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Supporting Information 

Materials and Methods 

Isolation of primary hepatocytes and adenovirus infection.  

Primary hepatocytes were isolated from male C57BL/6J mice at 8-12 weeks of age 

according to the procedure described (1). After anesthetization, collagenase perfusion 

was performed through the portal vein with 50 ml of perfusion buffer (Krebs Ringer 

buffer with 3.6 mg/ml Glucose, 1 M CaCl2 and 0.66 mg/ml collagenase I 

(Worthington) at 37°C. The liver was aseptically removed and cut, and hepatocytes 

were filtrated and washed with cold Hepatocyte Wash Medium (Gibco) for three 

times and re-suspended in 15 ml of cold HepatoZYME-SFM (Gibco) medium 

supplemented with 2 mM L-glutamine, 20 units/ml Penicillin and 20 μg/ml 

Streptomycin. After the viability was determined by Trypan Blue staining, the 

hepatocytes were plated at 6×105 cells/well in 6-well culture dishes pre-coated with 

collagen. Cells were cultured for 8 hours before further use. Hepatocytes were 

infected for 48 or 72 hours with adenoviruses at an MOI of 40 and were subsequently 

treated with the desired reagents prior to protein extraction for Western immunoblot 

analysis. 

Generation of recombinant adenoviruses 

Recombinant adenoviruses for the overexpression of EGFP and the wild type or 

mutant forms of IRE1α were generated as previously described (2) with the AdEasy 

System (Stratagene) according to the manufacturer’s instructions. Briefly, DNA 

fragments encoding the desired proteins were first subcloned into pShuttle-CMV, 
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which were then used to produce recombinant adenoviral plasmids through 

homologous recombination with pAdEasy-1 in Escherichia coli BJ5183 cells. 

Transfection of HEK 293A cells (Invitrogen) was conducted using the linearized 

recombinant plasmids to produce the recombinant viruses. The short-hairpin (sh) 

RNA knockdown adenoviruses targeting IRE1α (Ad-shIRE1α-#1, Ad-shIRE1α-#2) or 

PKA (Ad-shPKA-#1) or expressing a scrambled control shRNA (Ad-shCON) were 

generated with the BLOCK-iT Adenoviral RNAi Expression System (Invitrogen) in 

HEK 293A cells according to the manufacturer’s instructions. DNA fragments 

encoding shRNAs directed against murine IRE1α or PKA, or containing a general 

scrambled sequence were introduced into pENTR/U6 vector under the control of the 

human U6 promoter. The two shRNAs designed for the knockdown of IRE1α had the 

following IRE1α target sequences: Ad-shIRE1α-#1, 

5′-GCGAGAAGCAGCAGACTTTGT-3′, and Ad-shIRE1α-#2, 5′- 

GGAATTACTGGCTTCTCATAG′. The shRNA designed for the knockdown of 

PKA contained the following PKA target sequence: 

5′-GGGTCAATGACATCAAGAACC-3′. The control virus, Ad-shCON, had a core 

scrambled sequence of 5′-GTTCTCCGAACGTGTCACGTTT-3′. The shRNA for 

knocking down the expression of XBP1 was as described previously (3). For infection 

of primary hepatocytes, viruses were used at an MOI (multiplicity of infection) of 40, 

which was measured according to the manufacturer’s instructions. High-titer stocks of 

amplified recombinant knockdown adenoviruses were purified by two-step 

ultracentrifugation in cesium chloride gradient. After subsequent dialysis, viral titers 
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were determined by the tissue culture infectious dose 50 (TCID50) method using 

293A cells. Viruses were diluted in PBS and administered through tail vein injection, 

using approximately 4x108 pfu/mice. Liver function was assessed by measurement of 

serum levels of alanine transaminase and aspartate transaminase by Alanine 

Transaminase/Aspartate Transaminase Determination Kit (ShenSuoYouFu). 

Glucagon challenge test 

After a 15-hour fast period, glucagon was administered through i.p. injection (100 

μg/kg for WT mice and 150 μg/kg for db/db mice). Tail vein blood was collected at 0, 

15, 30, 45, 60 and 75 minutes after glucagon injection. Glucose concentrations were 

measured by a glucometer (FreeStyle). 

Glucose and pyruvate tolerance tests 

After a 6-hour fast, db/db mice infected with the desired adenoviruses were injected 

i.p. with 1.5 g/kg glucose or 2 g/kg pyuvate. Tail vein blood was taken for glucose 

measurement at 0, 30, 60 and 120 minutes after glucose or pyruvate injection. 

Glucose production assay 

The glucose production assay was conducted according to the protocol described (4). 

Primary hepatocytes were isolated from mice infected for 5 days with Ad-shCON or 

Ad-shIRE1α-#2. After attachment, cells were washed three times with PBS and were then 

incubated for 4 hours at 37 °C with 5% CO2 in glucose production buffer [DMEM 

(without glucose, L-glutamine, phenol red, sodium pyruvate or sodium bicarbonate; 

Sigma) supplemented with 10 mM HEPES (pH 7.4), 0.6% BSA and substrates (5 mM 

sodium lactate, 5 mM sodium pyruvate)] in the presence of DMSO or 10 μM 
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forskolin(5). The medium was subsequently collected and glucose concentrations were 

measured with Glucose (GO) Assay Kit (Sigma). 

Chemical reagents, antibodies, plasmids, and Western immunoblotting 

Glucagon, thapsigargin, H89, U73122, epinephrine, forskolin, bromo-cAMP and 

α-tubulin monoclonal antibody were all purchased from Sigma. IRE1α, CREB, 

pSer133-CREB, eIF2α and pSer52-eIF2α antibodies were from Cell Signaling, and 

pSer724-IRE1α antibody from Novus Biologicals. Antibody against the catalytic α 

subunit of PKA was from BD Transduction Laboratories, and BiP monoclonal 

antibody from Stressgen. For the expression of EGFP-IRE1α fusion protein, mouse 

IRE1α cDNA was subcloned in-frame into pEGFP-N1 plasmid. For immunoblot 

analyses, proteins extracted from cells or tissue by RIPA buffer (150 mM NaCl, 1% 

NP-40, 0.5% sodium deoxycholate, 0.1% SDS, 50 mM Tris-Cl) were separated by 

SDS–polyacrylamide gel electrophoresis (SDS-PAGE) and transferred to 

polyvinylidene difluoride (PVDF) membrane filters (Amersham Biosciences). After 

incubation with the desired antibodies, the blots were developed with Thermo 

Scientific’s SuperSignal West Pico Chemiluminescent Substrate or Millipore’s 

Immobilon Western Chemiluminescent HRP Substrate. To reduce non-specific 

protein species detected, pSer724-IRE1α antibody was used after pre-incubation with a 

PVDF membrane filter that contained transferred mouse cellular proteins. 

Expression and purification of recombinant PKA, PKC and cyto-IRE1α proteins 

The expression plasmid for the catalytic α subunit of mouse PKA was constructed in 

pET-15b, which was kindly offered by Susan Taylor (Addgene). Transformation was 
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performed using BL21 DE3 Codon Plus competent cells, and the recombinant PKA 

protein was subsequently purified by Ni-NTA Agarose (Qiagen) as described (6). 

The cDNA fragment encoding the human full length PKC-ε, a novel isoform of 

PKC (7), was subcloned into baculovirus expression vector pFastbac-1 (Invitrogen) to 

produce a GST-PKCε fusion protein. The recombinant virus was generated and 

amplified according to the manufacturer’s instructions. The recombinant PKC-ε 

protein was expressed in High-Five insect cells and was subsequently purified by 

GST affinity-chromatography. The enzyme activity of the purified kinase proteins was 

determined by the Z´-LYTETM Kinase Assay Kit (Invitrogen) using the peptide 

substrates for PKA and PKC, according to the manufacturer’s instructions. 

His-tagged recombinant protein of the cytoplasmic portion of human 

IRE1α (cyto-IRE1α, spanning amino acid residues 469-977) was bacterially 

expressed using a PCR-derived cDNA fragment which was subcloned into 

pET-30a(+). Cyto-IRE1α protein was purified with Ni-NTA Agarose (Qiagen) 

according to the manufacturer’s instructions and subsequently used for 

phosphorylation assays through incubation with purified PKA or PKC proteins. 

Immunoprecipitation of IRE1α for phosphorylation assays 

Primary hepatocytes were infected for 48 hours with recombinant adenoviruses 

expressing Flag-tagged human IRE1α, IRE1α-K599A or IRE1α-S724A proteins. 

Cells were lysed with the lysis buffer [20 mM Tris-HCl, pH 7.5, 100 mM KCl, 0.1% 

Nonidet P-40, 1 mM EDTA and 10% Glycerol containing 1% protease inhibitors 

cocktail (Sigma) and 1% phosphatase inhibitors cocktail I/II (Sigma)] for 20 minutes 
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at 4 oC. After incubation with Flag antibody for 2 hours at 4 oC with gentle rocking, 

lysates were mixed with a final concentration of 2.5% protein G Sepharose beads 

(Amersham Biosciences) and incubated for 2 hours at 4 oC on a rotator. After washing 

three times with the washing buffer [20 mM Tris-HCl pH 7.5, 150 mM KCl, 0.5% 

Nonidet P-40, 1 mM EDTA, and 10% glycerol supplemented with 1% protease 

inhibitors cocktail (Sigma) and 1% phosphotase inhibitors cocktail I/II (Sigma)], 

beads were subsequently incubated with purified PKA or PKCε protein at 30℃ for 1 

hour in the kinase assay buffer (20 mM TrisHCl, pH 7.5, 5 mM MgCl2, 400 μM ATP, 

1 mM DTT, 50 mM NaCl). Reactions were terminated by adding 2×loading buffer 

and subjected to analysis by immunoblotting. 

Microarray analysis 

Primary hepatocytes were infected with the desired adenoviruses or treated with 

glucagon. Total cellular RNA was isolated with TRIzol (Invitrogen) and subjected to 

analysis by Affymetrix Mouse Genome 430 2.0 Arrays. Three experiments were 

independently conducted. The original microarray intensities were log2-transformed 

and quantile-normalized using 'affy' package in Bioconductor (8). Differences in the 

expression of genes between each two compared samples were determined by 

RankProd (9), with proportion of false positive (pfp) < 0.1 considered significant. 

Parametric Analysis of Gene Set Enrichment (PAGE) (10) was conducted based on 

KEGG pathways downloaded from the KEGG database (http://www.genome.jp/kegg/) 

on July 5, 2010. Significance of the enrichment was calculated and false discovery 

rate (FDR) < 0.01 considered significant. 
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RT-PCR analyses 

Total RNA was isolated from cells or mouse livers with TRIzol (Invitrogen). After 

reverse transcription by M-MLV Reverse Transcriptase (Invitrogen), regular PCR was 

performed with TaKaRa Taq kits (Takara). Quantitative real-time PCR was done with 

an ABI Prism 7500 sequence detection system, using Power SYBR Green PCR 

Master Mix (Applied Biosystems) following the manufacturer’s recommendations 

(Applied Biosystems). Actin was used as an internal control for normalization. The 

oligonucleotide primers for each target gene examined are listed as follows. 

Mouse Xbp-1: sense 5’-GAACCAGGAGTTAAGGACACG-3’, antisense 

5’-GGGGATCTCTAAGACTAGAGGCT-3’; 

Mouse G6pase: sense 5’-CGACTCGCTATCTCCAAGTGA-3’, antisense 

5’-GTTGAACCAGTCTCCGACCA-3’; 

Mouse Pepck: sense 5’-AAGCATTCAACGCCAGGTTC-3’, antisense 

5’-GGGCGAGTCTGTCAGTTCAAT-3’; 

Mouse Actin: sense 5’-AGTGTGACGTTGACATCCGTA-3’, antisense 

5’-GCCAGAGCAGTAATCTCCTTCT-3’; 

Mouse Bip: sense 5’-ACTTGGGGACCACCTATTCCT-3’, antisense 

5’-ATCGCCAATCAGACGCTCC-3’; 

Mouse Chop: sense 5’-CTGGAAGCCTGGTATGAGGAT-3’, antisense 

5’-CAGGGTCAAGAGTAGTGAAGGT-3’. 

Mouse Erdj4: sense 5’-ATAAAAGCCCTGATGCTGAAGC-3’, antisense 5’- 

GCCATTGGTAAAAGCACTGTGT-3’. 

 7



Mao, T., et al. 

Figures and Legends 
 
 
 

 
 
Fig. S1. Glucagon stimulated the expression of gluconeogenic genes but not 
typical UPR target genes in vivo. Male C57BL/6 mice were treated for the indicated 
time intervals (n=3/group) by i.p. injection of glucagon (100 μg/kg body weight). The 
hepatic mRNA abundance of G6pase, Pepck, Chop and Bip was analyzed by 
quantitative real-time RT-PCR, with actin used as an internal control. Results for each 
gene were normalized to the value at 0 min (set as 1) and shown as the mean ± SEM 
(n=3 independent experiments). *P < 0.05 versus 0 time point by one-way ANOVA. 
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Fig. S2. Glucagon but not thapsigargin stimulated the expression of 
gluconeogenic genes in primary hepatocytes. Primary hepatocytes were treated (A) 
with 100 nM glucagon for 0, 0.5, 1, 2 or 4 hours, or (B) with dimethyl sulfoxide 
(DMSO) or thapsigargin (Tg, 1 μM) for 1 hour. The mRNA abundance of G6pase, 
Pepck, Chop, and Bip was determined by quantitative real-time RT-PCR, using actin 
as an internal control. (C) Glucagon or thapsigargin did not affect the expression of 
actin that was used as the internal control in (A) and (B). The mRNA abundance of 
actin was analyzed by quantitative real-time RT-PCR and shown as relative to 18S 
rRNA. All results were normalized to the value at 0 min for glucagon treatment or to 
that of DMSO for Tg treatment. Data are shown as the mean ± SEM (n=3 independent 
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experiments). *P < 0.05 versus 0 time point or DMSO control, **P < 0.01 and ***P < 
0.001 versus 0 time point by one-way ANOVA. 
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Fig. S3. Transcriptomic analysis of the impact of IRE1α knockdown on 
glucagon-regulated gene expression profiles in liver cells. Primary hepatocytes 
were infected for 48 hours with Ad-shCON or Ad-shIRE1α-#2 and then treated with 
100 nM glucagon for 1 hour. Hepatocytes infected for 48 hours with 
EGFP-expressing adenovirus were left untreated. Total cellular RNA was subjected to 
whole-genome microarray analysis using Affymetrix Mouse Genome 430 2.0 Arrays. 
(A) Individual heatmaps from three independent experiments showing differentially 
expressed genes upon glucagon induction (GI), which were aligned with changes of 
these genes caused by IRE1α knockdown in the presence of glucagon stimulation. 
Included are genes exhibiting >1.25-fold changes or trends of significant changes as 
determined by RankProd with proportion of false positive (pfp) < 0.1. Gene labels are 
also indicated. (B) Percentages of all array-probed genes (All genes) that were down- 
or up-regulated by shIRE1α as compared with percentages of glucagon-upregulated 
(GI UP) or -downregulated (GI DOWN) genes that were down- or up-regulated by 
shIRE1α relative to shCON control. (C) Heatmaps showing glucagon-regulated 
cellular pathways or biological processes that were affected by IRE1α knockdown. 
Parametric Analysis of Gene Set Enrichment (PAGE) was performed using the KEGG 
database (http://www.genome.jp/kegg/), with false discovery rate (FDR) < 0.01. 
Pathways related to metabolism of carbohydrates, lipids and amino acids are indicated. 
(D) Heatmaps showing expression changes of regulatory genes in lipid metabolism 
and enzymes in triglyceride synthesis as result of IRE1α knockdown in the presence 
of glucagon stimulation.
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Fig. S4. Effects of PKA inhibitor on IRE1α phosphorylation during ER stress 
and stimulation of IRE1α phosphorylation by activation of the cAMP pathway. 
(A) H89 had no effect on ER stress-induced phosphorylation of IRE1α. Primary 
hepatocytes pre-cultured for 30 minutes with DMSO or H89 (at 5 or 10 μM) were 
treated with 1 μM Tg for 1 hour. (B) cAMP pathway activators stimulated IRE1α 
phosphorylation. Primary hepatocytes were treated with DMSO/PBS (Veh), 10 μM 
forskolin (adenylate cyclase activator), or 100 μM Br-cAMP (cAMP analog) for 1 
hour. Immunoblotting was performed using the indicated antibodies. Results shown 
are representative of three independent experiments. 
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Fig. S5. Thapsigargin did not induce but overexpressed EGFP-IRE1α caused 
Ser724 phosphorylation of the autophosphorylation-defective IRE1α-K599A 
mutant. (A) Primary hepatocytes were infected for 48 hours with recombinant 
adenoviruses expressing EGFP, Flag-tagged human wild-type (WT) IRE1α, or 
IRE1α-K599A and IRE1α-S724A mutants. Cells were then treated with DMSO or 1 
μM Tg for 1 hour. (B) HEK293 cells were transfected for 48 hours with plasmids 
expressing wild-type (WT) IRE1α, IRE1α-K599A or EGFP-IRE1α, or co-transfected 
with EGFP-IRE1α and IRE1α-K599A. Phosphorylation of IRE1α was analyzed by 
immunoblotting with IRE1α or phospho-IRE1α antibodies. Results shown are 
representative of three independent experiments.
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Fig. S6. Enzyme activities of purified PKA and PKC proteins. Recombinant 
mouse PKA and human PKCε proteins were expressed and purified. Kinase activities 
were measured with synthetic substrate peptides for PKA (A) and PKC (B) using 
Z`-LYTE™ Kinase Assay Kit. 
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Fig. S7. Transcriptomic analysis of the effect of blocking Ser724 phosphorylation 
on IRE1α-evoked gene expression profiles in liver cells. Primary hepatocytes were 
infected for 48 hours with adenoviruses expressing EGFP, IRE1α or IRE1α-S724A. 
Total cellular RNA was subjected to whole-genome microarray analysis using 
Affymetrix Mouse Genome 430 2.0 Arrays. (A) Individual heatmaps from three 
independent experiments showing differentially expressed genes elicited by 
overexpressed IRE1α-WT, which were aligned with changes of these genes caused by 
S724A mutation. Included are genes exhibiting >1.25-fold alterations or trends of 
significant changes as determined by RankProd with proportion of false positive (pfp) 
< 0.1. Gene labels are also indicated. (B) Percentage of all arrayed-probed genes (All 
genes) that were down- or up-regulated by S724A mutant as compared with 
percentage of IRE1α (WT)-upregulated (WT UP) or -downregulated (WT DOWN) 
genes which were down- or up-regulated by S724A. (C) Heatmaps showing 
IRE1α-evoked changes of cellular pathways or biological processes that were 
influenced by S724A mutation. Parametric Analysis of Gene Set Enrichment (PAGE) 
was performed using the KEGG database (http://www.genome.jp/kegg/), with false 
discovery rate (FDR) < 0.01. Pathways related to metabolism of carbohydrates, lipids 
and amino acids are indicated. 
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Fig. S8. Effects of sXBP1 overexpression or XBP1 knockdown on the expression 
of gluconeogenic genes. (A and B) Adenoviral overexpression of the spliced form of 
XBP1 suppressed the expression of G6pase and Pepck while inducing the expression 
of Bip. Primary hepatocytes were infected for 48 hours with recombinant 
adenoviruses expressing EGFP or Flag-tagged spliced (s) form of XBP1. Infected 
cells were then treated with PBS or 100 nM glucagons for 1 hour. (A) sXBP1 protein 
was analyzed by immunoblotting using the Flag antibody. Actin was shown as the 
loading control. (B) The mRNA abundance of G6pase, Pepck and Bip was determined 
by quantitative real-time RT-PCR using actin as an internal control. **P < 0.01 by 
two-way ANOVA. (C and D) Adenoviral knockdown of the expression of XBP1 had 
no effect on glucagon-stimulated expression of G6pase and Pepck. Primary 
hepatocytes were infected with the control (CON) or XBP1 shRNA adenoviruses for 
72 hours. (C) The mRNA abundance of sXBP1 and tXBP1 was analyzed for infected 
cells without treatment, and the expression of Erdj4, a XBP1 target gene, was 
assessed for cells upon treatment with 1 μM thapsigargin for 1 hour by quantitative 
real-time RT-PCR. (D) The mRNA abundance of G6pase and Pepck was determined 
for cells treated with PBS or 100 nM glucagon for 4 hours by quantitative real-time 
RT-PCR. The mRNA expression of actin was used as an internal control. **P < 0.01 
and ***P < 0.001 versus shCON by t-test. All data are shown as the mean ± SEM 
(n=3 independent experiments). 
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Fig. S9. Effect of acute versus chronic exposure to glucagon on XBP1 mRNA 
splicing and the expression of gluconeogenic genes. Primary hepatocytes were 
treated with 100 nM glucagon for 4 or 16 hours. The medium was changed every 4 
hours to keep the glucagon activity during the 16-hour treatment. (A) The ratios of 
spliced (s) to total (t) XBP1 mRNA and (B) the mRNA abundance of G6pase and 
Pepck were determined by real-time RT-PCR analysis, using actin as an internal 
control. Results were normalized to the value at 0 min. Data are shown as the mean ± 
SEM (n=3 independent experiments). **P < 0.01 and ***P < 0.001 versus 0 time 
point by one-way ANOVA. 
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Fig. S10. (A) Elevated blood glucose and glucagon levels in db/db mice. After a 
6-hour fast, blood samples were collected from male C57BL/6J db/db mice or their 
wild-type (+/+) littermates and supplemented with glucagon inhibitor aprotonin. 
Glucose concentrations were measured by a glucometer and glucagon levels 
determined by RIA. Data are presented as the mean ± SEM (n=5/genotype). *P < 0.05, 
**P < 0.01 versus wild-type littermates by t-test. (B) Increased phosphorylation of 
hepatic IRE1α is PKA-dependent in db/db mice. Male db/db mice were treated for 
2 hours with PBS or H89 (5 mg/kg body weight) through i.p. injection. 
Phosphorylation of liver IRE1α and eIF2α was analyzed by immunoblotting as 
shown in Fig. 4A. Relative p-IRE1α/IRE1α and p-eIF2α/eIF2α ratios were 
determined from densitometric quantifications of the immunoblots and are shown as 
the mean ± SEM (n=3/group). **P < 0.01 by one-way ANOVA. 
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Fig. S11. Effects of hepatic IRE1α suppression on XBP1 mRNA splicing, body 
weight and the hyperglycemic response to glucagon in db/db mice. Male db/db 
mice were infected with adenoviruses Ad-shCON or Ad-shIRE1α-#2 through tail vein 
injection (n=5/group). (A) Immunoblotting analysis of liver IRE1α from individual 
mice at 21 days post infection. (B) The spliced (s) and total (t) XBP1 mRNA in the 
liver was determined by real time RT-PCR after a 6-hour fast. (C) Knockdown of 
hepatic IRE1α expression did not affect body weight. Body weight was determined 
for db/db mice infected for 21 days. (D) Hepatic IRE1α knockdown reduced 
glucagon-induced elevations of blood glucose. Glucagon challenge test was 
performed in mice infected for 11 days through administration i.p. of 150 μg/kg 
glucagon after a 15-hour fast. Blood glucose was measured at the indicated time 
points. *P < 0.05 and **P < 0.01 by two-way ANOVA. The bar graph indicates the 
areas under the curve (AUC) for the glucose levels during the test, shown as the mean 
± SEM (n = 5/group). *P < 0.05 by t-test. 
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Fig. S12. Schematic model for the PKA-dependent mechanism that links the 
IRE1α branch of the UPR with the GPCR signaling pathway. Metabolic signals 
such as GPCR agonists (glucagon or epinephrine) stimulates PKA, which in turn 
directly phosphorylates IRE1α at Ser724, a critical regulatory site within the activation 
segment of IRE1α. Phosphorylation activation of IRE1α as such plays an important 
role in glucagon-regulated metabolic programs in the liver, e.g. promoting the 
expression of gluconeogenic genes in an XBP1-independent fashion. Under 
obesity-associated metabolic stress, dysregulation of PKA activity, in addition to 
aberrant ER lipid and calcium metabolism, contributes to increased phosphorylation 
of hepatic IREα, which constitutes a critical component in perturbation of glucose 
homeostasis. Thus, IREα also integrates metabolic signals through phosphorylation 
by PKA of the GPCR pathway in liver cells and is implicated in the control of glucose 
metabolism. 
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