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1 SUPPLEMENTARY MATERIALS
1.1 FDM Properties and Proofs

Lemma: The FDM is between 0 and 1
Proof: Let A and B be the two samples. For a given gene, assume
that there are n divergence positions in the ACT-Graphs. Let V A

i

and V B
i be the flow vectors for divergence node i for samples A and

B respectively. Let V A
i = [e(a, i)1, ..., e(a, i)m].

Let FDi(A,B) be the flow difference at the divergence node i:

FDi(A,B) =

m∑
j=1

|e(a, i)j − e(b, i)j |

Since absolute value is non-negative:

FDi(A,B) =

m∑
j=1

|e(a, i)j − e(b, i)j | ≥ 0 (1)

Mathematically,

|e(a, i)j − e(b, i)j | ≤ |(e(a, i)j)|+ |(e(b, i)j)|

Thus,

m∑
j=1

|e(a, i)j − e(b, i)j | ≤
m∑

j=1

|e(a, i)j |+
m∑

j=1

|e(b, i)j |

By definition,

m∑
j=1

e(a, i)j = 1;

m∑
j=1

e(b, i)j = 1.

Also, since e(a, i)j and e(b, i)j are positive numbers,

FDi(A,B) ≤ 1 + 1 = 2 (2)

By definition,

FDM(A,B) =
1

2n

n∑
i=1

(FDi(A,B))

From equations 1 and 2,

0 ≤ FDi(A,B) ≤ 2

1

2n
· n · 0 ≤ 1

2n
·

n∑
i=1

(FDi(A,B) ≤ 1

2n
· n · 2

0 ≤ FDM(A,B) ≤ 1

The FDM always lies between 0 and 1 irrespective of gene’s size or
number of constituent transcripts.

Lemma: FDM is a metric
Proof:

1. FDM(A,B) ≥ 0

2. FDM(A,B) = 0 if and only if A = B
Proof: FDM will be zero if and only if FDi = 0 at all the
i divergence nodes. FDi = 0 if and only if percent flow at
each of the paths is exactly same. Please note that FDM will
also be zero if one ACT-Graph has all the edge weights of the
other ACT-Graph scaled up by the same factor. In that case
also, the ACT-Graphs would represent the same transcripts
with same relative abundances, though with different overall
gene expression.

3. FDM(A,B) = FDM(B,A)
Proof: FDM is sum of absolute differences, and absolute
difference is commutative.

4. FDM(A,B) ≤ FDM(A,C) + FDM(B,C)
Proof: For a divergence node i, let V A

i be flow vector for A,
V B
i be flow vector for B and V C

i be flow vector for C. Let
V A
i = [e(a, i)1, ..., e(a, i)m]. V B

i and V C
i also are similarly

defined.

FDi(A,B) =

m∑
j

|e(a, i)j − e(b, i)j |

Mathematically,

|e(a, i)j − e(b, i)j | ≤ |e(a, i)j − e(c, i)j |+|e(b, i)j − e(c, i)j |

Thus

FDi(A,B) ≤ FDi(A,C) + FDi(B,C).

Summation over all divergence nodes gives

FDM(A,B) ≤ FDM(A,C) + FDM(B,C)

Here, we assume that all the three ACT-Graph have same nodes
and edges.

1.2 Simulated Data Results
Secns 3.1.1 and 3.1.3 in the main document describe two different
experiments with different purposes. The synthetic data for the
experiments was generated from a large space of potential inputs
that can be tested for differential transcription. An input consists of
a gene (selected from genes annotated with two or more transcript
isoforms), a gene expression level (selected from an empirical
distribution of gene expression levels) for each sample, and a
relative abundance profile for the isoforms for each sample (also
selected from an empirical distribution of profiles).

For the two experiments, different conditions determined the
number of inputs (i.e. genes) to be tested. In the first experiment, the
3 intervals of coverage had different numbers of genes falling into
each interval, and the goal was to have the same number of genes
in each interval for fairness of comparison. Thus the number of
genes in each interval was limited to 1500, approximately the fewest
number in any interval. The total number of reads in this experiment
was 100 million. Since these reads were generated in one run and the
genes were separated according to interval of coverage, it is difficult
to tell how many reads pertain to each of the three categories.

In the second experiment the goal was to limit the space of
inputs to cover 3 orders of magnitude in gene expression levels
(again, empirically determined). This resulted in 2100 genes for this
experiment, and about 2.75 million 100 bp reads in each sample.
The distribution of coverage values and JSD* values in the set of
inputs is shown in 1 (c) and (d).
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Fig. 1. The rDiff (Poisson) method using gene annotations is compared with FDM on the detection of differential transcription on our synthetic dataset with
2100 genes. For genes with JSD* > 0.28 and log(coverage) > 0.85, rDiff (Poisson) identified differential transcription between 34% of the genes. The
histograms (c,d) are the distributions in our dataset of average coverage of the genes and JSD* respectively.

1.3 Biological data results
1.3.1 Examples of genes which are differentially transcribed in
MCF7 and SUM102 Figures 2, 3 and 4 provide examples of
differential transcription between two groups of samples. In each
of the figures, the first four samples are from MCF7 cancer cell line
MCF7 and the next four are from cancer cell line SUM102.

1.3.2 Example of gene where within-group differential transcription
is also significant We observed that some genes have variation
within replicates. The replicates statistical test filtered off such
genes. Figure 5 gives example of one such gene.

1.4 qRT-PCR validation
RNA was isolated from the cell lines using standard Trizol protocol
(Invitrogen, Inc.). Genomic DNA was isolated using PureGene
DNA isolation kit (Qiagen, Inc). cDNA was made from the RNA

with SuperScript cDNA synthesis kit (Invitrogen, Inc.) and oligo-
dT primers (Bioneer, Inc). PCR was performed using reagents from
New England Biolabs on an Eppendorf epGradient Mastercycler;
qRT-PCR was performed with Bio-Rad Syber Green reagents on a
C1000 five color thermocycler (Tm 54-55 C).

CD46 forward and reverse primers:
TACCTAACTGATGAGACCCACAGA and
AAGCAAACCTTTCTCTCATCTCTC.

NPC2 forward and reverse primers:
TAACCCTAGGGCAAGTTATCAGAC and
GGTTGAAGGAAAGAAGAGAGAGTG.

Sequencing of PCR products from cDNA and DNA was
performed at the UNC Genomic Analysis Facility. Sequence
cleanup was performed using 4peaks software
(http://www.mekentosj.com/).
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Fig. 2. NPC2: MCF7 shows evidence of first intron retention and second
exon skipping. The first exon retention was confirmed by qRT-PCR
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Fig. 3. ZNF408: MCF7 shows evidence of a transcript which doesn’t occur
in SUM102. This transcript uses the splice occuring only in MCF7. qRT-
PCR could not confirm this result. We directly resequenced cDNA derived
from the mRNA from both cell lines and genomic DNA from both cell lines.
The region of interest (chr11:46724721-46724734) has a high number of
mutations in MCF7 and SUM102 compared to the reference genome, a
common observation for cell lines that have been propagated extensively.
This caused errors in read alignments. FDM method uses read alignments as
input. Incorrect input caused FDM method to give incorrect results
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Fig. 4. MAT2B: First exon is different in SUM102 transcripts
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Fig. 5. TPD52: The middle exon is skipped in different ratios within MCF7
replicates and within SUM102 replicates also. FDM replicates statistical test
rejected this gene as significant
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Table 1. Parameters for FDM Runs

FDM Run num partitions num permutations num output genes

Run 1 30 1000 1010
Run 2 30 1000 999
Run 3 30 2000 998
Run 4 30 2000 1007
Run 5 30 4000 1004
Run 6 30 4000 1001
Run 7 60 1000 1013
Run 8 120 1000 999

Table 2. Results by varying number of partitions

Run 1 (1010) Run 7 (1013) Run 8 (999)

Run 1 (1010) 963 (95.3%) 962 (95.2%)
Run 7 (1013) 963 (95.0%) 957 (94.5%)
Run 8 (999) 962 (96.3%) 957 (95.8%)

Each item in the cross tab shows the number of genes, and the percentage
of genes common between the runs indicated by row and column headers.
The parameters used in all the runs are given in Table 1.

Table 3. Results by varying number of permutations

Run 1 (1010) Run 3 (998) Run 5 (1004)

Run 1 (1010) 956 (94.7%) 958 (94.9%)
Run 3 (998) 956 (95.8%) 957 (95.9%)
Run 5 (1004) 958 (95.4%) 957 (95.3%)

Each item in the cross tab shows the number of genes, and the percentage
of genes common between the runs indicated by row and column
headers.The parameters used in all the runs are given in Table 1.

Table 4. Results by not varying any parameters

First Run Second Run Common Genes

Run 1 (1010) Run 2 (999) 955 (94.6%)
Run 3 (998) Run 4 (1007) 955 (95.7%)
Run 5 (1004) Run 6 (1001) 952 (94.8%)

Each item in the cross tab shows the number of genes, and the
percentage of genes common between the runs indicated by
row and column headers.The parameters used in all the runs
are given in Table 1.

1.5 Results by varying parameters for statistical test
We ran the FDM method on synthetic data for two tissues each
having four replicates. All the samples had same set of 2600
genes. The FDM method was run multiple times by varying the
two parameters - number of partitions and number of permutations.
Table 1 describes the parameters used in the runs.

Table 2 shows that increasing the number of partitions beyond
30 had little effect on the results. The number of common genes
in all pairs of runs with different number of partitions was around
95%. Since, the p-value was set to 5%, we expect to have 5%
false positives in each run. Similarly, table 3 shows that increasing
permutationsbeyond 1000 has little effect on the results. Running
the FDM without varyingparameters gives similar results as shown
in table 4.

1.6 FDM Statistical Test
The process of creating the FDM null distribution is illustrated in
figure 6. Assume that there are N aligned reads in both the sample
datasets. Create ACT-Graphs for the two samples such that nodes
and edges are identical. The reads are partitioned into p equal-
sized groups in both samples, and an ACT-Graph is created from
the alignments of each group of N/p reads. Thus for each sample
we have p ACT-Graphs. The 2p ACT-Graphs are randomly shuffled
into two groups of p partitions each and a composite ACT-Graph
for each group is created by simply adding the edge weights of the
p ACT-Graphs in the group. Now the FDM is computed between
ACT-Graphs of these two groups. This gives a value of the random
variable which follows the null FDM distribution. By shuffling
partitions a sufficient number of times, we get a null distribution
of the FDM. In this fashion, the FDM null distribution is created for
each gene, and the p-value for the specific partition that corresponds
to the reads of the two samples can be computed.
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Fig. 6. FDM Statistical Test for a pair: The aligned reads for a gene are divided in p equal-sized partitions for both the samples. ACT-Graphs are created for
each of the 2p partition that are randomly shuffled to make two groups of p partitions. The ACT-Graphs of each group is created by directly adding the edge
weights of p ACT-Graphs. The FDM is computed for two ACT-Graphs. The last two steps are performed N times to get a null distribution for FDM for the
gene. If the FDM of the original samples is significant over the null distribution, the gene as significant differential transcription in the pair. This process is
performed for all the genes to find all the genes with significant differential transcription in the pair.
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