced by t-SNE we generated a second 
synthetic dataset of 600 points, consisting of the same 300 points used above, together 
with an additional 300 'noise points' generated from an isotropic Gaussian distribution with 
variance 11 on each dimension - this distribution is the mixture distribution for the 
generative model of clusters with internal variance 2 and variance of the means being 9. 
The principal component visualisation of these data (Supplementary Figure 1e) would be 
uninterpretable were it not coloured with the correct generative classes (the noise points 
are brown). In the case of the t-SNE visualisation of this dataset (Supplementary Figure 
1f), points from the same generative classes are grouped together within the noise. 
Importantly, a neighbour plot for this visualisation (Supplementary Figure 1g) allows seven 
or eight clusterings to be distinguished by eye, and these correspond to generative 
classes. By contrast, colouring the t-SNE visualisation according to classes found by k-
means with k=10 indicates that some of the generative classes are more-or-less correctly 
found, but others are not (Supplementary Figure 1h). Overall the neighbour plot gives a 
more interpretable picture than k-means clustering.  
 
These results show that t-SNE does not break down with noise, as one might fear that a 
non-linear method would. Indeed, k-means clustering fares worse in this example, even 
though the data is of a type that conforms to the statistical model implicit in the k-means 
algorithm (2). This suggests that t-SNE and neighbour plots might provide an interpretable 
visualisation of transcriptome data that can be used to generate hypotheses, recognise 
some structure, and inspire further investigation.  
 
 
Application of t-SNE to additional datasets 
To evaluate the utility of t-SNE maps we applied the technique to five datasets. Two 
representative datasets are described in the main text; here we describe three additional 
datasets (see Methods for a full description of the data). 
 
t-SNE maps representing the behaviour of the genes in each dataset were generated 
(Supplementary Figures 3a, 4a, 5a). Examination of the expression behaviour of small 
groups of neighbouring data points in each of the plots indicated that the t-SNE algorithm 
had effectively grouped genes with similar behaviours (Supplementary Figures 3a, 4a, 5a). 
Neighbour plots in which lines joined each data point to its two nearest D-space 
neighbours confirmed that the positioning of data points reflected the structure of the high 
dimensional data (Supplementary Figures 3b, 4b, 5b). Moreover, exploring the t-SNE plots 
in conjunction with the neighbour plots revealed any metric distortions in V-space 
introduced by the non-linear dimension-reduction. This highlighted which groups of points 
are really similar and the underlying logic of each mapping.  
 
Dataset 3 describes the transcriptome analysis of mouse serotonergic (5HT) neurons (3). 
The data contained four conditions consisting of 5HT and non-5HT neurons taken from 
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stage E12.5 rostral and caudal hindbrain, respectively. Examination of the t-SNE mapping, 
readily identified regions of the mapping that harboured genes induced (orange in 
Supplementary Figure 3a) or repressed (magenta) in all 5HT neurons, and regions in 
which the expression of the genes was restricted to caudal or rostral cell populations 
(Supplementary Figure 3a). The continuous nature of gene expression patterns in the 
dataset was apparent. We overlaid the 5 clusters of genes described by Wylie et al. (3) in 
their original study on to the t-SNE map. The spatial integrity of the clusters confirmed that 
the validity of the t-SNE mapping and in combination with the neighbour plot provided 
insight into the logic of the underlying structure. This identified clusters of co-regulated 
genes independent of additional information and was sufficient to allow the detection of 
additional genes affiliated with each cluster that were not recognized in the original 
analysis (Supplementary Figure 3d and data not shown). 
 
Dataset 4 was generated to identify genes induced or repressed by Sonic Hedgehog 
signalling in the neural tube (4). Neural progenitors of the developing chick neural tube 
were manipulated by in ovo electroporation to repress (ʻPtcʼ) or induce (ʻGliHighʼ) Shh 
signalling in a cell autonomous manner. Five conditions were assayed, three (ʻPtcʼ, control, 
ʻGliHighʼ) at an early time point (14h), two (control, ʻGliHighʼ) at a later time point (36h). A t-
SNE mapping of differentially expressed genes from this dataset resulted in a ring-like 
structure, underscoring the continuum of gene expression patterns in this data 
(Supplementary Figure 4a). Using the corresponding nearest neighbour plot 
(Supplementary Figure 4b), regions of tightly grouped genes that corresponded to genes 
situated close to one another in expression space were evident. This identified groups of 
genes induced or repressed by Shh at all times (magenta, grey), induced or repressed 
only after short periods (red, light green, pink, yellow) and genes repressed only after 
longer periods of Shh signalling (orange). Moreover, groups of genes that were 
independent of Shh signalling but induced or repressed over time in these cells (light blue, 
dark green) were also identifiable with this method.  
 
The final dataset (Dataset 5) analyzed with t-SNE comprised the transcriptomes of 
Drosophila melanogaster wild type eye, antennal and leg imaginal discs, and antennal and 
leg discs in which the gene eyeless was misexpressed, in the presence or absence of a 
null allele of the transcription factor atonal (5). Eyeless is a transcription factor that induces 
the entire cascade of eye development in imaginal discs and the experiment was designed 
to identify genes involved in eye development that are regulated by atonal. A t-SNE map 
and corresponding neighbour plot of the differentially expressed genes revealed clearly 
separated groups of gene expression patterns. Most notable were genes expressed in 
both wild type leg discs and eyeless expressing leg discs that lacked atonal 
(Supplementary Figure 5a, red). Another clearly separated group contained genes 
upregulated only in eyeless expressing, atonal mutant leg discs (magenta). In addition, a 
group of genes induced or repressed by eyeless misexpression in all discs, irrespective of 
atonal (light blue, dark green) was evident, as was a group of genes induced by 
misexpression of eyeless, which was dependent on atonal (pink). Most strikingly, we 
identified groups of genes that were induced in the wildtype eye disc and in eyeless 
expressing antennal and leg discs, which were not expressed in wild type antennal or leg 
discs (dark blue, light green). Conversely, genes that were expressed in the eye but not in 
other discs expressing eyeless suggesting the presence of eyeless independent genes 
within the eye disc (grey).  
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To further investigate the utility of the t-SNE maps, we performed hierarchical clustering of 
Datasets 4 and 5 and overlaid the resulting clusters onto the corresponding t-SNE maps 
(Supplementary Figures 4d, 5d). In both cases the clusters were less spatially coherent 
than in the case of Datasets 1-3, and the logic underlying the partitioning of the clusters 
was not immediately clear. This is presumably due to the higher complexity of these 
datasets, in which changes in time, genotype and tissue type combine to account for the 
behaviour of the transcriptomes. This highlights a limitation of conventional clustering 
approaches and indicates how a visualisation technique such as t-SNE can provide a more 
satisfactory method to capture and assess the behaviour of genes in complex datasets. 
Moreover, it emphasizes the power of unbiased exploration of the expression data 
independent of the expectations and assumptions of the initial experimental design.  
 
Finally, we compared the t-SNE maps to plots of the first two PCs of each dataset. This 
confirmed the superiority of t-SNE (Supplementary Figures 3c, 4c, 5c). It was particularly 
noteworthy that in the case of Dataset 5 the first 4 PC contributed significantly to explain 
the bulk of the variation in the data (Supplementary Figure 6). Consequently two-
dimensional plots of pairs of PCs significantly underrepresented the data and provided 
only a partial visualisation of the gene expression behaviours within the experiment. By 
contrast the two-dimensional t-SNE map was sufficient to visualize the data and identify 
the key gene expression behaviours (Supplementary Figure 5a).  
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SUPPLEMENTARY FIGURE LEGENDS 
 
Supplementary Figure 1. Effect of noise on principal component and t-SNE 
mappings of a synthetic dataset. (a-d) Mappings of a synthetic dataset consisting of 300 
points in 6-dimensional space clustered into ten Gaussian clusters of 30 points; each 
cluster had variance 2 in each dimension and a centre generated from an isotropic 
Gaussian distribution with variance 9 in each dimension. (a) First and second principal 
component projection of the synthetic dataset coloured according to the generative classes 
of the dataset. (b) A t-SNE visualisation of the same dataset coloured in the same manner. 
(c) A neighbour plot, revealing the first and second closest neighbours of each point, 
displayed on the t-SNE mapping from b. (d) The t-SNE mapping from b coloured by 
membership of the 10 clusters identified from the dataset using k-means (k=10). (e-h). 
Mappings of a ʻnoisyʼ synthetic dataset consisting of the same 300 points as above to 
which were added an additional 300 'noise points', generated from an isotropic Gaussian 
distribution with variance 11 on each dimension. (e) First and second principal component 
projection of the noisy synthetic dataset coloured according to the 10 clustered generative 
classes of the dataset. (f) A t-SNE visualisation of the same dataset coloured in the same 
manner. (g) A neighbour plot, identifying the first and second closest neighbours of each 
point, displayed on the t-SNE mapping from f. (h) The t-SNE mapping from f coloured by 
membership of the 10 clusters identified from the dataset by k-means clustering (k=10). 
 
Supplementary Figure 2. Six independent t-SNE mappings of the datasets 1 and 2. 
(a) Six independently generated t-SNE maps of the 2148 probe sets identified as 
differentially expressed between six stages of human embryogenesis (6). (b) Six 
independently t-SNE maps of 3656 probe sets with periodic behaviour over 36 cycles in 
the yeast metabolic cycle described by Tu et al. (ref. (7)) In each case although the 
orientation and topological form of the maps differ the local relationships between 
individual data points is maintained. 
 
Supplementary Figure 3. t-SNE mapping, PCA and clustering of control and 
serotonin (5HT) neuron transcriptomes from mouse hindbrain. (a) t-SNE map of 3079 
probe sets identified as differentially expressed between 4 samples (3). Selected groups of 
neighbouring data points are highlighted and the expression behaviour (plotted as z-
scores) of the selected genes over all conditions shown in the corresponding colours. 
Cctrl: Caudal, control; C5HT: Caudal, 5HT; Rctrl: Rostral, control; R5HT: Rostral, 5HT. (b) 
Nearest neighbour plots of the t-SNE mapping in (a). Each data point in the t-SNE map 
was connected to its two nearest neighbours in high-dimensional (4D) space and the 
connectors coloured according to the distance between these data points in high-
dimensional space. Red indicates short and blue long distances in the higher dimensional 
space. Thus short red lines indicate faithful projection of distances. (c) Plots of the values 
of the first and second principal components of the same probe sets used to produce the t-
SNE map in (a). The lower panel shows nearest neighbour plots of the PC plot as 
described in (b). (d) Overlay of clusters 1-5 produced using hierarchical clustering from the 
original study (3) onto the t-SNE map in (a). Data points are coloured according to cluster 
membership. Note that the five clusters available from the supplementary data of the 
original paper were not generated from the identical set of probe sets we used to generate 
the t-SNE mapping, hence the large number of black points not belonging to a cluster. 
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Supplementary Figure 4. t-SNE mapping, PCA and clustering of transcriptomes 
from chick neural tube cells in which Shh signalling has been manipulated. (a) t-
SNE map of 2828 probe sets identified as differentially expressed between 5 samples (4). 
Selected groups of neighbouring data points are highlighted and the expression behaviour 
(plotted as z-scores) of the selected genes over all conditions shown in the corresponding 
colours. Ptc: Repression of Shh signalling by Ptc1DLoop2, GFP: control, GliHigh: high levels 
of Shh signalling. (b) Nearest neighbour plots of the t-SNE mapping in (a). Each data point 
in the t-SNE map was connected to its two nearest neighbours in high-dimensional (5D) 
space and the connectors coloured according to the distance between these data points in 
high-dimensional space. Red indicates short, and blue long distances in the higher 
dimensional space. Thus short red lines indicate faithful projection of distances. (c) Plots of 
the values of the first and second principal components of the same probe sets used to 
produce the t-SNE map in (a). The lower panel shows nearest neighbour plots of the PC 
plot as described in (b). (d) Overlay of 10 clusters produced using hierarchical clustering 
onto the t-SNE map in (a). Data points are coloured according to cluster membership. 
 
Supplementary Figure 5. t-SNE mapping, PCA and clustering of transcriptomes 
from wild type and eyeless over-expressing drosophila imaginal discs. (a) t-SNE 
map of 1917 probe sets identified as differentially expressed between 6 samples (5). 
Selected groups of neighbouring data points are highlighted and the expression behaviour 
(plotted as z-scores) of the selected genes over all conditions shown in the corresponding 
colours. ate: antennal disc, leg: leg disc, eye: eye disc, UAS-ey: misexpression of eyeless, 
ato: atonal mutant. (b) Nearest neighbour plots of the t-SNE mapping in (a). Each data 
point in the t-SNE map was connected to its two nearest neighbours in high-dimensional 
(6D) space and the connectors coloured according to the distance between these data 
points in high-dimensional space. Red indicates short, and blue long distances in the 
higher dimensional space. Thus short red lines indicate faithful projection of distances. (c) 
Plots of the values of the first and second principal components of the same probe sets 
used to produce the t-SNE map in (a). The lower panel shows nearest neighbour plots of 
the PC plot as described in (b). (d) Overlay of 10 clusters produced using hierarchical 
clustering onto the t-SNE map in (a). Data points are coloured according to cluster 
membership. 
 
Supplementary Figure 6. Principal component values and matrix plots of principal 
components for the datasets used in this study. (i) For each dataset (a-e) the values 
(ordered by magnitude) of the eigenvalues (PCs) are shown. (ii) A matrix of pairwise plots 
of the data points projected onto the first five (4 in the case of (c)) PCs illustrating that for 
most of the datasets significant structure is contained in >2 PCs. The main diagonal is a 
histogram of data point values for the indicated PCs.  
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