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Appendix S1

Derivation of the EM algorithm

Define ci = 0 or 1 if the QTL genotype is Qq or QQ, respectively. The p-dimensional random observations

yi (i = 1...n) are generated independently from a two-component mixture of multivariate t distribution

with proportions πi|0 and πi|1

f(yi; Ω) =

1∑

j=0

πi|jfj(yi; θj) (A1)

where πi|j = P (ci|j = 1) , Ω = (θ0, θ1) and θj = (µj ,Σj , νj) (j = 0, 1). Note that πi|0 + πi|1 = 1.

The density fj(yi; θj) is defined in Eq. (1). By the property of the multivariate t distribution [26], n

independent draws from fj(yi; θj) can be denoted as a weighted average of p-dimensional multivariate

normal distributions with the weights τi following a Gamma distribution, i.e.

yi|τi, ci|j = 1 ∼ Np(µj ,Σj/τi) for i = 1, 2, ..., n j = 0, 1

and

τi|ci|j = 1 ∼ Gamma
(νj
2
,
νj
2

)
independently for i = 1, 2, ..., n and j = 0, 1

where the Gamma(α,β) density function is defined as

βατα−1exp(−βτ)/Γ(α)I(0,∞)(τ), (α, β > 0)

The complete-data log-likelihood function can be expressed as

ℓc(Ω) = ℓ1(µ,Σ|y, τ ) + ℓ2(ν|τ ) + ℓ3(π) (A2)
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where

ℓ1(µ,Σ|y, τ ) =

n∑

i=1

1∑

j=0

ci|j{−
1

2
plog(2π)−

1

2
log|Σj |

−
1

2
τi(yi − µj)

′

Σ−1
j (yi − µj)}

ℓ2(ν|τ ) =

n∑

i=1

1∑

j=0

ci|j{−logΓ(
νj
2
) +

νj
2
log

νj
2

+
νj
2
(logτi − τi)− logτi}

and

ℓ3(π) =
n∑

i=1

1∑

j=0

ci|j log(πi|j), π = (πi|0, πi|1)
′

Then the MLEs of the parameters in Ω = (Ωm,Ωc,Ων) are obtained by solving

∂

∂Ωs

ℓc(Ω) = 0 (A3)

In this study, the two multivariate t components were assumed to have the same covariance structure

and the same degree of freedom, i.e., Σ1 = Σ2 = Σ and ν1 = ν2 = ν. By choosing the uniform quadratic

B-spline with degree 5, we obtained the normalized basis matrix B as

B =




1 0 0 0 0

0.390625 0.5390625 0.0703125 0 0

0.0625 0.65625 0.28125 0 0

0 0.3828125 0.609375 0.0078125 0

0 0.125 0.75 0.125 0

0 0.0078125 0.609375 0.3828125 0

0 0 0.28125 0.65625 0.0625

0 0 0.0703125 0.5390625 0.390625

0 0 0 0 1




(A4)

and ξj as the base genotypic vector for genotype j

ξj =

[
ξ0j ξ1j ξ2j ξ3j ξ4j

]′
(A5)
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whose entries are the mean parameters to be estimated with the mean vector given by µj = Bξj .

For the SAD(1) covariance structure, it has very nice properties. For example, the inverse of the

covariance matrix can be explicitly expressed (see [15] for more details).

Define

L =




1 0 0 . . . . . . 0

−φ 1 0 0 . . . 0

0 −φ 1 0 . . . 0

... . . . . . . . . . . . .
...

0 . . . 0 −φ 1 0

0 . . . . . . 0 −φ 1




and

Γ(φ) =




1 + φ2 −φ 0 . . . 0

−φ 1 + φ2 −φ . . . 0

0 −φ 1 + φ2 −φ
...

... . . . . . . . . . 0

0 . . . −φ 1 + φ2 −φ

0 . . . 0 −φ 1




The ML estimator of the unknown parameters can be obtained using the following EM algorithm. At

the kth iteration in the E-step, the posterior probability of the observed trait vector yi belonging to the

genotype j can be expressed as

ĉ
(k)
i|j = E(ci|j = 1|yi; Ω̂

(k)) =
πi|jfj(yi; θ̂

(k)
j )

πi|0f0(yi; θ̂
(k)
0 ) + πi|1f1(yi; θ̂

(k)
1 )

(j = 0, 1) (A6)

where θ̂j = (µ̂j , σ̂
2, φ̂, ν̂) (j = 0, 1) . And the conditional expectation of τi given ci|j = 1 is calculated as

τ̂
(k)
ij = E(τi|yi, ci|j = 1; Ω̂(k)) =

ν̂(k) + p

ν̂(k) + (yi −Bξ̂
(k)
j )′ 1

σ̂2
(k−1)L

′L(yi −Bξ̂
(k)
j )

(j = 0, 1) (A7)
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In the M-step, the updates for ξj , σ
2 and φ are obtained as :

ξ̂
(k+1)
j =

∑n

i=1 ĉ
(k)
i|j τ̂

(k)
ij B′L′Lyi

∑n

i=1 ĉ
(k)
i|j τ̂

(k)
ij B′L′L

(A8)

σ̂2
(k+1)

=

∑n

i=1

∑1
j=0 ĉ

(k)
i|j τ̂

(k)
ij (yi −Bξ̂

(k+1)
j )′L′L(yi −Bξ̂

(k+1)
j )

np
(A9)

and

φ̂(k+1) =

∑n

i=1

∑1
j=0 ĉ

(k)
i|j τ̂

(k)
ij

∑p−1
k=1[yi(tk)−B′

k ξ̂
(k+1)
j ]′[yi(tk+1)−B′

k+1ξ̂
(k+1)
j ]

∑n

i=1

∑1
j=0 ĉ

(k)
i|j τ̂

(k)
ij

∑p−1
k=1[yi(tk)−B′

k ξ̂
(k+1)
j ]2

(A10)

Given the degree of freedom of the multivariate t distribution, the above MLEs will be updated in closed

form. To update ν, we obtain ν̂(k+1) by finding the solution to the equation:

∑n

i=1

∑1
j=0 ĉ

(k)
i|j { −ψ(ν2 ) + log(ν2 ) + 1 + log(τ̂

(k)
ij )− τ̂

(k)
ij

+ψ( ν̂
(k)+p
2 )− log( ν̂

(k)+p
2 )} = 0 (j = 0, 1)

(A11)

where the digamma function ψ(x) is defined as ψ(x) ≡ d(logΓ(a))
da

= Γ(a)

Γ′ (a)
. The one-dimensional search

for ν̂(k+1) is time consuming. Shoham [27] provided a direct approximation solution of accurateness

|ν − ν∗| < 10−3 to this nonlinear equation, i.e.

ν∗ =
2

h+ log h− 1
+ 0.0416(1+ erf(0.6594× log(

2.1971

h+ logh− 1
))) (A12)

where

h = −
1

n

n∑

i=1

1∑

j=0

ĉ
(k)
i|j {log(τ̂

(k)
ij )− τ̂

(k)
ij + ψ(

ν̂(k) + p

2
)− log(

ν̂(k) + p

2
)}

The above procedures are iterated until certain convergence criterion is achieved. The converged

values are the MLEs of the parameters. Note that in the above EM algorithm, we used a grid search

method to estimate the QTL location instead of estimating the QTL segregation parameters in Ωl directly.


