PDE12 removes mitochondrial RNA poly(A) tails and controls translation in human mitochondria

Rorbach et al.

SUPPLEMENTARY DATA

SUPPLEMENTARY MATERIALS AND METHODS

Assessing mtDNA copy number by quantitative PCR

The relative copy number of mtDNA was determined by real-time PCR of the DNA encoding mitochondrial CytB using the nuclear, single-copy gene for amyloid precursor protein (APP) as a reference. Total cellular DNA was isolated using a DNeasy Blood and Tissue Kit (Qiagen). The reactions were performed as described above. Copy numbers of CytB and APP were determined by Taqman PCR on an ABI Prism 7600 using the standard curve (absolute quantification) method.

Ribonuclease protection assay (RPA)

The DNA template was purified using a QIAquick PCR purification column (Qiagen) and radiolabelled antisense RNA probe synthesised using the MAXIscript *in vitro* transcription kit (Ambion, Huntington, Cambs., UK). In brief, 0.2 µg of template DNA was

added to a reaction mixture containing 1× transcription buffer, 0.5 mM ATP, 0.5 mM CTP, 0.5 mM GTP, 3.125 μ M [³²P]UTP (800 Ci·mmol⁻¹) and 30 units of T7 enzyme mix in a final volume of 20 μ l. The reaction was incubated at 37 °C for 10 min and template DNA was removed by the addition of 2 units of DNase I and a further 15 min incubation at 37 °C.

Total RNA for the nuclease protection assay was isolated from mitochondria of the control HEK293T cells and PDE12-expressing HEK293T cells following 4 days doxycycline induction using TRIzol reagent following the manufacturer's protocol (Invitrogen). All assays used the ribonuclease protection assay kit (RPA III, Ambion). In brief, 5 µg of mitochondrial RNA was mixed with 8×10^4 cpm probe. Two yeast RNA samples were also prepared as controls. RNAs were then co-precipitated by adding 0.5 M NH₄OAc and 2.5 volumes of ethanol and incubating at -20 °C for 15 min, followed by centrifugation at $10,000 \times g$ for 15 min at 4 °C. Supernatants were aspirated and pellets resuspended in 10 µl of RPAIII hybridisation buffer. Samples were heated at 95 °C for 3 min followed by an overnight incubation at 42 °C. A 1:100 working dilution of RNase A/RNase T₁ in RNase digestion III buffer was prepared and 150 µl was added to each of the sample tubes and one of the yeast tubes. All reactions were incubated for 30 min at 37 °C before being terminated by the addition of 225 µl of RNase inactivation/precipitation solution. The samples were incubated at -20 °C for at least 20 min followed by centrifugation at $10,000 \times g$ for 15 min at 4 °C. The supernatant was removed and RNA was dissolved in 10 µl of gel loading buffer. Samples were incubated for 3 min at 95 °C before being loaded onto a 6 % acrylamide/8 M urea gel and electrophoresed at 50 W. The gel was then dried and products visualised with a PhosphorImager system.

SUPPLEMENTARY TABLES

Supplementary Table S1

Short name	Uniprot Acc. No.	Database name	Full name	Region used for alignment			
ANGEL1	Q9UNK9	ANGE1_HUMAN	Protein angel homolog 1 (670 residues)	245-663			
ANGEL2	Q5VTE6	ANGE2 HUMAN	Protein angel homolog 2 (544 residues)	167-540			
NOC	Q9UK39	NOCT HUMAN	Nocturnin (431 residues)	143-421			
PDE12	Q6L8Q7	PDE12 HUMAN	2',5'-phosphodiesterase 12 EC=3.1.4 (609 residues)	295-606			
CNOT6	Q9ULM6	CNOT6_HUMAN	CCR4-NOT transcription complex subunit 6 EC=3.1 (557	189-538			
CNO6L	Q96L15	CNO6L_HUMAN	CCR4-NOT transcription complex subunit 6-like EC=3.1	189-536			
DNAS1	P24855	DNAS1 HUMAN	Deoxyribonuclease-1 EC=3 1 21 1 (282 residues)	23-281			
DNSI 1	P49184	DNSL1 HUMAN	Deoxyribonuclease-1-like 1 EC=3 1 21 - (302 residues)	19-272			
DNSI 2	092874	DNSL2 HUMAN	Deoxyribonuclease-1-like 2 EC=3 1 21 - (202 residues)	22-295			
DNSL3	013609	DNSL3 HUMAN	Deoxyribonuclease gamma $EC=3.1.21$ (200 residues)	21-281			
ISP1	014642	ISP1 HUMAN	Type Linositol-1 4 5-trisphosphate 5-phosphatase	12-302			
	Q14042		FC=3.1.3.56 (112 residues)	12 002			
INP5E	Q9NRR6	INP5E_HUMAN	72 kDa inositol polyphosphate 5-phosphatase EC=3.1.3.36	301-591			
SHIP2	O15357	SHIP2_HUMAN	Phosphatidylinositol-3,4,5-trisphosphate 5-phosphatase 2	426-725			
SHIP1	Q92835	SHIP1_HUMAN	Phosphatidylinositol-3,4,5-trisphosphate 5-phosphatase 1 EC=3 1.3 n1 (1189 residues)	406-708			
INP5K	Q9BT40	INP5K_HUMAN	Inositol polyphosphate 5-phosphatase K EC=3.1.3.56 (448 residues)	16-318			
PI5PA	Q15735	PI5PA_HUMAN	Phosphatidylinositol 4,5-bisphosphate 5-phosphatase A	425-728			
I5P2	P32019	I5P2_HUMAN	Type II inositol-1,4,5-trisphosphate 5-phosphatase	347-636			
OCRL	Q01968	OCRL_HUMAN	Inositol polyphosphate 5-phosphatase OCRL-1 EC=3.1.3.36 (901 residues)	242-531			
SYN 12	015056	SYN12 HUMAN	Synantojanin-2 EC=3.1.3.36 (1496 residues)	532-862			
SYN.I1	043426	SYN.I1 HUMAN	Synaptojanin 2 EC=3.1.3.36 (1573 residues)	535-866			
NSMA	O60906	NSMA_HUMAN	Sphingomyelin phosphodiesterase 2 EC=3.1.4.12 (423	9-279			
NSMA2	Q9NY59	NSMA2_HUMAN	Sphingomyelin phosphodiesterase 3 EC=3.1.4.12 (655 residues)	327-646			
APEX1	P27695	APEX1_HUMAN	DNA-(apurinic or apyrimidinic site) lyase EC=4.2.99.18 (318 residues)	62-316			
APEX2	Q9UBZ4	APEX2_HUMAN	DNA-(apurinic or apyrimidinic site) lyase 2 EC=4.2.99.18 (518 residues)	2-311			
EEPD1	Q7L9B9	EEPD1_HUMAN	Endonuclease/exonuclease/phosphatase family domain- containing protein 1 (569 residues)	261-538			
A0AR24	A0AR24	A0AR24 HUMAN	Putative exonuclease (204 residues)	8-201			
TTRAP	O95551	TTRAP_HUMAN	TRAF and TNF receptor-associated protein (362 residues)	114-358			

Supplementary Table S1

Uniprot accession numbers and names, and corresponding short names (column 1) used in the phylogenetic tree in Figure 1A. The region containing the EEP domain (PF03372) used in the aligment is also indicated for each entry.

Supplementary Table S2

Mitochondrial transcript	Number of clones
CO2	
	7
ACCCTATAGCACCCCCTCTACCCCCCTCTAGACAGC -poly(A)	3
ACCCTATAGCACCCCCTCTACCCCCTCTAGACAGCC - A32	1
Uninduced PDE12 WT (23 clones)	- 10
	16
ACCCTATAGCACCCCCTCTACCCCCCTCTAGACAGC -A38	1
	···
Induced PDE12 WT 2 days (33 clones)	
ACCCTATAGCACCCCCTCTACCCCCCTCTAGACAGCC -poly(A)	15
	2
ACCCTATAGCACCCCCTCTACCCCCCTCTAGACAGCC -A39	2
ACCCTATAGCACCCCCTCTACCCCCTCTAGACAGC -A38	2
ACCCTATAGCACCCCCTCTACCCCCTCTAGACAGCC - A36	2
ACCCTATAGCACCCCCTCTACCCCCTCTAGACAGC -A36	1
ACCCTATAGCACCCCCTCTACCCCCTCTAGACAGC -A35	1
	2
ACCCTATAGCACCCCCTCTACCCCCCTCTAGACAGC-A5	1
ACCCTATAGCACCCCCTCTACCCCCTCTAGACAGCC -A4	1
ACCCTATAGCACCCCCTCTACCCCCTCTAGACAGCC -A1	1
ACCCTATAGCACCCCCTCTACCCCCTCT-A0	1
Induced PDE12 WT 4 days (26 cleanes)	
ACCCTATAGCACCCCCTCTACCCCCCTCTAGACAGCC _nolv(A)	10
ACCCTATAGCACCCCCTCTACCCCCCTCTAGACAGC-poly(A)	2
ACCCTATAGCACCCCCTCTACCCCCTCTAGACAGCC - A39	1
ACCCTATAGCACCCCCTCTACCCCCTCTAGACAGCC-A36	1
	1
	1
ACCCTATAGCACCCCCTCTACCCCCCTCTAGACAGCC-A34	1
ACCCTATAGCACCCCCTCTACCCCCTCTAGACAGCC -A31	1
ACCCTATAGCACCCCCTCTACCCCCTCTAGACAGC -A27	1
	1
	1
	1
ACCCTATAGCACCCCCTCTACCCCCCTCT-A0	1
Induced PDE12 E351A 4days (10 clones)	-
	8
	2
ND1	
Control untransfected HEK293T (9 clones)	
	8
	1
Uninduced PDE12 WT (23 clones)	
TACAATCTCCAGCATTCCCCCTCAAACCTA-poly(A)	19
TACAATCTCCAGCATTCCCCCTCAAACCTA-A34	1
TACAATCTCCAGCATTCCCCCTCAAACCTA-A33	1
	1
	1
Induced PDE12 WT 2 days (21 clones)	
TACAATCTCCAGCATTCCCCCTCAAACCTA-A9	1
	1
	2
	8
TACAATCTCCAGCATTCCCCCT-A38	1
TACAATCTCCAGCATTCCCCCT-A35	2
TACAATCTCCAGCATTCCCCCT-A33	1
TACAATCTCCAGCATTCCCCCT-A2	3
Induced PDE12 WT 4 days (17 clones)	
TACAATCTCCAGCATTCCCCCTCAAACCTA-A32	1
TACAATCTCCAGCATTCCCCCTCAAACCTA-A28	1
TACAATCTCCAGCATTCCCCCTCAAACCTA-A7	1
	1
	5
	2
TACAATCTCCAGCATTCCCCCT-A38	2
TACAATCTCCAGCATTCCCCCT-A36	1
TACAATCTCCAGCATTCCCCCCT-A31	1
	1
Induced PDE12 E351A 4days (10 clopes)	
TACAATCTCCAGCATTCCCCCCTCAAACCTA-polv(A)	9
TACAATCTCCAGCATTCCCCCTCAAACCTA-A38	1

Supplementary Table S2

cRT-PCR sequence analysis of mitochondrial transcripts in controls and cells overexpressing PDE12. Partial or complete stop codons are indicated in blue. In the case of ND1 one adenine must be added to the 3' of the mRNA to create the TAA stop codon. Poly(A) indicates an extension of 40 or more adenosine residues.

SUPPLEMENTARY FIGURE LEGENDS

Supplementary Figure S1

Multiple protein sequence alignment of the catalytic domain of confirmed and putative human deadenylases of the EEP family. The EEP domains of human proteins of the "Deadenylases" subgroup as indicated in Figure 1A of the main text were aligned using CustalW2. The boundaries of the sequence segment used in the alignment are indicated. The secondary structure alignment is based on the resolved structure of the human CNOT6L and is indicated above the alignment (helix, H, red font and strand, E, blue font). Active site residues involved in the binding of Mg^{2+} are indicated in yellow.

Supplementary Figure S2

(A) Mitochondrial localisation of PDE12.Strep2.Flag

The HEK293T cells containing Flp-In-integrated PDE12.Flag.Strep2 (lanes 1-4) or the E351A mutant (lanes 5-8) were induced for 2 days with 50 µg/ml of doxycycline and fractionated into unbroken cells and cell debris (D, lanes 2 and 6), cytosol (C, lanes 3 and 7) and mitochondria (M, lanes 4 and 8). 'T' denotes the total cell lysate. The protein fractions were analysed by Western blotting using anti-FLAG antibodies. The location of PDE12.Strep2.Flag was compared with that of the following marker proteins: UNG1 (mitochondrial matrix), UNG2 (nucleus) and GAPDH (cytosol).

(B) Purification of PDE12.Strep2.Flag

PDE12.Flag.Strep2 and the E351A mutant were purified as described in **Materials and Methods**, 22 μ g of each protein were analysed by SDS-PAGE and visualised by Coomassie staining. MW – Molecular weight marker.

Supplementary Figure S3

Effect of PDE12 overexpression on lactic fermentation.

The levels of medium acidification (yellow colour) was analysed for the HEK293T cells containing Flp-In-integrated PDE12.Flag.Strep2 (top) or the E351A mutant (bottom) in a 8-day time course. The cells were seeded at 5 x 10^4 cells/well of a 6-well plate and induced with 50 µg/ml of doxycycline.

Supplementary Figure S4

Mapping the 3' end of 12S rRNA by RNase Protection Assay (RPA).

(A) Schematic representation of the 12S rRNA specific RPA.

(**B**) Electrophoretic analysis of the protected probe. RNA isolated from purified mitochondria of parental HEK293T cells (H, lanes 2 and 6), HEK293T cells overexpressing PDE12 for 4 days (PDE12, lanes 3 and 7) or total RNA isolated from yeast (Y, lanes 5 and 9) were incubated with an antisense RNA probes that anneal to the 3' end of 12S or 16S rRNA and treated with RNase A/RNase T1 as described in **Materials and Methods**. After RNase digestion, protected probes were analysed in a 5% polyacrylamide urea gel. 'L' denotes size ladder (lane 1).

(C) Northern blot analyses of mitochondrial tRNAs in the total RNA isolated from the HEK293T cells (H) and cells overexpressing PDE12 for 0, 2 or 4 days. The RNA samples were resolved in 4 % polyacrylamide urea gel.

(**D**) Quantification of steady-state levels of the mitochondrial tRNAs in cells overexpressing PDE12 for 4 days analysed by Northern blots. The values of the relative RNA level (mt-tRNA/ND3 mRNA) were obtained by quantifying PhosphoImager scans of blots in the ImageQuant software. n=3 for tRNASer-AGY, n=2 for remaining tRNAs, error bars = 1 SD.

		EEF	CEEEE	EEEE	EEEE	EEEE	EEE		EEEB	SEEE:	EEE		HH	HHHF	нннн	нннн	ннн	ннн		
CNOT6L	(12)	VDGC	CAIFF	KTEF	KFTL	VQKH	TVEFN	(47)	KQLLI	EVAN.	АНМНИ	NDPE	EYSD	VKLI	QTMM	IFVSE	EVKN	ILEK	:388	
CNOT6	(12)	VDGC	CAIFF	KTEF	KFTL	VQKH	TVEFN	(48)	KQLII	LVAN.	АНМНИ	NDPE	EYSD	VKL	QTMM	IFLSE	EVKN	IIDK	:389	
ANGEL1	(3)	TDGC	CAVCY	KPTF	RFRL	LCAS	PVEYF	(30)	VAPLO	CVAN	THILY	YNPF	RRGD	VKLA	QMAI	LLAE	EVDK	VARL	:420	
ANGEL2	(3)	PDGC	CAICF	KHSF	KFSL	LSVN	PVEFF	(26)	CPAIC	CVAN	THLLY	YNPF	RRGD	IKL	QLAM	ILLAF	EISSY	VAHQ	:338	
NOC	(12)	PDGC	CALFF	'LQNF	RFKL	VNSA	NIRLT	(22)	GRQF	CIAV	THLK	ARTO	SWER	FRSA	QGCD) LLQN	ILQN	ITQG	:314	
PDE12	· /	HEGI	LATFY	RKSF	KFSL	LSQH	DISFY	(44)	SKRIC	CVAN	THLY	NHPK	KGGY	IRL	QMAV	ALAH	IIRH	VSCD	:484	
		:*	* :		* *	: -	:	· /	:	:*	:*:	•		.:	*	: .	.:	:		
		EEEE	EEEE	E		нннн	HHHHE	EEE		EE	EEEE		E	EEEE	0		EEI	EEEEI	EE	
CNOT6L	(14)	IPL	/LCA	L <mark>N</mark> SI	LPDS	GVVE	YLSNG	GVAD	(31)	HGF	QLKSA	AY ((6)Y	TNY	FD	FF	KGVI	DYIF	YSKT :	496
CNOT6	(15)	IPL	/LCAD	L <mark>N</mark> SI	LPDS	GVVE	YLSTG	GVET	(31)	HGF	KLQSA	AY ((6)Y	TNY	FD	FF	KGII		YSKP :	498
ANGEL1	(5)	CPII		L <mark>N</mark> S∖	/PDS	PLYN	FIRDG	ELQY	(116)	HCL	HLTSV	VY (1	ll)v	TTME	PLG	L6	SMTV		FSAE :	609
ANGEL2	(3)	CPI		F <mark>N</mark> S∖	/PGS	PLYS	FIKEG	KLNY	(75)	HHF	SLSSV	VY (1	ll)V	TTCF	ISR	SA	AITV	DYIF	YSAE :	486
NOC	(2)	IPL		F <mark>N</mark> AE	EPTE	EVYK	HFASS	SLNL	(1)	SAY	KLLSA	AD ((6)¥	TTWF	XIRTS	GECF	RHTL	DYIW	YSKH :	384
PDE12	(4)	IPVI	FCGD	F <mark>N</mark> S1	CPST	GMYH	FVING	SIPE	(23)	HFF	KLKS	AC ((4) Y	TNY	/GG	FH	IGCL	DYIF	IDLN :	568
	· · ·	*::	* * *	: <mark>*</mark> :	*	:		:			* *	,	. ,	*.			:	***:	•	
																	_	_		
		HHH	нннн	IHH				E	EEEEB	SEEE										
CNOT6L	(10)) LDI	QWLV	ENN]	E (1)	GCPH	PHIPS	D <mark>H</mark> FSI	LLTQI	LELH:	PPLLI	PLVN	IGVH	LPNF	RR : 5!	55				
CNOT6	(10)) LDF	HWLV	ENN]	E (1)	GCPH	PLIPS	D <mark>H</mark> FSI	LFAQI	LELL:	LPFLI	PQVN	IGIH	LPGF	RR :5	57				
ANGEL1	(20)) LGF	RLSLL	SEE	E (5)	GLPN	PFCSS	D <mark>H</mark> LC	LLASI	GME	VTAP	:67	70							
ANGEL2	(20)) LAF	RLSLL	TEQI	D (5)	GLPN	ENNSS	D <mark>H</mark> LPI	LLAKI	RLE	L :54	4								
NOC	(10) LTE	EEQIG	SPN		RLPS	FNYPS	D <mark>H</mark> LSI	LVCDI	SFT	EESDO	GLS	:43	1						
PDE12	(9	,) LPS	HEEV	TTHO	<u>2</u> .	ALPS	VSHPS	DHIA	LVCDI	скик	:609	9								
	`	*		-	-	*	•*	**:	* :	:										
								_												

		EEEEEEEE				ННННННННН ЕЕЕЕЕЕЕЕННННННННННННН												EEE						
CNOT6L	188:	SFTVI	4CY <mark>N</mark>	VLCDK	(5)	LYGY	CPS	WALN	WEYI	RKKG	IMEE	IVN		DIIS	SLQ	EVE	TEQ	YFTL	FLP	ALKE	RGY	DGFF	SPKS	:267
CNOT6	188:	LFSVI	4CY <mark>N</mark>	VLCDK	(5)	LYGY	CPS	WALN	WDYI	RKKA	IQE	ILS	CNA	DIVS	SLQ	E VE	TEQ	YYSF	FLV	ELKE	RGYI	NGFF	SPKS	:267
ANGEL1	244:	QFTLI	4SY <mark>N</mark>	ILAQD	(7)	LYLH	CHP	DILN	WNYI	RFVNI	LMQE	FQH	WDP	DIL	CLQ	EVQ	EDHY	YWEQ	LEP	SLRM	IMGF	rcfy	KRRT	:325
ANGEL2	166:	DFSVI	4SY <mark>N</mark>	ILSQD	(7)	LYRH	CRR	PVLH	WSFI	RFPN	LKE	IKH	IFDA	DVL	CLQ	EVQ	EDHY	YGAE	IRP	SLES	LGY	HCEY	KMRT	:247
NOC	142:	PIRVI	1QW <mark>N</mark>	ILAQA	(6)	NFVQ	CPV	EALK	WEEF	RKCLI	LEE	ILA	YQP	DIL	CLQ	EVD	HY	YFDI	FQP	LLSR	LGY	QGTF	FPKP	:220
PDE12	294:	LIRT	/SY <mark>N</mark>	ILADT	(10)	LYPY	CAP	YALE	LDYI	RONLI	LÕKE	LTG	YNA	DVIC	CLQ	EVD	RAVI	SDS	LVP	ALEA	FGL	EGVF	RIKQ	:378
		:	::*	:*.:		:	*	*.	• '	*	: :*	:	:.	*::	•**	**:	:	:	:	*	*	:	:	

Suppl. Figure S3 - Rorbach et al.

Suppl. Figure S4 - Rorbach et al.

Phe

Lys