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Measures of Divergence and Time Intervals. We compiled datasets
that measure evolutionary divergence in phenotypic traits from
the following types of data: (i) contemporary field and historical
studies, (ii) microgeographic divergence data where it can be
inferred that there has been little to no gene flow between
populations, (iii) fossil time series, and (iv) pairwise divergence
between species on a phylogenetic tree. In each case, we stan-
dardized measures of divergence to compare data across traits,
taxa, and time. We log-transformed all trait measurements so
that divergence between any two samples is a unitless measure of
the proportional change in a phenotypic trait in factors of e.
Divergence between the means of two samples a and b is then
measured simply as

d ¼ ðln zb − ln zaÞ=k;
where ln zi is the mean of sample i. We corrected for di-
mensionality by dividing the difference in mean of the log-scaled
trait values by k, where k is the dimensionality of the data (e.g.,
k = 3 for mass, k = 2 for area, and k = 1 for linear measure-
ments). Time series data are commonly in the form

½ðln z1; t1Þ; ðln z2; t2Þ;.; ðln zn− 1; tn− 1Þ; ðln zn; tnÞ�;
where the subscripts denote samples from earliest (i = 1) to
the last (i = n), and ti is the time elapsed between the ith and
(i + 1)th sample. We measured autonomous divergence (1) as the
difference between successive means in the series,

d ¼ ðln ziþ1 − ln ziÞ=k:
The corresponding time interval is of length ti. Some information
is lost if only autonomous divergence is plotted, as longer trends
in time series will not be represented. Consequently, we also
calculated nonautonomous divergence (1) as the difference be-
tween sample means farther apart in the series, so that

d ¼ �
ln ziþj − ln zi

��
k

is associated with a time interval of length

Xiþj

l¼i

tl;

where 1 < j < n. Nonautonomous divergence measures from the
same series are not independent because they may be nested
within one another or overlap, but they have the virtue of re-
vealing trends in the mean over longer time intervals. Although
this nonindependence can affect the significance of our model
fits, it is unlikely to introduce a systematic bias in our parameter
estimates or the visual appearance of the pattern given the large
number of studies used. Consequently, whenever raw measure-
ments were available, we included all pairwise comparisons be-
tween samples for a given time series, resulting in n(n − 1)/2
measures of nonautonomous divergence for a time series with n
samples. We then averaged divergence values by binning the
time series into n – 1 equally spaced intervals spanning the entire
length of the series and averaging divergence values within each
bin. Consequently, a maximum of n – 1 averaged nonauton-
omous data points were plotted for each time series and used
in subsequent model fitting.

For the tree-based data, divergence was measured as

d ¼ ðln zb − ln zaÞ=k;
where ln za and ln zb are the log-transformed means for species
a and b. Associated with d is the time interval, tab, calculated as
the sum of the branch lengths from the most recent common
ancestor to species a and b. We calculated d for all pairwise
comparisons of species on the tree to give a visual sense of the
range of divergence values. Because of the nonindependence of
pairwise measures, we also averaged d and tab over comparisons
spanning each node on the tree to reduce the influence of outlier
species. In the case of contemporary longitudinal data (allo-
chronic), we calculated d, where a and b represent two samples
from a lineage separated by some known interval of time, tab. For
contemporary cross-sectional data (synchronic), we measured
d for two population samples and measured tab as twice the time
since the most recent common ancestor of both populations
a and b. We include only data in which we can infer limited to no
gene flow between populations.
In many cases only trait means on an arithmetic scale were

available. In those cases we approximated the mean of meas-
urements on the log scale by taking the natural logarithm of the
mean on the arithmetic scale. This approximation is good for
symmetric distributions such as the normal distribution when the
coefficient of variation is small, as is expected for most body size
traits on the log scale. Furthermore, even if the distribution of log-
scaled measurements is nonsymmetric and/or the SD is large, the
distribution of divergence values will still closely approximate the
true divergence value as long as the distributions of the traits in
the two populations are similar.
An alternative measure of divergence is calculated as h = d/σab

(corresponding to the haldane numerator), where σab is the
pooled within-population standard deviation (SD) of the log-
transformed measurements from samples a and b, which can be
approximated by the coefficient of variation. Gingerich (2) argued
for standardization by σab to remove the dimensionality of the data
even for traits with unknown allometric scaling (e.g., shape traits,
behavioral traits, and life-history traits), because σab is itself pro-
portional to the dimensionality of the data whereas standardization
by k assumes a constant proportionality. However, standardization
by σab comes at the cost of standardization by an evolving and
often poorly estimated quantity, and the exact dimensionality
correction factor depends on the covariance structure of the lower-
dimensional measurements (2, 3). Furthermore, for most mor-
phometric variables proportionality changes are expected to be
minimal for within-genus comparisons. Because linear divergence
in size-related traits used in fossil time series and contemporary
data reflect primarily a change in body size, the entire dataset
approximates the evolution of a single trait (linear body mass), and
the drawbacks of standardization by k are minimal. For simplicity,
we present only data measured by divergence in d (Figs. 1 and 2)
and present divergence in h for all traits in Fig. S1.

Datasets. We used the databases of Gingerich (3) and Hendry
et al. (4), which included all of the data points used in Estes and
Arnold (5), as well as additional studies (Table S2). We included
the Gingerich (1) dataset, which measures standardized, auton-
omous divergence, ha, in units of change per generation over
timescales spanning a single generation to 10 million gen-
erations. Because we wanted to avoid biasing patterns by in-
cluding traits observed over only one timescale and not the
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other, we restricted our analysis to only traits related to body size
of known dimensionality. In some instances we were able to
convert some time series in this dataset to full sets of autono-
mous and nonautonomous divergence by using published raw
data. However, because some of the time series in the Gingerich
dataset were available only in terms of h, we had to approximate
σab to convert these values to d to obtain autonomous divergence
values (for these datasets we did not estimate nonautonomous
divergence). We estimated σab for log-scaled linear measure-
ments related to body size across mammalian taxa to determine
the range of biologically realistic values. We collected meas-
urements of variation from both fossil time series and contem-
porary populations to determine whether there are systematic
differences between the estimates of variation in the two types of
data. To supplement the fossil data, we used an online paleon-
tology database (www.paleodb.org) and searched for mammalian
taxa for which measures of variation were available. Estimated
within-population SDs did not differ between population samples
of extant species (mean SD ± 1 SD = 0.059 ± 0.03; 446 pop-
ulations, 63 species) and fossil populations (mean SD ± 1 SD =
0.055 ± 0.03; 592 populations, 44 species), indicating that po-
tential bias introduced by the different population sampling
methods is minimal. We used these estimates to convert between
the two standardizations for time series and comparative data for
which measured SDs were not obtainable using a median value
of 0.055. Although ideally measurements would be obtained
from the actual populations for which the trait was measured, it
has long been known that these values do not vary considerably
for functional traits across mammalian taxa, even when evolu-
tionary rates differ (6). Furthermore, the general pattern and
identity of outlier taxa are consistent whether or not datasets are
standardized by σab or k (Fig. 1 and Fig. S1).
We supplemented these data with comparative, tree-based data

on body-size divergence in mammals, birds, and squamates (Table
S3). Measurements on body mass were taken from databases of
body masses for extant birds and mammals to be matched to time-
calibrated phylogenies (7, 8). Where multiple measurements
were available for a single species, these were averaged to obtain
a species-wide mean value. Divergence times for pairs of extant
species were estimated as the sum the branch lengths separating
taxa from their most recent common ancestor. For mammals, we
used Bininda-Emonds et al.’s (9, 10) time-calibrated phylogeny to
measure divergence time intervals. To obtain divergence between
mammals in terms of generations rather than years, we obtained
average generation times for 923 species from the PanTHERIA
database and converted branch lengths by the mean of the gen-
eration time for the two species being compared (11). We also
used a comparative dataset of molar size in 52 species of extant
primates to compare with microevolutionary and paleontological
studies of the same traits (mesio-distal length and trigonid
breadth of the first molar) (12). When data on both male and
female trait values are available, we assumed equal proportions
of males and females to obtain an estimate of the species mean.
For birds, we obtained intervals from phylogenies from McPeek’s
compilation of family- and genus-level time-calibrated phyloge-
nies (13) and a supertree of the order Charadriiformes (14). For
higher-level comparisons, we used the family-level phylogeny of
Sibley and Ahlquist (15) scaled to a root age of 90 Myr. We then
averaged body masses of all bird species within each family to use
as the tip values and calculated the node-averaged divergence at
each node in the phylogeny, which is equivalent to averaging all
pairwise divergences for species means in monophyletic group-
ings. For squamate comparative data, we used Wiens et al.’s
time-calibrated phylogeny and snout-to-vent length (SVL) meas-
urements for a sample of 259 species (16).
We present divergence on the generation timescale (Fig. S2) to

compare with divergence plotted on an absolute timescale (Fig. 1).
Althoughqualitatively thepattern is consistent regardless ofwhether

generations or years are used, the pattern of divergence is more
consistent across taxa whenmeasured on the raw timescale (Fig. 1),
rather than generations (Fig. S2). There is a systematic bias for
longer-lived organisms to diverge faster on the generation timescale
than shorter-lived organisms (Fig. S2). However, there is no such
obvious relationship between generation time and divergence pat-
terns on the raw timescale. These results suggest that divergence
over longer intervals scales with years rather than generations.

Stochastic Model Fitting. We fitted stochastic-process models to
the combined datasets of node-averaged divergence values, the
autonomous and averaged nonautonomous divergence values
from fossil time-series data, and synchronic and allochronic mi-
croevolutionary divergence data. In addition, all models were
fitted to subsets of the data including (i) microevolutionary and
fossil data and (ii) phylogenetic data only. Our intent is to
quantitatively elucidate features of the overall pattern by (i)
evaluating the types of models that can explain the pattern and
(ii) determining what parameter estimates are needed to explain
the pattern. Accounting for the complex covariance structure of
the data is beyond the scope of this paper and consequently we
treated all data as independent. Violations of the assumption of
independence are unlikely to systematically bias the conclusions
we drew given the large and diverse nature of the dataset, al-
though they will affect the magnitude of differences in AIC values
for each model, and consequently these differences should be
interpreted with caution. We further assume that all taxa have the
same parameter values for each model. Although this assumption
is clearly unrealistic, this preliminary modeling exercise is pri-
marily aimed at identifying key general patterns that future
models should account for and, as with Estes and Arnold (5), can
be thought of as a screening procedure to synthesize data across
a broad range of timescales and sources. The four models we
tested are as follows.
1) Bounded-evolution (BE) model. We fitted a bounded-evolution
model in which evolutionary changes are modeled as the dif-
ferences between independent variables drawn from a normal
distribution with zero mean and a constant variance, ðσ2pÞ, cor-
responding to a Gaussian white-noise process. This model is a
special case of the models that follow and also corresponds to a
special case of an Ornstein–Uhlenbeck process with an infinitely
strong restraining force resulting in no serial autocorrelation
between samples. Ornstein–Uhlenbeck processes are commonly
used in comparative methods to model evolution toward an in-
termediate optimal state (17, 18). The probability distribution of
divergence (x) contains only a single parameter, the variance of
the stationary normal distribution ðσ2pÞ,

PðxÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2πσ2p

q e
− x2
2σ2p :

2) Brownian-motion (BM) model combined with white noise. This model
describes the evolution of mean phenotypes by a random walk,
but also has a time-independent component of variance, σ2p, as
in the bounded evolution model. This time-independent variance
could have contributions from multiple sources, including mea-
surement error, phenotypic plasticity, genetic drift around a
stationary optimum, or fluctuating selective pressures. The addi-
tional component of a random walk is modeled as Brownian
motion with a stepwise infinitesimal variance parameter, σ2bm.
The variance among replicate lineages of the Brownian motion
process increases linearly with time according to the equation

σ2t ¼ σ2bmt;

where t is elapsed time. Under the influence of both constant
white noise and random walk, the probability of a given level of
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divergence after elapsed time t is a Gaussian probability density
function with variance σ2bmtþ σ2p. The likelihood for this model
then follows as the product of independent normal distributions,
which yields the log-likelihood equation

lnðLÞ ¼
Xn¼N

n¼1

ln

− x2n
e2ðσ

2
pþtσ2bmÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πðσ2p þ tσ2bmÞ
q

0
BB@

1
CCA:

3) Single-burst (SB) model with white noise. This model describes the
process of evolution as a step function in which the mean of
a lineage closely tracks an optimum that is displaced once and
remains stationary thereafter. Under this model, most evolution
occurs under a regime of stasis. We included this model because
a displaced-optimum model was the best of several models ex-
amined by Estes and Arnold (5). In their model, the optimum was
displaced in the first generation and remained stationary there-
after. We relaxed the constraint that the displacement occurs in
the first generation and instead model the waiting time to dis-
placement as an exponential distribution with parameter λ.
Under this generalization of the model, displacements of the
optimum are time dependent. Longer intervals are more likely to
experience a displacement of the optimum, and therefore the
variance in the magnitude of divergence values increases with
time, as we now show. Let I be an indicator variable so that I =
0 when no displacement has occurred, and I = 1 when a dis-
placement has occurred. Thus, for a single lineage the proba-
bility that a displacement has occurred in elapsed time t is given
by the cumulative probability distribution of an exponential
distribution:

PðI ¼ 1Þ ¼ 1− e− λt:

Once the displacement occurs, the magnitude of the optimum’s
displacement, D, is drawn from a normal distribution with mean
0 and variance σ2D. Mean phenotypes are normally distributed
about the expected optimum with variance σ2p. Consequently, the
distribution of divergence values can be obtained by conditioning
on I:

PðxÞ ¼ PðxjI ¼ 1Þ þ PðxjI¼ 0Þ

PðxÞ ¼
�
1− e− λt

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πðσ2p þ σ2DÞ

q e
− x2

2ðσ2pþσ2DÞ þ
�
e− λt

�
ffiffiffiffiffiffiffiffiffiffi
2πσ2p

q e
− x2
2σ2p :

The likelihood for this model is calculated as the product of the
marginal densities, resulting in the log-likelihood equation

lnðLÞ ¼
Xn¼N

n¼1

ln

�
1− e− λt

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πðσ2p þ σ2DÞ

q e
− x2n

2ðσ2pþtσ2DÞ þ
�
e− λt

�
ffiffiffiffiffiffiffiffiffiffi
2πσ2p

q e
− x2n
2σ2p

0
B@

1
CA:

4) Multiple-bursts model with white noise. This model relaxes the
assumption of a single displacement of the single-burst model and
allows displacements to occur according to a Poisson process
with rate parameter λ. According to this model, evolution con-
sists predominantly of stasis interspersed with burst-like evolu-
tionary events. If these burst events are sufficiently frequent over
the interval examined, this model resembles the Brownian-mo-
tion model. If bursts are infrequent enough that the expected
number of displacements is <1, then this model resembles the
single-burst model. Under this model, the expected number of

displacements, m, increases linearly with time and is equal to λt.
The magnitudes of the displacements are drawn from N(0, σ2D).
As with the other models, we allowed for time-independent,
bounded evolution that follows a normal distribution with vari-
ance, σ2p. Consequently, the probability distribution of divergence
after m displacements is itself a normal distribution with mean
0 and variance, σ2p þmσ2D. The probability distribution function
can be obtained for this model by conditioning on the number of
displacements, m, which follows a Poisson distribution:

PðxÞ ¼
Xm¼N

m¼0

PðxjmÞ ¼
Xm¼N

m¼0

e

�
− x2

2ðσ2pþmσ2DÞ
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πðσ2p þmσ2DÞ

q pðmÞ

¼
Xm¼N

m¼0

e

�
− x2

2ðσ2pþmσ2DÞ
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πðσ2p þmσ2DÞ

q ðλtÞme− λt

m!
:

The likelihood function is then

lnðLÞ ¼
Xn¼N

n¼1

ln
Xm¼N

m¼0

ðλtnÞme
�

− x2n
2ðσ2pþmσ2DÞ

− λtn
�

m!
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πðσ2p þmσ2DÞ

q

0
BB@

1
CCA:

Each model was fitted to the data by minimizing the negative
log-likelihood function using the function nlm or nlminb in
the R statistical computing environment (19). Because the
number of data points provided by different studies varies
widely and a single well-sampled study could substantially alter
the overall model fit and parameter values, we bootstrapped
over studies with 2,000 replicates for the best-fitting model (the
multiple-burst model) to obtain a distribution of parameter
values (Fig. S5).

Results and Interpretation of Model Fitting. For all datasets, the
best-fitting model was the multiple-burst model. Note that this
model is very similar to a Brownian-motion model for most of the
time period examined. For the parameters examined, both the
Brownian-motion and multiple-burst models predict nearly
identical normal distributions of divergence measures up until
w1 Myr. Furthermore, the two processes have the same co-
variance structure (20). Consequently, the signal driving the
improved support for the multiple-burst model in both the fossil
and the comparative data is the overdispersed distribution of
divergence between 1 Myr and 100 Myr. However, a Brownian-
motion model could potentially produce such a distribution if
modeled with a distribution of parameter values rather than a
single parameter value. The single-burst model performs better
than the Brownian-motion model for the same reason. However,
this fitted single-burst model bears little resemblance to the best-
fitting displaced-optimum model of Estes and Arnold (5). The
difference arises because in their model, displacement of the
optimum was constrained to occur in the first generation; there-
after the optimum remains stationary. In contrast, our model fit
estimates that the mean time to displacement is over 25 Myr. In
other words, the two models capture different phenomena in the
data. The displaced-optimum model of Estes and Arnold (5)
explains the central band of data that we model here as a con-
sequence of a white-noise process and not the pattern of di-
vergence observed on longer timescales that was fitted by our
multiple-burst model (these longer timescales were not visible in
the dataset examined by Estes and Arnold). In fact, when fitted
to only the data with intervals <500,000 y, our displaced opti-
mum model estimates the expected time to displacement as
w200 y and is the best fitting model among the four models we
examined (Table S1). It is worth noting that Estes and Arnold

Uyeda et al. www.pnas.org/cgi/content/short/1014503108 3 of 14

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1014503108/-/DCSupplemental/pnas.201014503SI.pdf?targetid=nameddest=SF5
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1014503108/-/DCSupplemental/pnas.201014503SI.pdf?targetid=nameddest=ST1
www.pnas.org/cgi/content/short/1014503108


(5) reject a white-noise process for their data because the level of
stochasticity in the optimum needed to obtain a reasonable fit
would likely drive a population to extinction. Consequently, we
use the white-noise process as a phenomenological model for the
more complex processes that rapidly result in a static bounded
distribution of divergence over microevolutionary timescales (<1
Myr). The Ornstein–Uhlenbeck process is an obvious modeling
alternative that does not require high levels of stochasticity in the
optimum (17, 18).

Measurement Error. We obtained reasonable estimates of the
expected variance resulting from measurement error by using the
median value for within-population SDs for linear body size traits
and the sample sizes taken from the data. Sample sizes, however,
were not available for most of the data. Consequently, we sim-
ulated sample sizes from a shifted geometric distribution with
parameter 0.1 (giving a mean sample sample size of 10). We then
drew sample means for two populations from a normal distri-
bution with mean 0 and SD= 0.055. The 95% confidence interval
was then obtained from the simulated distribution of measure-
ment error. Our simulated distribution of sample sizes is a con-
servative estimate for microevolutionary studies, but a reasonable
fit to the fossil data sample sizes. Although very few samples are
represented by a single specimen, none of the divergence values
we used were obtained from less than four total specimens. We
obtained an estimate of measurement error of σp = 0.04, giving
measurement variance of 0.0016. This value is nearly an order of
magnitude less than the time-independent variance estimated
from the data (σ̂2pz0:01, Table 1). To obtain a variance of 0.01,
assuming equal means, samples would have to consist of a single
individual with within-population SDs of 0.07, a value higher
than what is observed for most populations (median = 0.055).
Because none of the data are represented by comparisons of
such small samples, we reject the notion that measurement error
alone is responsible for this significant time-independent com-
ponent to variation in divergence.
Systematic bias resulting from differences in measurement

error among data sources is unlikely to affect the observed pattern
and alter our conclusions. As already noted, the variations in error
from fossil and contemporary samples are often quite similar
despite the diversity of taxa examined and the effects of time and
geographic averaging, as has been found by previous authors
(21–23). Consequently, differences in measurement error among
sources will result primarily from systematic differences in
sample sizes. For example, it is possible that measurement error
could result in the appearance of stasis if there is an inverse

relationship between the amount of measurement error and the
length of the interval, where measurement error decreases with
increasing intervals. Such an inverse relationship is unlikely be-
cause contemporary field studies have the highest sample sizes in
the dataset and are least affected by measurement error. Simi-
larly, the expansion of variance that occurs after 1 Myr could
result if phylogenetic comparative data were significantly more
variable than paleontological data. However, this difference is
likewise highly unlikely because the magnitude of the effect is so
large, and estimates of divergence are based on contemporary
measurements that have reasonable sample sizes [median n = 12
and n = 11 per species for reported values in Dunning (8) and
Swindler (12), respectively]. Furthermore, variance in divergence
in phylogenetic data is less that in than paleontological data
collected over the same time intervals (Fig. S3).

Linear Regressions of Absolute Divergence on Time. To determine
whether the pattern between datasets was better explained by
a subdividing by dataset or by designating a specific breakpoint,
we compared separate linear regressions fitted to each dataset
with a segmented regression with a single breakpoint. We log-
transformed the absolute value of the response variable, jdj and
added a small fixed deviate (0.001) to obtain an approximately
normal distribution of divergence values. All of the data points
included in the stochastic modeling analysis were also analyzed
here. The transformed data are expected to have a linear re-
lationship with log interval under a Brownian-motion model. We
then compared three models: (i) a single linear regression fit to
the combined dataset (two parameters), (ii) a model in which
each dataset was fitted independently (resulting in three in-
dependent linear regressions and six parameters), and (iii)
a segmented regression model with a single breakpoint (four
parameters). The segmented regression model allowed for
a change in slope, but constrained the lines to connect, resulting
in four parameters (two slope parameters for before and after
the breakpoint, the initial intercept, and the breakpoint itself).
We determined the optimal breakpoint by iteratively fitting the
segmented regression model to the data by increasing the
breakpoint value from 0 to 8.5 log10 y, with a step value of 0.01.
The lowest AIC value is obtained at a breakpoint of w66,000 y
(Fig. 4). Models were compared using AIC calculated from the
residual sum of squares. Care should be taken in interpreting the
AIC scores, as violations of independence in the data will ex-
aggerate the differences between models. Nonetheless, we found
that the hybrid nature of the dataset contributes less to the
change in pattern of divergence than the change in timescale.
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Fig. S1. Divergence between populations in all types of traits standardized by their pooled within-population SD for log-scaled trait values (corresponding to
the Haldane numerator). Size traits are indicated by circles, and all others are indicated by triangles (including shape, behavior, life history traits, coloration,
etc.). Datasets are colored according to data type: microevolutionary, yellow; fossil, green; and comparative, blue. All measurements of divergence for
comparative data are standardized by a median value of the SD of log-scaled linear body size traits of σab = 0.055.

Fig. S2. Body-size divergence as a function of generations rather than years. Colors are the same as in Fig. S1. The size of the points is proportional to the log
of generation time. Generation times for comparative data are estimated as the mean generation time of the two species being compared (available for
mammals only, pairwise only). Note that in all datasets, there is a tendency for more rapid divergence in organisms with longer generation times and delayed
divergence for organisms with shorter generation times. This apparently systematic difference in divergence patterns suggests that divergence does not scale
with generations, but rather scales with years (compare with Fig. 1).
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A B

Fig. S3. (A) Among-lineage variance through time plot for each dataset individually (microevolutionary, yellow; fossil, green; phylogenetic, blue) and all three
categories combined (black line). Variance is calculated from the data binned at every 0.1 unit on the log10 interval scale. The size of the data points is
proportional to the natural log of the number of data points included in that bin. Note that the fossil data appear to accumulate variance faster than the
phylogenetic data. (B) Same plot as before, but variance is ln-transformed. Note the nearly linear accumulation of variance after w105–106 y.
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Fig. S4. Simulated realizations of each model that we fitted to the data displayed on both the raw timescale (Left) and the log-transformed timescale
(Right). The models are a bounded-evolution model (BE), a Brownian-motion model with white noise (BM), single-burst model (SB), and a multiple-burst
model (MB). Shaded lines are the bounded-evolution process (BE) around each underlying process model, which is the solid line. Parameter values chosen
for these simulations are arbitrary, but a common white-noise parameter, σ2p, is used in each model. Note that when time is on the log scale, divergence is
primarily described by the white-noise parameter over much of the timespan, whereas at longer timescales it is primarily described by the underlying
stochastic process model.
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Fig. S5. Parameter distributions from the Poisson process model (MB) obtained by bootstrapping over studies (2,000 replicates). Dashed lines indicate the
position of the estimated parameter from the full dataset (Table 1). Strong positive correlations exist between all parameter values, with correlations ranging
from 0.68 to 0.87.
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Table S1. Parameter estimates and AIC scores for three model fits to the data

Dataset Model Parameter estimates AIC

Microevolution and fossil BE σ̂p ¼ 0:1417 −5740.28
BM σ̂p ¼ 0:0974 σ̂bm ¼ 1:60×10− 4 −8298.53
SB σ̂p ¼ 0:0885 σ̂D ¼ 0:396 1=λ̂ ¼ 106:2990 −8687.00
MB σ̂p ¼ 0:0874 σ̂D ¼ 0:249 1=λ̂ ¼ 106:1642 −8793.06

Phylogenetic only BE σ̂p ¼ 0:2986 1106.31
BM σ̂p ¼ 0:1000 σ̂bm ¼ 4:61×10− 5 0.66
SB σ̂p ¼ 0:1182 σ̂D ¼ 0:4451 1=λ̂ ¼ 107:7344 −171.30
MB σ̂p ¼ 0:0857 σ̂D ¼ 0:2166 1=λ̂ ¼ 107:3375 −363.26

All data <500,000 y BE σ̂p ¼ 0:0976 −8493.74
BM σ̂p ¼ 0:0976 σ̂bm ¼ 1:94×10− 7 −8491.74
SB σ̂p ¼ 0:0260 σ̂D ¼ 0:106 1=λ̂ ¼ 102:276 −8960.72
MB σ̂p ¼ 0:0872 σ̂D ¼ 0:327 1=λ̂ ¼ 106:337 −8758.38

All data >500,000 y BE σ̂p ¼ 0:2997 1417.48
BM σ̂p ¼ 0:1946 σ̂bm ¼ 3:99×10− 5 599.30
SB σ̂p ¼ 0:1558 σ̂D ¼ 0:508 1=λ̂ ¼ 107:8724 105.76
MB σ̂p ¼ 0:1480 σ̂D ¼ 0:361 1=λ̂ ¼ 107:7482 45.82

Models tested include a bounded-evolution model (BE), a Brownian-motion model (BM), a single-burst model (SB), and a multiple-
burst model (MB). In all models, SDs are in units of the natural log size difference. The inverse of the rate parameters (1/λ) for the
exponential distribution and Poisson distribution in the single-burst and multiple-burst models, respectively, can be interpreted as the
average number of years until a displacement. Details of each model can be found in SI Text. Best-fitting model for each dataset is
indicated in bold.
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Table S2. Data sources for microevolutionary and paleontological data used in this study

Taxa Source Species
Original
database

Type of
study

No. of
divergence
points,

d (h only)

No. of
measured

traits in study,
d (h only)

No. of
populations,
d (h only)

Aves Baker, 1980 Passer domesticus (1) Field-syn 312 2 13
Aves Baker, 1990 Fringilla coelebs (1) Field-syn 336 12 8
Rodentia Berry, 1964 Mus musculus (1) Field-syn 2 (1) 2 (1) 2
Salmonidae Bielak and Powers, 1986 Salmo salar (1) Field-allo 2 1 4
Salmonidae Bigler et al., 1996 Oncorhynchus

gorbuscha
(1) Field-allo 55 (11) 2 (1) 64 (22)

Insecta Carroll et al., 1997 Jadera hematoloma (1) Field-syn 50 (16) 3 (1) 9
Insecta Carroll et al., 1998 J. hematoloma (1) Field-syn 20 (16) 2 (2) 9
Aves Clegg et al., 2002 Zosterops lateralis (1) Field-syn 40 10 5
Salmonidae Cox and Hinch, 1997 Oncorhynchus nerka (1) Field-allo 20 1 20
Poecilidae Endler, 1980 Poecilia reticulata (1) Field-syn 2 (2) 2 (2) 1
Aves Grant and Grant, 1995 Geospiza fortis (1) Field-allo 12 6 4
Salmonidae Haugen and Vøllestad,

2001
Thymallus thymallus (1) Field-syn 36 (18) 12 (6) 3

Salmonidae Haugen, 2000 T. thymallus (1) Field-syn 25 (23) 4 (3) 15 (5)
Salmonidae Hendry and Quinn, 1997 Oncorhynchus nerka (1) Field-syn 16 2 3
Salmonidae Hendry et al., 1998 O. nerka (1) Field-syn 0 (2) 0 (2) 0 (2)
Insecta Hill et al., 1999 Pararge aegeria (1) Field-syn 4 1 4
Insecta Huey et al., 2000 Drosophila

subobscura
(1) Field-syn 2 1 2

Aves Johnston and Selander,
1964

Passer domesticus (1) Field-syn 126 3 17

Salmonidae Kinnison, 1998 Oncorhynchus
tshawytscha

(1) Field-syn 6 (6) 3 (6) 7

GasterosteodaeKlepaker, 1993 Gasterosteus
aculeatus

(1) Field-syn 44 1 (21) 1 (2)

Aves Larsson et al., 1998 Branta leucopsis (1) Field-allo 8 2 4
Poecilidae Magurran et al., 1992 Poecilia reticulata (1) Field-syn 0 (2) 0 (1) 0 (2)
Poecilidae Magurran et al., 1995 P. reticulata (1) Field-syn 0 (2) 0 (1) 0 (2)
Mollusca McMahon, 1976 Physa virgata (1) Field-syn 0 (3) 0 (3) 0 (2)
Rodentia Pergams and Ashley,

1999
Peromyscus maniculatus (1) Field-allo 48 16 6

Poecilidae Reznick and Bryga, 1987 P. reticulata (1) Field-syn 3 (2) 2 (2) 2
Poecilidae Reznick et al., 1990 P. reticulata (1) Field-syn 8 (11) 6 (6) 4
Poecilidae Reznick et al., 1997 P. reticulata (1) Field-syn 6 (6) 1 (1) 5
Aves Smith et al., 1995 Vestiaria coccinea (1) Field-allo 5 5 2
Aves St.Louis and Barlow,

1991
Passer domesticus (1) Field-syn 32 16 2

Poecilidae Stearns, 1983b Gambusia affinis (1) Field-syn 45 (30) 2 (1) 1
Poecilidae Stearns, 1983a G. affinis (1) Field-syn 808 (277) 3 (1) 36
Poecilidae Stockwell and Leberg,

2000
G. affinis (1) Field-syn 12 (6) 2 (1) 4

Mollusca Trussell and Smith, 2000 Littorina obtusata (1) Field-syn 10 2 8
Mollusca Vermeij, 1982 Nucella lapillus (1) Field-allo 8 2 8
Lagomorpha Williams and Moore,

1989a
Oryctolagus cuniculus (1) Field-syn 0 (24) 0 (4) 0 (3)

Lagomorpha Williams and Moore,
1989b

O. cuniculus (1) Field-syn 27 9 3

Aves Zink, 1983 Passerella iliaca (1) Field-allo 31 31 2
GasterosteodaeBell et al., 2004 Gasterosteus

aculeatus
(1) Field-allo 0 (4) 0 (1) 0 (5)

Diptera Bradshaw and
Holzapfel, 2001

Wyeomyia smithii (1) Field-allo 0 (2) 0 (1) 0 (4)

Squamata Campbell and
Echternacht, 2003

Anolis sagrei (1) Field-allo 10 2 6

Insecta Carroll et al., 2001 Jadera hematoloma (1) Field-syn 3 (2) 2 (1) 2
Insecta Carroll et al., 2005 J. hematoloma (1) Field-syn 14 4 2
Artiodactyla Coltman et al., 2003 Ovis canadensis (1) Field-allo 2 2 2
Aves Conant, 1988 Telespyza cantans (1) Field-syn 18 3 3
Aves Cooch et al., 1991 Anser caerulescens (1) Field-allo 4 3 8
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Table S2. Cont.

Taxa Source Species
Original
database

Type of
study

No. of
divergence
points,

d (h only)

No. of
measured

traits in study,
d (h only)

No. of
populations,
d (h only)

Diptera Gilchrist et al., 2001 Drosophila
subobscura

(1) Field-allo 48 3 16

Diptera Gilchrist et al., 2004 D. subobscura (1) Field-syn 6 3 2
Salmonidae Handford et al., 1977 Coregonus clupeaformis (1) Field-allo 2 (1) 2 (1) 2
Centrarchidae Holland et al., 1974 Lepomis macrochirus (1) Field-syn 0 (9) 0 (1) 0 (9)
Salmonidae Kinnison et al., 2003 Oncorhynchus

tsawytscha
(1) Field-syn 5 4 2

Oligochaeta Levinton et al., 2003 Limnodrilus
hoffmeisteri

(1) Field-allo 0 (1) 0 (1) 0 (2)

Poecilidae Meffe et al., 1995 Gambusia holbrooki (1) Field-syn 0 (2) 0 (2) 0 (2)
Artiodactyla Milner et al., 1999 Ovis aries (1) Field-allo 12 3 6
Aves Moller and Szep, 2005 Hirundo rustica (1) Field-allo 2 1 2
Rodentia Pergams and Ashley, 2001 Mus musculus (1) Field-syn 29 13 8
Anura Phillips and Shine, 2005 Bufo marinus (1) Field-allo 2 1 (1) 1 (1)
Aves Postma and van

Noordwijk, 2005
Parus major (1) Field-syn 0 (2) 0 (2) 0 (2)

Aves Rasner et al., 2004 Junco hyemalis (1) Field-syn 4 2 2
Cichlidae Streelman et al., 2004 Cynotilapia afra (1) Field-syn 0 (15) 0 (1) 0 (6)
Crustacea Tessier et al., 1992 Daphnia galeata

mendotae
(1) Field-allo 4 (3) 4 (3) 2

Aves Clegg et al., 2008, Zosterops lateralis (1) Field-syn 7 7 2
Artiodactyla Smith et al., 2003 Introduced Australian

artiodactyls
This paper Field-syn 13 1 4

Carnivora Simberloff, 2000 Herpestes javanicus This paper Field-syn 98 2 8
Xenarthra Anderson and Handley,

2002
Bradypus This paper Field-syn 7 1 8

Rodentia Smith et al., 1998 Neotoma This paper Field-allo 8 1 1
Primates Cuozzo and Sauther,

2006
Lemur catta This paper Field-allo 27 9 1

Primates DeGusta et al., 2003 Alouatta palliata This paper Field-allo 6 1 4
Rodentia Milien, 2004 Apodemus argentatus This paper Field-syn 5 1 6
Primates O’Rourke and Crawford,

2004
Homo sapiens This paper Field-syn 52 26 2

Squamata Pregill, 1986 Anolis bimaculatis This paper Field-syn 6 6 2
Squamata Meiri, 2007* Island-mainland

lizards
This paper Field-syn 25 1 29

Squamata Meik et al., 2010 Crotalus mitchelli This paper Field-syn 12 1 14
Insecta Santos et al., 1992 Drosophila buzzatii This paper Field-allo 8 2 4
Rodentia Bouteiller-Reuter and Perrin,

2005
Crocidura russula This paper Field-allo 6 2 3

Amphibia Wagner and Sullivan,
1995

Bufo valliceps This paper Field-allo 3 1 3

Squamata Olsson and Madsen,
2001

Lacerta agilis This paper Field-allo 1 1 2

Squamata Herrel et al., 2008 Podarcis sicula This paper Field-syn 20 10 2
Condricthyes DiBattista et al., 2007 Negaprion brevirostris This paper Field-allo 0 (22) 4 6
Rodentia Hester, n.d. Peromyscus (2) Field-allo 9 1 10
Perissodactyla Gingerich, 1991 Hyracotherium grangeri (2) Fossil ts 42 2 22
Perissodactyla Forsten, 1990 Equus germanicus (2) Fossil ts 204 34 7
Rodentia Lich, 1990 Cosomys primus (2) Fossil ts 27 3 10
Proprimates Gingerich and Gunnell,

1995
Phenacolemur

praecox
(2) Fossil ts 40 2 21

Primates Gingerich and Gunnell,
1995

Tetonius steini–
T. homunculus

(2) Fossil ts 26 2 14

Primates Gingerich and Gunnell,
1995

Teilhardina amer.–
T. tenuicula

(2) Fossil ts 18 2 10

Primates Clyde and Gingerich,
1994

Cantius torresi–
C. trigonodus

(2) Fossil ts 78 2 40
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Table S2. Cont.

Taxa Source Species
Original
database

Type of
study

No. of
divergence
points,

d (h only)

No. of
measured

traits in study,
d (h only)

No. of
populations,
d (h only)

Creodonta Gingerich and Gunnell,
1995

Arfia junnei–A.
opisthotoma

(2) Fossil ts 24 2 13

Condylarthra Gingerich, 1994 Haplomylus speir.–
H. scott

(2) Fossil ts 70 2 36

Condylarthra Gingerich, 1994 Hyopsodus loomisi (2) Fossil ts 52 2 27
Condylarthra Gingerich, 1994 Hyopsodus latidens (2) Fossil ts 32 2 17
Condylarthra Gingerich and Gunnell,

1995
Hyopsodus lo:la (2) Fossil ts 2 2 2

Condylarthra Gingerich and Gunnell,
1995

Thryptacodon
antiquus

(2) Fossil ts 28 2 15

Condylarthra Gingerich and Gunnell,
1995

Ectocion osbornianus (2) Fossil ts 46 2 24

Condylarthra Gingerich and Gunnell,
1995

Phenacodus vortmani (2) Fossil ts 42 2 22

Condylarthra Gingerich and Gunnell,
1995

Phenacodus n. sp. (2) Fossil ts 52 2 27

Condylarthra Gingerich and Gunnell,
1995

Phenacodus
intermedius

(2) Fossil ts 22 2 12

Tillodontia Gingerich and Gunnell,
1995

Azygonyx xenicus–
A. grangeri

(2) Fossil ts 22 2 12

Tillodontia Gingerich and Gunnell,
1995

Esthonyx spat.–
E. bisulcatus

(2) Fossil ts 36 2 19

Artiodactyla Gingerich and Gunnell,
1995

Diacodexis metsiacus (2) Fossil ts 58 2 30

Perissodactyla Gingerich and Gunnell,
1995

Cardiolophus
radinskyi

(2) Fossil ts 24 2 13

Perissodactyla Gingerich and Gunnell,
1995

Homogalax
protapirinus

(2) Fossil ts 20 2 11

Rodentia Jacobs and Lindsay, n.d. Potwarmus prim.–
Mus auctor

(2) Fossil ts 54 2 28

Rodentia Flynn, 1986 Kanisamys indicus–
K. sival.

(2) Fossil ts 38 2 20

Rodentia Jacobs, n.d. Karnimata sp.–
K. huxleyi

(2) Fossil ts 18 2 10

Rodentia Jacobs, n.d. Karnimata sp.–
Parapelomys rob.

(2) Fossil ts 12 2 7

Artiodactyla Morgan, n.d. Bramatherium
megacephalus

(2) Fossil ts 12 1 13

Artiodactyla Morgan, n.d. Giraffokeryx
punjabiensis

(2) Fossil ts 15 1 16

Condylarthra Gingerich, 1994 Apheliscus chydaeus (2) Fossil ts 26 2 14
Proprimates Gingerich, 1996 Pronoth. jepi–

Ples. churchilli
(2) Fossil ts 6 2 4

Proprimates Gingerich, 1996 Ples. churchilli–
Ples. dubius

(2) Fossil ts 18 2 10

Proprimates Gingerich, 1996 Ples. churchilli–
Ples. cookei

(2) Fossil ts 24 2 13

Proprimates Bloch and Gingerich,
1998

Carpolestes spp. (2) Fossil ts 24 2 13

Proprimates Bloch and Gingerich,
1998

Carpolestes spp. (2) Fossil ts 26 2 14

Proprimates Bloch and Gingerich,
1998

Carpolestes spp. (2) Fossil ts 24 2 13

Perissodactyla Gingerich, 1991 Hyracotherium
aemulor

(2) Fossil ts 22 2 12

Perissodactyla Gingerich, 1991 Hyracotherium pernix (2) Fossil ts 6 2 4
Perissodactyla Gingerich, 1991 Hyracotherium

sa:gr:ae:pe
(2) Fossil ts 6 6 2

Proboscidea King and Saunders, 1984 Mammut americanum (2) Fossil ts 8 4 3
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Table S2. Cont.

Taxa Source Species
Original
database

Type of
study

No. of
divergence
points,

d (h only)

No. of
measured

traits in study,
d (h only)

No. of
populations,
d (h only)

Artiodactyla McDonald, 1981 Bison antiquus–B.
bison

(2) Fossil ts 171 74 3

Artiodactyla Lister, 1989 Cervus elaphus (2) Fossil ts 10 10 2
Primates Clyde and Gingerich,

1994
Cantius torresi–

C. trigonodus
(2) Fossil ts 22 2 12

Mammalia Gingerich, 1994 Haplomyous palust.–
H. simpsoni

(2) Fossil ts 2 2 2

Mammalia Gingerich, 1994 Haplomyous si:sp (2) Fossil ts 8 1 9
Foraminifera Malmgren et al., 1983 Globorotalia

plesiotumida
(2) Fossil ts 8 1 9

Foraminifera Malmgren et al., 1983 G. plesiotumida (2) Fossil ts 43 1 44
Foraminifera Malmgren et al., 1983 Globorotalia tumida (2) Fossil ts 43 1 44
Foraminifera Malmgren et al., 1983 G. tumida (2) Fossil ts 29 1 30
Foraminifera Malmgren et al., 1983 G. tumida (2) Fossil ts 29 1 30
Foraminifera Malmgren et al., 1983 G. tumida (2) Fossil ts 11 1 12
Foraminifera Malmgren et al., 1983 G. tumida (2) Fossil ts 11 1 12
Foraminifera Malmgren et al., 1983 G. tumida (2) Fossil ts 16 2 9
Artiodactyla Klein, 1995 Gazella sp. (2) Fossil ts 7 1 8
Artiodactyla Klein, 1995 Gazella sp. (2) Fossil ts 96 (26) 41 4
Proboscidea Maglio, 1973 Primeleph. gom.–

Loxodonta afr.
(2) Fossil ts 50 (37) 20 (15) 5

Proboscidea Maglio, 1973 P. gom.–Elephas
iolen.

(2) Fossil ts 31 (23) 15 (11) 4

Proboscidea Maglio, 1973 P. gom.–Elephas
hysud.

(2) Fossil ts 71 (53) 24 (18) 5

Proboscidea Maglio, 1973 P. gom.–Mammuth.
prim.

(2) Fossil ts 12 1 13

Artiodactyla Prothero and Heaton,
1996

Miniochoerus chad.–
M. gracilis

(2) Fossil ts 57 1 58

Rodentia Heaton, 1993 Ischyromys parvidens–
I. typus

(2) Fossil ts 70 1 71

Rodentia Heaton, 1993 I. parvidens–I. typus (2) Fossil ts 42 2 22
Carnivora Polly, 1998 Viverravus acutus (2) Fossil ts 158 1 (11) 1 (15)
Mollusca Geary, 1990 Peromyscus m. gracilis (2) Fossil ts 9 1 10
Mollusca Geary, 1990 Melanopsis impressa (2) Fossil ts 7 1 8
Mollusca Geary, 1990 Melanopsis fossilis (2) Fossil ts 1 1 2
Perissodactyla Haldane, 1949 Melanopsis impressa:

fossilis
(2) Fossil ts 6 2 4

Perissodactyla Haldane, 1949 Hyracotherium–

Neohipparion
(2) Fossil ts 0 (3) 0 (1) 0 (4)

Dinosauria Colbert, 1948 Hyracotherium–

Neohipparion
(2) Fossil ts 2 1 3

Dinosauria Colbert, 1948 Protoceratops–
Triceratops

(2) Fossil ts 1 1 2

Dinosauria Colbert, 1948 Camptosaurus–
Trachodon

(2) Fossil ts 1 1 2

Dinosauria Colbert, 1948 Polacanthus–
Ankylosaurus

(2) Fossil ts 1 1 2

Dinosauria Colbert, 1948 Coelophysis–
Tyrannosaurus

(2) Fossil ts 1 1 2

Dinosauria Colbert, 1948 Scelidosaurus–
Stegosaurus

(2) Fossil ts 1 1 2

Hominidae Ruff et al., 1997 Homo (2) Fossil ts 36 4 40
Rodentia Barnosky, 1990 Microtus

pennsylvanicus
(2) Fossil ts 7 1 8

Rodentia Barnosky, 1990 M. pennsylvanicus (2) Fossil ts 8 1 9
Rodentia Barnosky, 1990 M. pennsylvanicus (2) Fossil ts 5 1 6
Radiolaria Kellogg, 1975 Pseudocubus verna This paper Fossil ts 33 1 34
Carnivora Kurten, 1959 Ursus sp. This paper Fossil ts 10 1 11
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Table S2. Cont.

Taxa Source Species
Original
database

Type of
study

No. of
divergence
points,

d (h only)

No. of
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d (h only)

No. of
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Carnivora Kurten, 1959 Felis silvestris ssp. This paper Fossil ts 4 1 5
Carnivora Kurten, 1959 Felis lynx This paper Fossil ts 1 1 2
Carnivora Kurten, 1959 Vulpes vulpes This paper Fossil ts 2 1 3
Carnivora Kurten, 1959 Canis lupus This paper Fossil ts 1 1 2
Carnivora Kurten, 1959 Putorius putorius This paper Fossil ts 1 1 2
Carnivora Kurten, 1959 Martes martes This paper Fossil ts 3 1 4
Carnivora Kurten, 1959 Gulo gulo This paper Fossil ts 1 1 2
Carnivora Kurten, 1959 Meles meles This paper Fossil ts 2 1 3
Carnivora Kurten, 1959 Lutra lutra This paper Fossil ts 2 1 3
Rodentia Kurten, 1959 Apodemus sylvaticus This paper Fossil ts 1 1 2
Total 5,087 (663) 645 (137) 1,631 (96)

Most data come from Hendry et al. (1) and Gingerich (2). A “field study” is defined as any study involving the collection of data on extant organisms.
Synchronic studies are cross-sectional studies (“field-syn”) whereas allochronic studies are longitudinal (“field-allo”). Number of divergence points is the total
number of autonomous data points that were plotted for each type of divergence measure, with those data points for which h alone was measured in
parentheses. Number of traits is the total number of different measurements that were used to obtain divergence (autonomous divergence only), and number
of populations is the number of samples. Original databases indicate either Hendry et al. (1) or Gingerich (2). n.d., not determined.
*Dates for land-bridge islands are taken from Lu et al., 2002; Boback, 2003; Foufopoulos, 1999; Castilla, et al., 2008; Podner et al., 2004; Foufopolous and Ives,
1999; Villagran, 1988; and Case and Schwaner, 1993.

1. Hendry AP, Farrugia TJ, Kinnison MT (2008) Human influences on rates of phenotypic change in wild animal populations. Mol Ecol 17:20e29.
2. Gingerich PD (2001) Rates of evolution on the time scale of the evolutionary process. Genetica 112–113:127e144.
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Table S3. Data sources for across-species comparative data

Taxa Interval source Divergence source Original database No. of taxa No. of nodes Trait

Squamates Wiens et al., 2006 Wiens et al., 2006 This paper 259 258 SVL
Mammalia Bininda-Emonds et al., 2007 Smith et al., 2004 This paper 3,264 1,770 (Mass)^1/3
Primates Bininda-Emonds et al., 2007 Swindler, 2002 This paper 47 42 M/1 (MD)
Primates Bininda-Emonds et al., 2007 Swindler, 2002 This paper 47 42 M/1 (TriB)
Aves Sibley and Ahlquist, 1990 Dunning, 2008 This paper 121* 119 (Mass)^1/3
Aves Thomas et al., 2004 Dunning, 2008 This paper 286 217 (Mass)^1/3
Aves Filardi and Smith, 2005 Dunning, 2008 McPeek, 2008 12 11 (Mass)^1/3
Aves Pérez-Emán, 2005 Dunning, 2008 McPeek, 2008 5 4 (Mass)^1/3
Aves Eberhard and Bermingham, 2005 Dunning, 2008 McPeek, 2008 4 3 (Mass)^1/3
Aves Eberhard and Bermingham, 2005 Dunning, 2008 McPeek, 2008 10 9 (Mass)^1/3
Aves Lijtmaer et al., 2004 Dunning, 2008 McPeek, 2008 20 13 (Mass)^1/3
Aves Austin, J. J., 1996 Dunning, 2008 McPeek, 2008 10 9 (Mass)^1/3
Aves Chesser, R. T., 2000 Dunning, 2008 McPeek, 2008 7 6 (Mass)^1/3
Aves Garcia-Moreno et al., 2001 Dunning, 2008 McPeek, 2008 20 17 (Mass)^1/3
Aves Garcia-Moreno et al., 1999 Dunning, 2008 McPeek, 2008 9 8 (Mass)^1/3
Aves Groombridge et al., 2004 Dunning, 2008 McPeek, 2008 7 6 (Mass)^1/3
Aves Joseph et al., 2004 Dunning, 2008 McPeek, 2008 11 8 (Mass)^1/3
Aves Klicka et al., 2003 Dunning, 2008 McPeek, 2008 6 5 (Mass)^1/3
Aves Lee et al., 2003 Dunning, 2008 McPeek, 2008 3 2 (Mass)^1/3
Aves Lucchini et al., 2001 Dunning, 2008 McPeek, 2008 12 11 (Mass)^1/3
Aves Omland et al., 1999 Dunning, 2008 McPeek, 2008 22 18 (Mass)^1/3
Aves Randi, 1996 Dunning, 2008 McPeek, 2008 5 4 (Mass)^1/3
Aves Randi et al., 2001 Dunning, 2008 McPeek, 2008 5 4 (Mass)^1/3
Aves Ribas and Miyaki, 2004 Dunning, 2008 McPeek, 2008 5 4 (Mass)^1/3
Aves Weibel and Moore, 2002 Dunning, 2008 McPeek, 2008 19 18 (Mass)^1/3
Aves Whittingham et al., 2002 Dunning, 2008 McPeek, 2008 8 7 (Mass)^1/3
Aves Sorenson et al., 2004 Dunning, 2008 McPeek, 2008 18 11 (Mass)^1/3
Aves Kimball et al., 2001 Dunning, 2008 McPeek, 2008 4 3 (Mass)^1/3
Aves Cheviron et al., 2005 Dunning, 2008 McPeek, 2008 6 5 (Mass)^1/3
Aves Gill et al., 2005 Dunning, 2008 McPeek, 2008 23 21 (Mass)^1/3
Aves Given et al., 2005 Dunning, 2008 McPeek, 2008 9 7 (Mass)^1/3
Aves Lovette and Bermingham, 1999 Dunning, 2008 McPeek, 2008 23 22 (Mass)^1/3
Aves Mooers et al., 1999 Dunning, 2008 McPeek, 2008 11 10 (Mass)^1/3
Aves Price et al., 2000 Dunning, 2008 McPeek, 2008 3 1 (Mass)^1/3
Aves Ruolonen et al., 2000 Dunning, 2008 McPeek, 2008 7 6 (Mass)^1/3
Aves Weckstein, 2005 Dunning, 2008 McPeek, 2008 6 5 (Mass)^1/3
Aves Sato et al., 1999 Dunning, 2008 McPeek, 2008 12 10 (Mass)^1/3

*Taxa for this phylogeny are the family means rather than species-level means, with average values being calculated from Dunning
(2008) for all taxa assigned to a given family. The phylogeny was scaled to a root age of 90 Myr.
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