Supporting Information

Bault et al. 10.1073/pnas.1100892108

SI Methods

Theoretical Model of Choice. We consider the value V when the subject chooses the act f and the alternative is g of the simple form (Eq. S1):

$$V(f,g) = \int_{S} u(f(s))dP(s) + \int_{S} \gamma[u(f(s)) - u(g(s))]dP(s), \quad [S1]$$

where S is the state set (i.e., all of the possible outcomes), P is the subjective probability on it, and *u* is the utility function. The theory incorporates in its second component, described by the function γ , responses to the difference between the selected and unselected acts (i.e., a counterfactual comparison). If $\gamma = 0$ (i.e., no counterfactual comparison), the subject just maximizes expected utility. The crucial property of the function γ is the relative weight of gains [u(f(s)) > u(g(s))] and losses [u(g(s)) > u(f(s))](s))]. In the one-player trials, the act g is the act that the subject has not chosen. In the two-player trials, g is the act chosen by the other subject, and therefore, $\gamma \neq 0$ implies social comparison. If social losses loom larger than gains, for any possible value (x) of the difference between the expected outcomes of the selected and unselected acts, $-\gamma(-x) > \gamma(x)$, and equilibria are symmetric. Theory of interdependent utilities (1, 2) predicts the same behavior for the two participants; instead, if gains loom larger than losses, $\gamma(x) > -\gamma(-x)$, the equilibria are asymmetric, and the behavior of participants should be different from the behavior of their counterpart, seeking for differences in final incomes (i.e., social gains).

Logit Model. We estimate with the logit regression the probability of the participant choosing the first lottery as a function of the difference in expected value (dEV) and SD (dSD) between the first and second lottery (Eq. S2) is

$$\Pr(c = 1 | dEV, dSD) = \frac{\exp[\alpha + \beta(dEV) + \gamma(dSD)]}{1 + \exp[\alpha + \beta(dEV) + \gamma(dSD)]}.$$
 [S2]

The variables dEV and dSD are defined as (Eqs. S3 and S4)

$$dEV = EV_1 - EV_2 = [px_1 + (1 - p)y_1] - [qx_2 + (1 - q)y_2]$$
 and
[S3]

$$dSD = SD_1 - SD_2 = \sqrt{p(x1 - EV_1)^2 + (1 - p)(y_1 - EV_1)^2} - \sqrt{q(x_2 - EV_2)^2 + (1 - q)(y_2 - EV_2)^2},$$
[84]

where x_1 , y_1 and x_2 , y_2 are the two possible outcomes of the first and the second lotteries, respectively, with $x_1 > y_1$ and $x_2 > y_2$. The probability of x_1 is p, and the probability of y_1 is (1 - p). The probability of x_2 is q, and the probability of y_2 is (1 - q).

Skin Conductance Recording. Two MRI-compatible Ag/AgCl electrodes were placed on the subject's left hand after cleaning with neutral soap. A constant voltage of 0.5 V was applied between the electrodes. MR artifact was removed offline by median filtering. Data from eight subjects was removed because of acquisition problems or lack of measurable responses (less than 10% of the trials with detectable responses). For the 16 remaining subjects, we considered the event-specific skin conductance responses (SCRs) as occurring between 1 s after stimulus

Bault et al. www.pnas.org/cgi/content/short/1100892108

onset and 0.5 s before the end of the event (3, 4). The SCR amplitude was thresholded at 0.02 μ S. SCR magnitude was calculated as the mean response amplitude computed across all trials, including those trials without a measurable response.

Debriefing Questionnaires. Debriefing questionnaires revealed that participants believed the outcomes of lotteries were random: they answered 5.08 ± 0.27 on a scale from one (outcomes manipulated) to seven (outcomes random). They had the feeling that they were observing the choices of an actual human counterpart: they answered 5.71 ± 0.26 on a scale from one (I did not feel that I was interacting with a real human being) to seven (I strongly felt that I was interacting with a real human being). Those participants who answered four (four subjects) or less (one subject) reported that the experimental setting (being in a different room and interacting through computers) made the interaction less salient. No participant reported any doubt about with whom they were playing.

Participants were not aware of their choice behavior being influenced by their counterpart: they answered 2.79 ± 0.38 on a scale from one (not influenced at all) to seven (much influenced).

Functional MRI Analysis. Images acquisition. Functional MRI data were collected using a 1.5-Tesla MRI scanner (Magnetom Vision Plus; Siemens). Functional images were acquired using a gradient echo-planar imaging sequence (repetition time = 2.5 s; echo time = 50 ms) over three runs. Signal dropout in basal frontal and medial temporal structures because of susceptibility artifact was reduced by using a tilted plane of acquisition (30° to the anterior commissure posterior commissure line, rostral > caudal) and performing z shimming in the slice selection direction. Partial brain coverage (some of the parietal cortex was not scanned) was obtained with 29 axial slices (thickness = 3.7 mm; gap = 0.47mm; in-plane resolution = 3.44×3.44 mm; 64×64 matrix). Echo-planar images were coregistered to a high-resolution structural T1-weighted image obtained during the same session (176 sagittal slices; thickness = 1 mm; $256 \times 256 \text{ matrix}$). Head motions were minimized by the use of foam padding. Headphones were used to dampen the scanner noise.

Images preprocessing. Image preprocessing and subsequent analyses were performed using SPM5 (Wellcome Trust Centre for Neuroimaging) running on a Matlab platform. The first five functional volumes of each run were removed to allow for magnet stabilization. The remaining images were corrected for differences in slice acquisition time. Images were then realigned and unwarped to correct for motion artifacts. Unwarping was performed based on phase maps calculated using the Fieldmap SPM toolbox. For each participant, structural image was coregistered to the mean functional image. Structural data were normalized by matching them to the standardized Montreal Neurological Institute template, and the transformation parameters estimated in this step were applied to all functional images. Functional images were spatially smoothed with an 8-mm full width at one-half maximum Gaussian kernel before statistical analysis. High-resolution T1weighted structural volumes from the 24 subjects were averaged together to permit anatomical localization of the functional activations at the group level.

Beta Seed correlations. Beta seed correlations analyses were performed using the methodology described by Rissman et al. (5). Separate covariates were used to model activity evoked during each stage (decision, button press, anticipatory, and outcome) of each individual trial. This first step was implemented in SPM5 in the context of a general linear model. The resulting parameter estimates (beta values) were sorted according to the stage from which they derived from to form a set of decision-specific and a set of outcome-specific beta series. The two vectors of betas were shifted so that beta values deriving from the choice period (t) were correlated with beta values deriving from the previous trial outcome evaluation (t - 1). Correlation of the seed's beta series (averaged across the seed voxels) with the beta series of all other voxels in the brain was computed using Matlab 7.4 (http:// www.mathworks.com), and seed correlation maps were generated. The correlation coefficients were then converted to z scores. Group-level random effects t tests were then conducted to identify voxels for which the mean of the individual subjects' transformed correlation coefficients was reliably greater than

- 1. Maccheroni F, Marinacci M, Rustichini A (2011) Social decision theory: Choosing within and between groups. *Rev Econ Stud*, in press.
- Bault N, Coricelli G, Rustichini A (2008) Interdependent utilities: How social ranking affects choice behavior. PLoS One 3:e3477.
- 3. Boucsein W (1992) *Electrodermal Activity* (University of Wuppertal, Wuppertal, Germany).

zero. False discovery rate correction for multiple comparisons was applied using routines from SPM5. All statistical maps are displayed using MRIcron.

Activations localization and reported statistics. Anatomic labeling of activated regions was done both computationally with the SPM Anatomy toolbox (version 1.5; http://www.fz-juelich. de/inm/inm-1/DE/Forschung/_docs/SPMAnantomyToolbox/ SPMAnantomyToolbox_node.html) and visually by superposing the functional activations on a maximum probability atlas based on 30 subjects and containing 83 regions, based on ref. 6, in MRIcron (version 1.39, Build 4; http://www.sph.sc.edu/comd/ rorden/).

- Dawson ME, Schell AM, Filion DL (2000) The electrodermal system. Handbook of Psychophysiology, eds Cacioppo JT, Tassinary LG, Berntson G (Cambridge University Press, Cambridge, UK), pp 200–223.
- Rissman J, Gazzaley A, D'Esposito M (2004) Measuring functional connectivity during distinct stages of a cognitive task. *Neuroimage* 23:752–763.
- Hammers A, et al. (2003) Three-dimensional maximum probability atlas of the human brain, with particular reference to the temporal lobe. *Hum Brain Mapp* 19:224–247.

Fig. S1. Main effect of valence (red) and outcome context (green) during outcome evaluation. *F* maps projected on a canonical template brain. Red, activity related to valence (relative losses vs. relative gains) is found in the bilateral striatum (caudate and putamen) and the medial orbitofrontal cortex; green, activity within the medial prefrontal cortex, striatum, and lateral posterior orbitofrontal cortex discriminates between the three outcome conditions (private, social with same choices, and social with different choices) when the outcomes of the two lotteries are revealed. Group data (displayed at *P* = 0.0005, uncorrected) is overlaid on a 3D-rendered canonical template brain.

Fig. 52. Main effect of decision context during choice. F map projected on a canonical template brain (displayed at P = 0.05, corrected) for the main effect of decision context during the choice period. All regions (medial prefrontal cortex, orbitofrontal cortex, dorsolateral prefrontal cortex, superior temporal sulcus, precuneus/posterior cingulate cortex, and temporo-parietal junction) activated in this analysis were more activated in the social than the private condition).

Table S1. Panel logit regression for choice, the two groups, and the first 20 trials

					95% CI			
Variable name	Coefficient	SE	Z	Ρ	Lower value	Upper value		
All subjects* (n = 24)								
dEV	0.171	0.015	11.74	<0.001	0.143	0.200		
dSD	0.003	0.010	0.29	0.771	-0.016	0.022		
Environment × <i>dEV</i>	0.035	0.021	1.65	0.099	-0.007	0.076		
Environment × <i>dSD</i>	0.036	0.014	2.57	0.010	0.008	0.063		
Constant	-0.059	0.042	-1.40	0.161	-0.141	0.023		
Subjects in the prudent environment ^{\dagger} ($n = 12$)								
dEV	0.171	0.015	11.74	<0.001	0.143	0.200		
dSD	0.003	0.010	0.29	0.771	-0.016	0.022		
Constant	-0.078	0.056	-1.39	0.164	-0.187	0.032		
Subjects in the bold environment ^{$+$} ($n = 12$)								
dEV	0.207	0.015	13.430	<0.001	0.177	0.237		
dSD	0.039	0.010	3.890	<0.001	0.019	0.058		
Constant	-0.039	0.068	-0.570	0.567	-0.173	0.095		
All subjects [§] ($n = 24$) first 20 trials								
dEV	0.136	0.034	3.98	<0.001	0.069	0.203		
dSD	0.009	0.023	0.38	0.701	-0.037	0.055		
Environment × <i>dEV</i>	0.009	0.049	0.18	0.853	-0.086	0.105		
Environment × <i>dSD</i>	-0.041	0.033	-1.22	0.221	-0.107	0.025		
Constant	-0.109	0.095	-1.14	0.253	-0.296	0.078		

CI, confidence interval. Log likelihood = -311.67, Wald χ^2 (3) = 7.41, and probability > χ^2 = 0.000.

*Number of observations = 1,440. Log likelihood = -917.55, Wald χ^2 (3) = 7.41, and probability > χ^2 = 0.000. *Number of observations = 2,880. Log likelihood = -1,808.06, Wald χ^2 (3) = 322.03, and probability > χ^2 = 0.000. *Number of observations = 1,440. Log likelihood = -917.55, Wald χ^2 (3) = 141.31, and probability > χ^2 = 0.000.

[§]Number of observations = 480. Data from early trials (t < 20).

Table S2. Activated brain regions during the outcome period

					MNI	coordin	ates
Location	Side	Voxels	F	P (FDR corrected)	x	у	z
Main effect of valence							
Caudate and putamen	Left	711	88	<0.0001	-12	9	-9
Caudate and putamen	Right	1,278	58.70	<0.0001	21	15	-3
Precentral gyrus	Right	283	41.68	<0.0001	42	-12	51
Orbitofrontal cortex	_	278	26.70	0.0001	0	48	-12
Superior posterior temporal gyrus	Right	34	26.65	0.0001	36	-30	-3
Supplementary motor area	_	130	26.64	0.0001	3	-9	54
Posterior temporal lobe	Right	54	25.78	0.0001	33	-57	-15
Cerebellum	Left	265	23.97	0.0002	-9	-54	-18
Cerebellum	Right	77	21.92	0.0004	24	-84	-18
Angular gyrus	Left	53	21.65	0.0004	-39	-66	36
Cerebellum	Right	72	21.56	0.0004	33	-72	-33
Superior parietal gyrus and postcingulate	Left	376	21.51	0.0004	-15	-42	36
Precentral gyrus	Left	32	20.23	0.0007	-24	-24	57
Thalamus incl.	Left	19	20.09	0.0007	-3	-18	18
Precentral gyrus	Left	63	19.59	0.0008	-39	-15	39
Precentral gyrus	Left	91	19.56	0.0008	-57	0	12
Middle frontal gyrus	Left	72	19.44	0.0009	-27	12	42
Middle occipital gyrus	Left	14	18.80	0.0010	-15	-102	6
Superior frontal gyrus	Right	13	18.77	0.0011	21	45	45
Middle temporal gyrus	Left	25	18.56	0.0011	-57	-45	-3
Anterior orbital gyrus	Left	13	17.81	0.0014	-24	36	-9
Main effect of outcome context							
Caudate	Right	40	14.88	0.0140	15	21	-9
Superior medial frontal gyrus	_	133	14.56	0.0140	0	54	9
Inferior frontal gyrus, posterior orbital gyrus, and insula	Right	124	14.45	0.0140	48	30	-3
Inferior/middle frontal gyrus	Right	98	14.05	0.0140	45	21	30
Superior parietal gyrus	Right	14	11.81	0.0167	24	-45	24
Middle central gyrus/precental gyrus	Left	74	11.62	0.0171	-33	-3	45
Superior parietal gyrus	Left	11	10.60	0.0205	-27	-45	42
Middle occipital gyrus	Left	12	10.32	0.0226	-30	-78	27
Angular gyrus/temporal sup	Right	25	10.07	0.0247	54	-54	21
Supramarginal gyrus	Right	14	9.91	0.0265	54	-39	39
Cerebellum	Left	14	9.84	0.0270	-15	-54	-45
Middle occipital gyrus	Left	13	9.31	0.0298	-33	-78	9
Middle occipital gyrus	Right	16	9.19	0.0313	42	-75	9
Angular gyrus	Left	14	9.13	0.0317	-45	-60	27
Interaction between valence and outcome context							
Ventral striatum	Left	48	19.41	0.0009	-9	9	-3
Supramarginal gyrus	Right	35	15.18	0.0037	57	-45	33
Ventral striatum	Right	32	14.46	0.0048	9	12	-3
Angular gyrus	Right	14	13.87	0.0066	45	-48	24
Cerebellum	Left	14	12.95	0.0089	-36	-72	-51
Superior frontal gyrus	Right	14	12.53	0.0106	18	42	36

MNI, Montreal Neurological Institute.

PNAS PNAS

Table S3. Main effect of decision context during the decision period

					MN	II coordin	ates
Location	Side	Voxels	F	P (FDR corrected)	x	у	z
Lingual gyrus, calcarine, and inferior occipital	Right	871	66.65	0.0000	12	-87	-3
TPJ (sup temporal gyrus, mid temp, angular, supramarginal)	Right	256	39.22	0.0001	57	-39	18
Posterior orbital gyrus, insula	Right	42	38.50	0.0001	27	21	-15
Superior temporal sulcus (STS)	Right	209	37.81	0.0001	54	-15	-12
Inferior frontal tri	Right	96	31.76	0.0003	42	24	24
TPJ (sup temporal gyrus, mid temp, angular, supramarginal)	Left	170	29.10	0.0005	-60	-51	21
Medial superior frontal	_	151	28.74	0.0005	-3	42	39
Medial orbital gyrus	Right	11	27.66	0.0007	9	54	-15
Mid temporal gyrus	Right	39	27.03	0.0007	48	-54	-3
Precuneus	Right	96	27.03	0.0007	9	-48	42
Mid and posterior cingulate	Left	33	25.47	0.0010	-36	18	-18
Superior medial frontal gyrus, ACC	Right	50	23.45	0.0014	9	54	3
Brainstem	_	18	20.14	0.0028	-9	-27	-6
Superior temporal sulcus	Left	11	18.24	0.0041	-63	-6	-21
Superior medial frontal gyrus	Right	11	18.09	0.0043	12	36	57
Superior temporal sulcus	Left	13	18.07	0.0043	-57	-27	-6
Inf frontal	Left	17	17.36	0.0050	-42	15	30

FDR, false discovery rate.

PNAS PNAS

Table S4. Pairs of lotteries used in the experiment

PNAS PNAS

					Outcome of				Outcome of			Bold counterpart's	Prudent counterpart's
Trial	Players	p(x1)	x1	y1	lottery 1	p(x2)	х2	y2	lottery 2	dEV	dSD	choices	choices
1	1	0.2	20	5	20	0.5	20	-5	-5	0.5	-6.5	_	_
2	1	0.5	20	5	5	0.8	20	-20	-20	0.5	-8.5	_	—
3	1	0.2	20	5	5	0.8	20	-5	20	-7	-4 2 F	—	—
4 5	1 2	0.2	5	-20 -20	5	0.5	-5 20	-20 -20	-20 -20	-2.5 1.5	2.5 _3.5	1	1
6	2	0.5	20	-20	20	0.2	20	-20	-20	4.5	3.5	1	2
7	2	0.5	5	-20	-20	0.2	5	-5	-5	-4.5	8.5	2	2
8	2	0.8	20	-5	20	0.5	20	5	5	2.5	2.5	1	2
9	2	0.8	20	-5	20	0.2	20	5	5	7	4	1	2
10	1	0.2	20	-20	-20	0.5	5	-20	5	-4.5	3.5	_	_
11	2	0.5	-5 20	-20	-5 20	0.2	5 20	-20	-20	2.5	-2.5		2
12	1	0.5	20	_20	-20	0.2	-5	-20	-5	-0.5 -7	4	<u> </u>	<u> </u>
14	1	0.5	20	-5	20	0.8	20	-20	20	-4.5	-3.5	_	_
15	1	0.2	20	-20	20	0.5	-5	-20	-20	0.5	8.5	_	_
16	1	0.2	5	-5	-5	0.5	5	-20	5	4.5	-8.5	—	_
17	1	0.5	20	5	5	0.8	20	-5	20	-2.5	-2.5	—	—
18	1	0.5	-5	-20	-20	0.2	20	-20	-20	-0.5	-8.5		—
19 20	1	0.8	-5 20	-20 -20	-5 -20	0.2	5 20	-20	-20	-0.5	-4 85	2	2
20	2	0.5	-5	-20 -20	-20	0.2	20	-20	-20	-0.5	-8.5	2	1
22	2	0.8	-5	-20	-5	0.2	5	-20	-20	7	-4	-	1
23	2	0.5	20	5	5	0.8	20	-20	-20	0.5	-8.5	1	1
24	1	0.8	20	-20	20	0.5	20	-5	-5	4.5	3.5	—	_
25	2	0.2	20	5	5	0.8	20	-5	20	-7	-4	2	1
26	2	0.2	20	-20	20	0.5	-5 F	-20	-20	0.5	8.5	1	2
27	2	0.2	20	-20 -20	-20 -20	0.5	5 5	-20	5 _5	-4.5 _4.5	3.5 8.5	2 	2
29	2	0.2	5	-20	-20	0.2	-5	-20	-5	- 4 .5 -7	4	1	2
30	1	0.8	20	-5	20	0.2	20	5	5	7	4	_	_
31	2	0.2	20	5	5	0.5	20	-5	20	0.5	-6.5	1	2
32	1	0.5	-5	-20	-5	0.2	5	-20	-20	2.5	-2.5	_	_
33	1	0.8	20	-5	-5	0.5	20	5	20	2.5	2.5	_	_
34 25	2	0.5	20	-5	-5 20	0.8	20	-20	20	-4.5	-3.5 2 E	2	1
36	2	0.2	20	-5	-5	0.5	20	_20	-20	-2.5	-8.5	1	1
37	1	0.5	5	-20	-20	0.2	20	-20	20	4.5	-3.5	_	_
38	1	0.5	20	-5	-5	0.2	20	5	20	-0.5	6.5	—	_
39	1	0.8	20	-20	-20	0.5	20	5	5	-0.5	8.5	—	_
40	2	0.2	5	-20	-20	0.5	-5	-20	-5	-2.5	2.5	2	2
41	1	0.2	5	-5	-5	0.5	5	-20	5	4.5	-8.5	-	
42 //3	2	0.8	-5 20	-20	-5 20	0.2	5 20	-20	-20	7	-4 25	1	1
44	2	0.8	20	-5	20	0.2	20	5	5	7	4	2	1
45	2	0.5	20	-5	20	0.2	20	5	5	-0.5	6.5	2	2
46	1	0.5	20	5	20	0.8	20	-20	-20	0.5	-8.5	—	_
47	2	0.8	20	-20	20	0.5	20	-5	-5	4.5	3.5	1	2
48	1	0.2	20	5	5	0.5	20	-5	20	0.5	-6.5	—	—
49 50	1	0.5	20	-5 20	-5 20	0.8	20	-20	20	-4.5	-3.5 8.5		
50	2	0.5	20	-20 -20	20	0.2	20	-20	-20	-0.5 4.5	-3.5	1	1
52	2	0.5	-5	-20	-20	0.2	20	-20	20	-0.5	-8.5	2	1
53	1	0.5	20	5	20	0.8	20	-5	-5	-2.5	-2.5	_	_
54	2	0.5	5	-20	5	0.2	5	-5	-5	-4.5	8.5	2	2
55	1	0.2	5	-20	-20	0.8	-5	-20	-5	-7	4	_	-
56 57	2	0.5	-5	-20	-20	0.2	5	-20	5	2.5	-2.5	1	1
57 58	2 1	0.2	20 20	-20	-20	0.5	-5 20	-20	-20	0.5 _7	٥.⊃ _⊿	I 	۲
59	2	0.2	5	-20	-20	0.5	-5	-20	-5	-2.5	2.5	2	1
60	1	0.2	20	-20	-20	0.5	5	-20	5	-4.5	3.5	_	_
61	1	0.2	5	-20	-20	0.5	-5	-20	-20	-2.5	2.5	—	—
62	1	0.2	20	-20	-20	0.5	-5	-20	-5	0.5	8.5	_	—

Table S4.	Cont.
-----------	-------

PNAS PNAS

					Outcome of				Outcome of			Bold counterpart's	Prudent counterpart's
Trial	Players	p(x1)	x1	у1	lottery 1	p(x2)	х2	у2	lottery 2	dEV	dSD	choices	choices
63	2	0.5	20	5	20	0.8	20	-20	-20	0.5	-8.5	1	1
64	1	0.8	20	-5	20	0.2	20	5	5	7	4	_	_
65	1	0.5	-5	-20	-20	0.2	20	-20	20	-0.5	-8.5	_	_
66	1	0.8	20	-20	20	0.5	20	-5	-5	4.5	3.5	—	_
67	2	0.2	20	5	20	0.5	20	-5	-5	0.5	-6.5	1	1
68	1	0.8	-5	-20	-5	0.2	5	-20	-20	7	-4	—	_
69	2	0.2	20	5	5	0.8	20	-5	20	-7	-4	2	1
70	2	0.2	20	-20	20	0.5	5	-20	-20	-4.5	3.5	1	2
71	1	0.5	5	-20	5	0.2	20	-20	-20	4.5	-3.5	—	—
72	1	0.5	-5	-20	-5	0.2	5	-20	-20	2.5	-2.5	—	—
73	1	0.5	5	-20	-20	0.2	5	-5	-5	-4.5	8.5	—	—
74	1	0.8	20	-20	-20	0.5	20	5	20	-0.5	8.5	—	—
75	2	0.5	20	5	5	0.8	20	-5	20	-2.5	-2.5	2	1
76	1	0.5	20	-5	20	0.2	20	5	5	-0.5	6.5	—	—
77	2	0.2	5	-5	5	0.5	5	-20	-20	4.5	-8.5	2	1
78	1	0.8	20	-5	20	0.5	20	5	20	2.5	2.5	—	_
79	2	0.2	5	-20	-20	0.8	-5	-20	-5	-7	4	2	2
80	2	0.5	20	-5	-5	0.8	20	-20	20	-4.5	-3.5	2	1
81	2	0.5	5	-20	5	0.2	20	-20	-20	4.5	-3.5	1	1
82	2	0.5	-5	-20	-20	0.2	5	-20	-20	2.5	-2.5	1	1
83	2	0.5	-5	-20	-20	0.2	20	-20	20	-0.5	-8.5	2	1
84	1	0.5	20	5	5	0.8	20	-20	20	0.5	-8.5	_	_
85	1	0.2	5	-20	-20	0.8	-5	-20	-5	-7	4	_	_
86	1	0.2	5	-5	-5	0.5	5	-20	-20	4.5	-8.5	_	_
87	2	0.5	5	-20	5	0.2	5	-5	-5	-4.5	8.5	2	2
88	1	0.2	20	-20	-20	0.5	5	-20	5	-4.5	3.5	_	_
89	2	0.8	-5	-20	-5	0.2	5	-20	-20	7	-4	1	1
90	1	0.2	20	5	5	0.8	20	-5	20	-7	-4	_	_
91	2	0.8	20	-5	20	0.2	20	5	5	7	4	1	2
92	1	0.2	20	5	5	0.5	20	-5	20	0.5	-6.5	_	_
93	1	0.5	20	-5	-5	0.8	20	-20	20	-4.5	-3.5	_	_
94	2	0.8	20	-20	-20	0.5	20	5	5	-0.5	8.5	2	2
95	2	0.8	20	-20	20	0.5	20	-5	20	4.5	3.5	1	1
96	2	0.5	20	-5	-5	0.2	20	5	20	-0.5	6.5	1	1
97	1	0.2	5	-20	-20	0.5	-5	-20	-5	-2.5	2.5	_	_
98	1	0.2	20	-20	20	0.5	-5	-20	-20	0.5	8.5	_	_
99	1	0.5	20	5	5	0.8	20	-5	20	-2.5	-2.5	_	_
100	2	0.8	20	-5	-5	0.5	20	5	20	2.5	2.5	1	2
101	2	0.5	20	-5	-5	0.8	20	-20	20	-4.5	-3.5	2	1
102	1	0.8	20	-5	20	0.5	20	5	5	2.5	2.5	_	_
103	2	0.2	20	-20	-20	0.5	-5	-20	-5	0.5	8.5	1	2
104	2	0.2	5	-5	-5	0.5	5	-20	-20	4.5	-8.5	1	1
105	1	0.8	-5	-20	-5	0.2	5	-20	-20	7	-4	_	_
106	1	0.8	20	-20	20	0.5	20	-5	-5	4.5	3.5	_	_
107	2	0.2	20	5	5	0.8	20	-5	20	-7	-4	2	1
108	2	0.5	20	5	20	0.8	20	-5	-5	-2.5	-2.5	2	1
109	1	0.5	5	-20	-20	0.2	5	-5	5	-4.5	8.5	_	_
110	2	0.2	20	-20	-20	0.5	5	-20	5	-4.5	3.5	2	2
111	2	0.2	20	5	5	0.5	20	-5	20	0.5	-6.5	1	1
112	2	0.2	5	-20	-20	0.8	-5	-20	-5	-7	4	2	2
113	2	0.5	20	5	20	0.8	20	-20	-20	0.5	-8.5	2	- 1
114	1	0.5		_20	-5	0.2	20	_20	_20	45	-3.5	_	· —
115	1	0.5	-5	-20	-5	0.2		-20	-20	2.5	-2.5	_	_
116	1	0.8	20	_20	_20	0.5	20		20	_0.5	85	_	_
117	2	0.2	-5	_20	-20	0.5	_5	_20	-5	-2.5	2.5	2	2
118	1	0.8	20	_5	20	0.2	20	5	5	7	4	-	-
119	1	0.5	_5	_20	_5	0.2	20	_20	_20	, _0 5	-85	_	_
120	1	0.5	20	_5	20	0.2	20	5	5	_0.5	65	_	_
		0.5		2	20	v.2	-0	2	2	5.5	5.5		

The column Players is equal to one for a private trial and two for a social trial. x_1 and y_1 are the two possible outcomes of lottery 1. $p(x_1)$ is the probability of $x_1 [p(y_1) = 1 - p(x_1)]$. x_2 and y_2 are the two possible outcomes of lottery 2. $p(x_2)$ is the probability of x_2 . dEV is the difference between the expected values of lotteries 1 and 2. dSD is the difference in SD (risk) between the two lotteries.