Supporting Information for:

Does Compound I vary significantly between isoforms of Cytochrome P450?

Richard Lonsdale, Julianna Oláh¹, Adrian J. Mulholland* and Jeremy N. Harvey*

Centre for Computational Chemistry, School of Chemistry, University of Bristol,

Cantock's Close, Bristol, BS8 1TS, UK.

Corresponding authors: Jeremy.Harvey@bris.ac.uk; Adrian.Mulholland@bris.ac.uk;

¹Present address: Materials Structure and Modeling Research Group of the Hungarian Academy of Sciences, Budapest University of Technology and Economics, P.O. Box 91, 1521 Budapest, Hungary

Contents

Part A -	Details of molecular dynamics (MD) simulations
Part B -	Absolute energies of all computed species
Part C -	Mulliken spin densities for QM/MM optimized snapshots of Compound I
Part D -	Mulliken charges for QM/MM optimized snapshots of Compound I
Part E -	Key bond lengths and hydrogen bond distances

Full reference for ref. 48:

MacKerell, A. D.; Bashford, D.; Bellott, M.; Dunbrack, R. L.; Evanseck, J. D.; Field, M. J.; Fischer, S.; Gao, J.; Guo, H.; Ha, S.; Joseph-McCarthy, D.; Kuchnir, L.; Kuczera, K.; Lau, F. T. K.; Mattos, C.; Michnick, S.; Ngo, T.; Nguyen, D. T.; Prodhom, B.; Reiher, W. E.; Roux, B.; Schlenkrich, M.; Smith, J. C.; Stote, R.; Straub, J.; Watanabe, M.; Wiorkiewicz-Kuczera, J.; Yin, D.; Karplus, M. *J. Phys. Chem. B* **1998**, *102*, 3586.

Part A - Details of molecular dynamics simulations.

Hydrogen atoms were added to the crystal structures used, according to standard pK_a values, using the HBUILD module of the CHARMM program, version 30b2,¹ and their positions then optimized. The CHARMM27 force field was used throughout.² Previous calculations on P450_{cam} have revealed the necessity to protonate the residue Asp297 at the OD2 oxygen.³ This proton forms a hydrogen bond with the O2A atom of a haem propionate, the absence of which results in structures that are inconsistent with experiment after MD simulation. Hence in this work, models of P450_{cam} were used in which the O2D oxygen of Asp297 was protonated. Histidine tautomers were assigned based on their local hydrogen-bonding environment. Each system was then truncated to a sphere of 25 Å centred on the haem iron. Charged residues (Arg, Asp, Lys, Glu) located 20 Å or further from the centre of each system were neutralized for MD simulation in order to avoid any unrealistic effects due to protein truncation and insufficient screening of charges by the solvent.

Unlike propene, no topology or force field parameters exist for warfarin and dextromethorphan in the standard CHARMM force field. The same parameters for dextromethorphan were used here as in previous work, and are shown below.⁴ Charges were based on electrostatic potential (ESP) charges obtained from gas-phase QM calculations of warfarin at the B3LYP/LACVP** level of theory. Angle and bond parameters were derived from these QM calculations together with chemically similar bonds and angles available in the CHARMM force field. The topology and parameters for warfarin and dextromethorphan are detailed below. Modified haem parameters were used to model Compound I, as used in previous work, these are shown below.⁵

The systems were each solvated in a 25 Å sphere of pre-equilibrated water molecules, represented by the TIP3P model.⁶ All overlapping water molecules, i.e. those whose oxygen atom was 2.6 Å or closer to existing heavy atoms were deleted. The positions of the added water molecules were then optimized using 1000 steps of steepest descent (SD) followed by 500 steps of conjugate gradient (CG) minimization. A 13 Å cut-off for non-bonded interactions was used in all molecular mechanics energy minimizations and MD simulations. Further minimizations were carried out on both the added and crystallographic water molecules using 600 steps of SD and 1500 steps using the Adopted Basis Newton-Raphson (ABNR) algorithm. The water was

then heated from 0 to 300 K over 1 ps and then equilibrated for 25 ps in stochastic boundary molecular dynamics (SBMD) simulations where water molecules within 20 Å of the haem iron were treated with full Newtonian dynamics and the remainder treated with Langevin dynamics. The water atoms were kept within 25 Å of the haem iron by the application of a deformable boundary potential. Each whole system was then minimized and equilibrated for 100 ps using SBMD. Friction coefficients used in the Langevin dynamics were 62 ps^{-1} for water oxygen atoms and 250 ps^{-1} for protein heavy atoms. Protein atoms more than 20 Å from the haem iron were harmonically restrained to their initial positions with force constants increasing with distance from the centre of the system. The energy of each system was then minimized with 500 steps of SD and 1750 steps of ABNR. These optimized geometries were then used as starting points for 5 ns SBMD simulations following the same protocol as above. A time step of 1 fs was used, which was chosen to be small compared to the highest frequency motion, the C-H bond, which occurs on the 10 fs timescale. The SHAKE algorithm was used to constrain the bonds to hydrogen atoms and reduce the computational expense.⁷

Modified heme MM parameters for Compound I:

The heme group parameters contained in the CHARMM27 force field do not contain any axial ligands to the iron center. These parameters were modified to include an oxygen atom and a thiolate ligand, to represent the Compound I species in cytochrome P450. The atomic charges on the α -, β - and *meso*-carbons, as well as on the pyrrole nitrogens were adjusted to account for the different charge distribution in Compound I, as detailed previously (Bathelt et al., *J. Am. Chem. Soc.*, **2005**, *127*, 12900).

Additional bond and angle parameters were derived from the QM optimized Compound I model and from analogy to chemically similar bond lengths and angles available in the CHARMM27 force field.

				HB2
				(HA)-(CA)-CBSG
ATOM	СВ	CT2-0.10	!	
ATOM	HB1	HA 0.09	!	HB2 (Fe)
ATOM	HB2	HA 0.09	!	O=C
ATOM	SG	S -0.44	!	

OM FE 350.000 1.6300 angles: k 🕠 FE S CT2 38.8 113.0 OM FE NPH 50.0 90.0 S FE NPH 5.000 90.0000

bo

bonds: kB

bo from QM calculation; $k_{\text{B}} \text{ increased from value in the original}$ CHARMM set to account for higher bond order of oxygen in Compound I

(ofrom QM calculation; k\from HS S CT2 parameters (ofrom original CHARMM parameter set klincreased to account for tighter binding of oxygen in Compound I compared to O2 ligand from original OM-FE-NPH CHARMM parameters

MM parameters for warfarin:

RESI	WARF	0.000
GROUI	2	
ATOM	C1 C	0.603 !
ATOM	C2 CA	-0.382 !
ATOM	C3 CA	0.001 !
ATOM	C4 CA	-0.228 !
ATOM	C5 CA	-0.021 !
ATOM	C6 CA	-0.337 !
ATOM	C8 C	0.597 !
ATOM	C10 CA	-0.636 !
ATOM	C12 C	0 911 1
ATOM	01 05	-0 573 !
ATOM	02 OH1	-0 666 !
ATOM	03 0 -	0 559 1
ATOM	C1/ CT	0.000 . 1 0 350 I
ATOM		2^{-0}
ATOM	C10 C1	0 658 1
ATOM	CIU C	
ATOM		-0.427 :
ATOM	04 0 - 0	0.540
ATOM	CY CA	-0.146 !
ATOM	CII CA	0.144 !
ATOM	CI3 CA	0.225 !
ATOM	CI5 CA	. 0.083 !
ATOM	CI/CA	0.144 !
ATOM	C19 CA	0.117 !
ATOM	H1 HP	0.083 !
ATOM	H2 HP	0.153 !
ATOM	H3 HP	0.130 !
ATOM	H4 HP	0.190 !
ATOM	H8 H	0.489 !
ATOM	H10 HA	0.123
ATOM	H12 HA	0.123
ATOM	H14 HA	0.123
ATOM	H5 HB	0.110
ATOM	H6 HB	0.110
ATOM	H7 HB	0.090
ATOM	H9 HP	0.117
ATOM	H11 HP	0.110
ATOM	H13 HP	0.150
ATOM	H15 HP	0.115
ATOM	H16 HP	0.116
BOND	C1 C2	
BOND	C1 C6	
BOND	C1 01	
BOND	C2 C3	
BOND	C2 C8	
BOND	C3 C4	
BOND	C3 H1	
BOND	C4 C5	
BOND	C4 H2	
BOND	C5 C6	
BOND	С5 НЗ	
BOND	C6 H4	
BOND	C8 C10	
BOND	C8 02	
BOND		2
BOND		4
BUND	C12 O1	Т
BUND	02 U0	
		6
	C14 UI	
	C14 H/	5
DOND		0
ROND	CI6 CI	Ö
ROND	C16 H5	
ROND	CI6 H6	

H2 H3	
\ C4 - C5 / - \ H1 - C3 C6 - \ C2 - C1	Н4
H8 - O2 - C8 O1	03
/ H5 / H7 - C14 C16 C18 H6 04	H12 C7 - H10 H14
$\begin{array}{c} & & \\$	

BOND	C18	C7								
BOND	C18	04								
DOND	C7 1	J10								
DOND		110								
DOND		112 114								
BOND		114								
BOND	09 0	JII.								
BOND	C9 (219								
BOND	C9 I	19								
BOND	C11	C13								
BOND	C11	H11								
BOND	C13	C15								
BOND	C13	H13								
BOND	C15	C17								
BOND	C17	C19								
BOND	C17	H15								
BOND	C19	H16								
IMPH	C6 (C1 C2	2 C3							
IMPH	C2 (C1 C6	6 C5							
IMPH	C1 (C2 C3	3 C 4							
IMPH	C2 (C3 C4	4 C5							
IMPH	C3 (C4 C5	5 C6							
IMPH	C4 (C5 C6	5 C1							
IMPH	C19	C9 (C11 (213						
тмрн	C11	C9 (-19 (217						
TMPH	C9 (111 (13	15						
TMPH	C11	C13	C15	C17						
TMPH	C13	C15	C17	C19						
TMDH	C15	C17	C19	C9						
TMPH	C1	72 CI	5 01	0.5						
TMDH	C_{2}	$\frac{1}{2}$								
TMDH	C3 ($\frac{1}{2}$	лосо 1 н1							
TMDH	C_{4}		т III 5 H2							
TMDH			5 H2							
TMDU		1	5 II.5 5 II.4							
TMDH		$\frac{1}{2}$	$2 \ C1($	٦						
TMDU	C10	C12		 						
TMDU	C10	C12		22						
тмри	C12			16						
TMDU	CIO	11	74 C. 710 T	10						
TMDI	C9 (י עדכ ד כור	שב 111						
TMPH	CII CI2	C9 (
TMDI	CIS	CII CI2	C15 C17	п13 С14						
IMPH	C13	CIS	C1 /							
IMPH	CI/	CID	CI9 717 T	HLD T16						
IMPH	C19 - C1			1 40	101 05	0 20	117 (10	1 / 1	
			C3	1 20	121.00	170.20) 117 (9Z 20	1 41	
			C3 C0	1 40	120.83	170 25	E ⊥⊥/•: / 117 -	9乙 1つ	1 41	
		+ 01		1.40	121.05	170 7	1 1 1 7 .	20	1 20	
		*C1	COL	1 41	117 02	-179.7	1 1 1 1 2 4 4 4 4 4 4 4 4 4	. J Z	1 15	
		^CZ		1 41	117 02	-1/9./	1 1 2 4 1	.90 70	1 20	
			C4	1.41	124 05	170 3	120.	12	1 20	
			C4	1.40	124.95	-179.3	120	• / ∠	1.09	
		+ 0 2	HL II1	1.41	11/.92	-1/9.2	110	.94	1 00	
		^C3	ПI СГ	1.41	120.72	1/9.01	. 110	04 11	1 41	
		C4	C5	1.41	120.72	-0.12	120.1	L	1.41	
IC H		C4	UD	1.09	120.34	170.45	120.		1.41	
		C4	HZ	1.41	120.72	-1/9.5	1 2 0	.80	1.00	
		^C4	HZ QC	1.39	120.11	1/9.84	1 1 2 0 . (13	1.08	
TC CS		C5	C6	1.39	120.11	-0.15	120.2	2 Y	1.39	
IC H2	2C4	C5	C6	1.08	120.03	179.69	120.2	29	1.39	
TC C3	s C4	C5	НЗ	1.39	120.11	-1/9.9	119	.94	1.08	
TC C4	± C6	*05	НЗ	1.41	120.29	1/9.82	119.	//	1.08	
LC C4	± C5	C6	Cl	1.41	120.29	0.16	119.1		1.40	
IC H3	3 C5	C6	CL	1.08	119.77	179.98	5 119 .]		1.40	
IC C4	± C5	C6	H4	1.41	120.29	-179.7	0 122	.19	1.08	
1C C1	L C5	*C6	H4	1.40	119.11	-179.8	6 122	.19	1.08	
TC C2	C6	C1	C2	1.39	119.11	0.10	121.8	35	1.41	
IC H4	4 C6	C1	C2	1.08	118.70	1/9.97	121.8	35	1.41	
IC CS	5 C6	C1	01	1.39	119.11	-179.6	1 117	.32	1.38	
	L C 2	C 8	C10	1 4	1 117 1	3 0 6	5 122	76	1 37	

IC C3 C2 C8 C10 1.41 124.95 -179.64 122.76 1.37 C8 O2 1.41 117.13 -179.41 119.99 TC C1 C2 1.38 IC C2 C10 *C8 O2 1.45 122.76 -179.94 117.25 1.38 1.45 122.76 1.45 119.43 1.38 117.25 -178.50 119.43 C10 C12 1.45 TC C2 C8 IC 02 C8 C10 C12 1.45 1.45 122.76 179.42 120.29 IC C2 C8 C10 C14 1.53 IC C8 C12 *C10 C14 1.37 119.43 -177.98 120.25 1.53 C12 O1 1.37 119.43 -3.18 117.15 IC C8 C10 1.43 IC C14 C10 C12 O1 1.53 120.25 178.85 117.15 1.43 1.37 119.43 177.26 127.29 IC C8 C10 C12 O3 1.23 IC C10 O1 *C12 O3 1.45 117.15 179.62 115.56 1.23 IC C10 C12 O1 C1 1.45 117.15 2.99 122.62 1.38 1.23 115.56 -177.39 122.62 1.43 122.62 -0.94 120.83 IC 03 C12 01 C1 1.38 IC C12 01 C1 C2 1.41 1.43 122.62 178.78 117.32 IC C12 O1 C1 C6 1.40 1.55 IC C8 C10 C14 C16 1.37 120.29 138.16 113.48 IC C12 C10 C14 C16 1.45 120.25 -43.88 113.48 1.55 1.37 120.29 22.25 106.13 1.37 120.29 -93.41 111.87 IC C8 C10 C14 H7 1.09 C14 C15 IC C8 C10 1.54 IC C10 C14 C16 C18 1.53 113.48 -157.22 112.40 1.52 IC H7 C14 C16 C18 1.09 105.92 -41.18 112.40 1.52 1.54 112.37 74.61 112.40 1.53 113.48 78.28 111.70 IC C15 C14 C16 C18 1.52 IC C10 C14 C16 H5 1.09 1.53 113.48 -38.34 109.85 IC C10 C14 C16 H6 1.10 IC C14 C16 C18 C7 1.55 112.40 -160.12 116.56 1.51 1.09 110.23 -34.81 116.56 1.10 106.89 79.28 116.56 1.55 112.40 20.35 122.10 1.51 C18 C7 IC H5 C16 IC H6 C16 C18 C7 1.51 IC C14 C16 C18 O4 1.24 IC C16 C7 *C18 O4 1.52 116.56 179.53 121.34 1.24 IC C16 C18 C7 H10 1.52 116.56 -167.49 110.12 1.09 1.24 121.34 12.04 110.12 1.52 116.56 -45.31 111.25 IC 04 C18 C7 H10 1.09 IC C16 C18 C7 H12 1.10 C7 H14 1.52 116.56 72.84 109.41 IC C16 C18 1.10 C15 C13 1.53 111.87 114.37 119.46 IC C10 C14 1.40 C15 C13 1.55 112.37 -116.61 119.46 IC C16 C14 1.40 1.09 106.41 -1.12 119.46 1.53 111.87 -65.43 121.83 IC H7 C14 C15 C13 1.40 IC C10 C14 C15 C17 1.41 1.54 119.46 179.81 118.70 IC C14 C13 *C15 C17 1.41 IC C14 C15 C13 C11 1.54 119.46 -179.71 120.79 1.40 0.10 120.79 IC C17 C15 C13 C11 1.41 118.70 1.40 IC C14 C15 C13 H13 1.54 119.46 0.91 119.11 1.09 1.40 120.79 -179.38 119.11 IC C11 C15 *C13 H13 1.09 1.40 120.79 0.05 120.16 IC C15 C13 C11 C9 1.40 C11 C9 1.09 120.10 179.43 120.16 IC H13 C13 1.40 IC C15 C13 C11 H11 1.40 120.79 -179.85 119.69 1.09 1.40 120.16 -179.90 119.69 1.40 120.16 -0.13 119.50 IC C9 C13 *C11 H11 1.09 1.40 IC C13 C11 C9 C19 IC H11 C11 C9 C19 1.09 120.16 179.77 119.50 1.40 С9 Н9 1.40 120.16 179.90 120.26 IC C13 C11 1.09 IC C11 C19 *C9 H9 1.40 119.50 179.97 120.24 1.09 1.40 119.50 IC C11 C9 C19 C17 0.05 120.39 1.40 IC H9 C9 C19 C17 1.09 120.24 -179.97 120.39 1.40 IC C11 C9 C19 H16 1.09 1.40 119.50 -179.96 119.97 1.40 120.39 -179.99 119.64 1.40 120.39 0.10 120.47 IC C9 C17 *C19 H16 1.09 IC C9 C19 C17 C15 1.41 IC H16 C19 C17 C15 1.09 119.64 -179.89 120.47 1.41 IC C9 C19 C17 H15 1.40 120.39 179.67 119.77 1.09 IC C15 C19 *C17 H15 1.09 1.41 120.47 179.57 119.77 1.40 120.47 179.63 121.83 1.09 119.76 0.06 121.83 IC C19 C17 C15 C14 1.54 C15 C14 IC H15 C17 1.54 1.40 1.40 120.47 -0.18 118.70 IC C19 C17 C15 C13 1.45 119.99 3.06 113.37 0.97 IC C2 C8 O2 H8 IC C10 C8 O2 H8 1.37 117.25 -176.99 113.37 0.97

BONDS

!V(bond) = Kb(b - b0)**2
!
!Kb: kcal/mole/A**2

!b0: A 1 b0 !atom type Kb 1.398 ! b0 from Jag. Kb from CPB C 1.381 ! b0 from Jag. Kb from OS CT3 1.380 ! b0 from Jag. Kb from OS CT3 450.000 С CA С OS 340.000 C OH1 340.000 CA OS 340.000 1.381 ! b0 from Jag. Kb from OS CT3 CA O 340.000 1.235 ! b0 from Jag. Kb from OS CT3 ANGLES !V(angle) = Ktheta(Theta - Theta0)**2 !Ktheta: kcal/mole/rad**2 !Theta0: degrees !atom types Ktheta Theta0 CA С CA 40.0 122.3 ! ALL ANGLES FROM JAGUAR 118.4 CA С OS 55.0 С CA CA 40.0 122.2 С CA С 40.0 119.5 С CA ΗP 30.0 118.7 CA С OH1 55.0 118.5 С CA CT1 45.8 120.3 С CA 0 80.0 127.3 С 90.0 115.6 OS 0 С OS С 40.0 122.6 55.0 С 113.3 OH1 Н 45.8 CA CT1 CA 111.9 CA CT1 CT2 51.8 113.5 CA CT1 HB 50.0 106.1 CT1 CT2 С 52.0 112,4 CT1 CT2 50.0 110.8 ΗB CT2 С CT3 40.0 116.6 CA CA OS 55.0 118.0 CA OS CA 40.0 122.3 OS CA С 55.0 116.8 OS CA 0 50.0 116.6 С CA 0 40.0 126.6 CA CT1 С 45.8 122.3 CA CA 0 40.0 114.5 С CT1 CA 52.0 113.6 С CA 0 40.0 118.2 С OH1 50.0 105.4 0 OH1 С CT3 55.0 112.0 CT2 С OH1 55.0 106.9 DIHEDRALS T !V(dihedral) = Kchi(1 + cos(n(chi) - delta)) !Kchi: kcal/mole !n: multiplicity !delta: degrees Kchi delta !atom types n CA ΗP С CA 4.2 1 180.00 ! from HP CA CA CA from HP CA CA CA from H OH1 CA CA ΗP CA С CA 4.2 1 180.00 ! С 0.99 180.00 1 CA OH1 Н 1 ! from O C CT1 HB OS С CA ΗP 0.00 1 0.00 3 CT2 С CT3 ΗA 0.04 0.00 ! from HA CT3 CT2 CA 0.00 ! from HB CT2 C CT3 CT3 С CT2 ΗB 0.00 1 С CA CA CA 3.10 2 180.00 ! from CA CA CA CA CA from CA CA CA CA С 3.10 2 180.00 С CA 1 С CA С OH1 3.10 2 180.00 ! from CA CA CA OH1 С CA С OS 3.10 2 180.00 ! from CA CA CA CA ! from CA CA CA OC ! from CA CA CA CA 2 С OS С 0 3.10 180.00 2 CA 3.10 180.00 С CA CA

CA CA C C OS OH1 O CT1	C CA CA CA CA C C C C	CA C C CA CA CA	CT1 OS OH1 OS O CT1 CT1 CT1 CT3	3.10 3.10 3.10 3.10 3.10 3.10 3.10 3.10	2 2 2 2 2 2 2 2 2 2 2 2 2	180.00 180.00 180.00 180.00 180.00 180.00 180.00 180.00		from CA CA CA CA from CA CA CA OH1 from CA CA CA OH1
CT1 OS CA O CT2 HB OH1 H CA CA CPH	CT2 CA C C C C C C C C C C C C C C C C C C	C CA CT1 OH1 OH1 CT3 C CT3 C OS C	O HP HB H H OH1 HA CT3 CA CT1	$\begin{array}{c} 3.10\\ 3.10\\ 4.20\\ 0.04\\ 2.50\\ 1.30\\ 4.20\\ 4.20\\ 1.33\\ 3.10\\ 0.20\\ \end{array}$	2 2 3 2 1 2 2 1 2 1 2 1	$180.00 \\ 180.00 \\ 0.00 \\ 180.00 \\ 0.00 \\ 180.00 \\ 180.00 \\ 180.00 \\ 0.00 \\ 180.00 \\ 0.00 \\ 180.00 \\ 0.00 $		from CA CA CA OH1 from CC CA CA HP from CA CT1 CT2 HA from O C NH1 H from H OH1 CT2 CT2 from OH1 CA CA HP from OH1 CA CA HP from H OH1 CT1 CT3 from CA CA CA CA from CT1 CT2 CPH1
CA CA CA OS OS CA CA CA CA CA CA CA CA CA CT1 C	CA CA OS CA CA CA C C C C C C C C C C C C C C C	O CA CA CA CA CT1 CT1 CT1 CT1 C C C C C C C C C C C C	C O CA CA CT1 O CT2 CA CT2 OH1 CT3 CT1 OH1 C	$\begin{array}{c} 0.23 \\ 3.10 \\ 2.05 \\ 2.05 \\ 3.10 \\ 3.10 \\ 0.40 \\ 1.40 \\ 0.23 \\ 0.23 \\ 3.10 \\ 3.10 \\ 3.10 \\ 3.10 \\ 1.40 \\ 1.40 \\ 1.40 \\ 3.10 \end{array}$	2 2 2 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 1 1 2	$180.00 \\ 180.00 \\ 180.00 \\ 180.00 \\ 180.00 \\ 180.00 \\ 180.00 \\ 180.00 \\ 180.00 \\ 180.00 \\ 180.00 \\ 180.00 \\ 180.00 \\ 180.00 \\ 0.00 \\ 0.00 \\ 180.00 \\ 180.00 \\ 180.00 \\ 0.00 \\ 180.00 \\ 0.00 \\ 180.00 \\ 0.00 \\ 180.00 \\ 0.$		from CT3 CT2 CA CA from CT2 CA CA CA from X CD OS X from X CD OS X from CT2 CA CA CA from OC CA CA CA from O C CP1 CP2 from O C CT1 CT2 from CT1 CT2 CA CA from CT1 CT2 CA CA from X CD OS X from X CD OS X from O C CT1 CT2 from O C CT1 CT2 from O C CT1 CT2 from X CD OS X
IMPI ! !V(! !Kpi !ps: !not	ROPEI impro si: 1 i0: 0 te t1	R oper) ccal, degre nat t) = Kpsi /mole/ra ees che seco	(psi – psi0) d**2 nd column of	**2 nur	nbers (0)	is	ignored
: !ato CA CA CA CA CA CA CA CA CA CA CA	CA CA CA CA CA CA CA CA CA CA CA CA CA C	ypes CA CA CA CA CA CA CA CA CA CA CA CA CA	HP HP CA CA CA CC CA CC CT2 CT1 OS O CT1 O	Kpsi 20.000 96.000 96.000 96.000 96.000 96.000 96.000 96.000 96.000 96.000 96.000 96.000 96.000 120.000		psi 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	LO ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !	from HA CPB C C (heme) from HA CPB C C (heme) from CC X X CT1 from O X X C

MM parameters for dextrometorphan:

Non standard atom types:

MASS	210 OCE	15.99900 () !	aromatic ether oxygen
MASS	211 NT	14.00700 1	N !	protonated tertiary amine nitroger

MASS	212	CT0	12.01100 C ! aliphatic sp3 C bonded to 4 carbon
atoms	,		
MASS	213	NЗ	14.00700 N ! tertiary amine nitrogen
REST	DEX		+1.000 ! protonated dextromethorphan
CROUP			1.000 . proconacea aexcromeenorphan
ATOM	C1	CT2	_0 180
A TOM	C1	CT2	0.100
ATOM		CIU OTT1	0.000
ATOM	C3		-0.090
AIOM	C4	CIZ	-0.180
A'I'OM	C5	CT2	-0.180
ATOM	C6	CT2	-0.180
ATOM	С7	CT1	0.120
ATOM	C8	CT2	-0.180
ATOM	С9	CA	0.000
ATOM	C10	CA	0.000
ATOM	C11	CA	-0.110
ATOM	C12	CA	-0.110
ATOM	C13	CA	0.170
ATOM	C14	CA	-0.110
ATOM	N15	NT	0.050
A TOM	C16		0.030
ATOM	C10 C17	CIZ CT2	0.050
ATOM			-0.180
ATOM	018	OCE	-0.340
ATOM	C19	CT3	-0.100
ATOM	C20	CT3	-0.060
ATOM	H21	HA	0.090
ATOM	H22	HA	0.090
ATOM	H23	HA	0.090
ATOM	H24	HP	0.110
ATOM	H25	HA	0.090
ATOM	H26	HA	0.090
ATOM	H27	HA	0.090
ATOM	H28	НА	0.090
ATOM	H29	НА	0.090
ATOM	H30	НΔ	0.090
A TOM	ц31	цл	0.090
A TOM	112.2		0.000
ATOM	ПЭ <u></u> 1122		0.090
ATOM	поо	ПА	0.090
ATOM	H34	НА	0.090
AIOM	HJJ	HA	0.090
ATOM	H36	HP	0.110
ATOM	H3/	HP	0.110
ATOM	H38	HA	0.090
ATOM	Н39	HA	0.090
ATOM	H40	HA	0.090
ATOM	H41	HA	0.090
ATOM	H42	HA	0.090
ATOM	H43	HA	0.090
ATOM	H44	HA	0.090
ATOM	H45	HA	0.090
ATOM	H46	НC	0.320
BOND	C1	C2	С1 С6 С1 Н44 С1 Н45
BOND	C2	C2	C_{2} C_{10} C_{2} C_{17} C_{3} C_{4}
BOND	C2	C3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
BUND	C.J	П 3 0 С 1	
	C4 CC	п) У 11 /)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
ROND	CO	п4Z	υ π43 υ/ υδ υ/ ΝΙ5

BOND	С7	H26	C8	С9	C8	H34	C8	Н35
BOND	С9	C10	С9	C11	C10	C14	C11	C12
BOND	C11	Н36	C12	C13	C12	Н37	C13	C14
BOND	C13	018	C14	H24	N15	C16	N15	C20
BOND	N15	H46	C16	C17	C16	Н30	C16	Н31
BOND	C17	Н32	C17	Н33	018	C19	C19	H21
BOND	C19	Н22	C19	Н23	C20	H27	C20	Н28
BOND	C20	Н29						
TMPR	С9	C10	C11	C8				
TMPR	C10	C9	C14	C2				
TMPR	C14	C10	C13	H24				
TMPR	C13	018	C12	C14				
TMPR	C12	C13	C11	нз7				
TMPR	C11	C12	C 9	нз6				
PATCH	TNG F	TRS NO	NE LA	ST NO	NF			
IAICH	ING I	11/0 110		SI NO				
DFCT	סדס		+0		non-n	rotona	atod d	ovtromothorphan
CDOUD	DEP		+0.	000:	non-p	LOLOUS	ateu u	extrollethorphan
GROUP	01	0.000	0	100				
ATOM		CIZ CTZ	-0	.180				
ATOM	C2	CTU CTU	0	.000				
ATOM	C3	CTI	-0	.090				
ATOM	C 4	C12	-0	.180				
ATOM	C5	CT2	-0	.180				
ATOM	C6	CT2	-0	.180				
ATOM	С7	CT1	0	.120				
ATOM	C8	CT2	-0	.180				
ATOM	С9	CA	0	.000				
ATOM	C10	CA	0	.000				
ATOM	C11	CA	-0	.110				
ATOM	C12	CA	-0	.110				
ATOM	C13	CA	0	.170				
ATOM	C14	CA	-0	.110				
ATOM	N15	NЗ	-0	.630				
ATOM	C16	CT2	0	.030				
ATOM	C17	CT2	-0	.180				
ATOM	018	OCE	-0	.340				
ATOM	C19	CT3	-0	.100				
ATOM	C20	ст3	-0	.060				
ATOM	H21	НД	0	090				
ATOM	H22	НД	0	090				
ATOM	H23	НД	0	090				
ATOM	н24	HD	0	110				
ATOM ATOM	112 H 112 H	ᄓ	0	090				
ATOM ATOM	112J 1126	ПА UN	0	090				
ATOM	1120	117	0	.090				
ATOM	н <i>2 /</i>	HA	0	.090				
ATOM	ндо	HA	0	.090				
ATOM	HZ9	HA	0	.090				
ATOM	H30	HA	0	.090				
ATOM	НЗТ	HA	0	.090				
ATOM	Н32	HA	0	.090				
ATOM	Н33	HA	0	.090				
ATOM	H34	HA	0	.090				
ATOM	H35	HA	0	.090				
ATOM	Н36	HP	0	.110				
ATOM	Н37	HP	0	.110				
ATOM	Н38	HA	0	.090				
ATOM	Н39	HA	0	.090				
ATOM	H40	HA	0	.090				

ATOM	H41	HA	С	.090							
ATOM	H42	HA	С	.090							
ATOM	H43	HA	С	.090							
ATOM	H44	HA	С	.090							
ATOM	H45	HA	С	.090							
BOND	C1	C2	C1	C6	C1	H44	C1	H45			
BOND	C2	C3	C2	C10	C2	C17	C3	C4			
BOND	C3	С7	C3	H25	C4	C5	C4	Н38			
BOND	C4	H39	С5	C6	С5	H40	С5	H41			
BOND	C6	H42	C6	H43	С7	C8	С7	N15			
BOND	С7	H26	C8	С9	C8	H34	C8	Н35			
BOND	С9	C10	С9	C11	C10	C14	C11	C12			
BOND	C11	H36	C12	C13	C12	H37	C13	C14			
BOND	C13	018	C14	H24	N15	C16	N15	C20			
BOND	C16	C17	C16	H30	C16	H31					
BOND	C17	H32	C17	Н33	018	C19	C19	H21			
BOND	C19	H22	C19	H23	C20	H27	C20	H28			
BOND	C20	H29									
IMPR	С9	C10	C11	C8							
IMPR	C10	С9	C14	C2							
IMPR	C14	C10	C13	H24							
IMPR	C13	018	C12	C14							
IMPR	C12	C13	C11	H37							
IMPR	C11	C12	С9	H36							
ACCER	PTOR N	15									
ACCEI	PTOR O	18									
PATCH	HING F	IRS NO	NE LA	ST NON	ΙE						
BONDS	S										
!											
!V(bo	ond) =	Kb(b	- b0)	**2							
!											
!Kb:	kcal/	mole/A	**2								
!b0:	A										
!											
!ator	m type	Kb		b0							
!											
CT1	NT	119.68	6	1.5470)						
CA	OCE	369.63	4	1.3543	3						
NT	CT2	176.89	2	1.5194	ł						
NT	CT3	254.40	0	1.4990)						
NT	HC	385.78	5	1.0259)						
CT3	OCE	113.64	7	1.415							
CT0	CT1	218.89	4	1.5000)						
CT0	CT2	211.18	0	1.5380)						
CT0	CA	387.52	5	1.4900)						
!para	ameter	s for	depro	otonate	ed DEX	(DEP)	valu	es are	taken	from	the
amine	e stre	am fil	es								
!the	amine	nitro	gen i	s N3 i	n thi	ls case	è				
!N3	CNT3	23	5.000	1.4	1540						
N3	CT3	235.	000	1.454	10						
N3	CT1	235.	000	1.454	10						
N3	CT2	235.	000	1.454	ŧ0						

ANGLES !

!V(angle) = Ktheta(Theta - Theta0)**2 !V(Urey-Bradley) = Kub(S - S0)**2T !Ktheta: kcal/mole/rad**2 !Theta0: degrees !Kub: kcal/mole/A**2 (Urey-Bradley) !S0: A ! !atom types Ktheta Theta0 Kub S0 ! ΝT CT1 CT1 67.700 110.0 ΝT CT1 CT2 67.700 110.0 ΝT CT2 CT2 67.700 110.0 CA OCE 45.200 120.0 CA 113.0 CT2 50.000 CT1 ΝT CT1 ΝT CT3 50.000 113.0 CT2 ΝT CT3 50.000 112.0 NΤ CT3 HA 45.000 107.50 35.00 2.10100 45.000 107.50 35.00 ΝT CT2 HA 2.10100 35.00 ΝT CT1 HA 45.000 107.50 2.10100 НC ΝT CT1 30.000 109.50 20.00 2.07400 HC ΝT CT2 30.000 109.50 20.00 2.07400 HC CT3 30.000 109.50 20.00 2.07400 ΝT CA OCE CT3 95.000 118.71 OCE CT3 ΗA 60.00 109.5 CT2 113.50 CT2 CT0 58.350 11.16 2.56100 CT2 CT1 CT0 53.350 8.00 2.56100 111.0 CT1 CT1 CT0 8.00 53.350 111.0 2.56100 HA CT2 CT0 33.430 110.10 22.53 2.17900 CTO CT1 53.350 109.0 CT2 8.00 2.56100 2.56100 CT2 CTO CT2 53.350 110.0 8.00 CT2 CTO CA 53.350 109.5 8.00 2.56100 CT1 CT0 CA 53.350 109.0 8.00 2.56100 CT0 CA CA 45.800 120.60 22.53 CT0 CT1 ΗA 34.500 110.10 2.17900 NЗ CT3 ΗA 35.000 109.50 50.00 2.14000 50.00 NЗ CT2 HA 35.000 109.50 2.14000 CT1 HA 35.000 109.50 50.00 NЗ 2.14000 CT3 NЗ CT1 53.000 110.90 CT2 NЗ CT1 53.000 110.90 CT2 NЗ CT3 53.000 110.90 NЗ CT1 CT1 67.700 110.90 67.700 NЗ CT1 CT2 110.0 67.700 NЗ CT2 CT2 110.0 DIHEDRALS ! !V(dihedral) = Kchi(1 + cos(n(chi) - delta)) 1 !Kchi: kcal/mole !n: multiplicity !delta: degrees 1 !atom types Kchi n delta ! CTO CA CA 3.1000 2 180.00 CA

CT2	CA	CA	CT0	4.	2000	2	180	.00	
HP	CA	CA	CT0	4.	2000	2	180	.00	
HP	CA	CA	OCE	1.	256	2	180	.00	
OCE	CA	CA	CA	1.	0000	2	180	.00	
CA	CA	OCE	СТ3	1.	4170	2	180	.00	
CA	OCE	СТЗ	нд	·	5760	3	0 1 1	00	
	CTO	CT1	лл Ст2	0.	0100	3	0	.00	
CA	CTO CTO	CII CT1	CIZ CT1	0.	0400	2	0	.00	
CA	CIU CTO		CII	0.	0400	2	0	.00	
CA	CIU	CII	HA	0.	0400	3	0	.00	
CA	CTO	CT2	CT2	0.	5402	3	0	.00	
HA	CT2	CTO	CA	0.	0400	3	0	.00	
CT2	CT0	CT1	CT2	0.	1500	1	0	.00	
CT2	CT0	CT1	CT1	0.	1500	1	0	.00	
CT2	CT0	CT1	HA	0.	4435	3	0	.00	
CT2	CT0	CA	CA	0.	2300	2	180	.00	
CT1	CT0	CA	CA	Ο.	2300	2	180	.00	
CT2	CT0	CT2	CT2	Ο.	2000	3	0	.00	
CT2	CT0	CT2	HA	Ο.	2000	3	0	.00	
CT1	CT0	CT2	CT2	0.	2000	3	0	.00	
CT1	СТО	CT2	HA	0.	2000	3	0	.00	
CT1	CT1	NT	СТ2	0	1000	э З	0	00	
CT1	CT1	NT	CT2	0.	1000	3	0	00	
CTI CTI	CTI CTI			0.	1000	2	0	.00	
			лС	0.	1000	2	0	.00	
CIZ	CII	NI	CIZ	0.	1000	3	0	.00	
CT2	CTI	NT	CT3	0.	1000	3	0	.00	
CT2	CT1	NT	НC	0.	1000	3	0	.00	
HA	CT1	NT	CT2	0.	1000	3	0	.00	
HA	CT1	NT	CT3	0.	1000	3	0	.00	
HA	CT1	NT	HC	0.	1000	3	0	.00	
CT1	NT	CT2	CT2	Ο.	1000	3	0	.00	
CT1	NT	CT2	HA	Ο.	1000	3	0	.00	
CT3	NT	CT2	CT2	Ο.	1000	3	0	.00	
CT3	NT	CT2	HA	Ο.	1000	3	0	.00	
HC	NT	CT2	CT2	0.	1000	3	0	.00	
HC	NT	CT2	HA	0.	1000	3	0	.00	
CT1	NT	СТЗ	НА	0.	1000	3	251	.15	
CT2	NT	СТЗ	НΔ	0	1000	з З	101	00	
	NT	CT3		0.	1000	3	0	.00	I from the amine
			ПА	0.	1000	5	0	• 00	
Strea		Le	0.100			2	0	0.0	
! HNA:	S CNIS	3 N 3	CNIS	3 U.	3150	3	0	.00	intting to expti
data		~ - 1		0 01 5 0	0	0			
HA CI	Ľ3 N3	CII		0.3150	3	0.	00	!!!	Itting to exptl data
HA CI	C3 N3	CT2		0.3150	3	0.	00	!ti	itting to exptl data
HA CI	C1 N3	CT2		0.3150	3	0.	00	!fi	itting to exptl data
HA CI	C1 N3	CT3		0.3150	3	0.	00	!fi	itting to exptl data
HA CI	C2 N3	CT1		0.3150	3	0.	00	!fi	itting to exptl data
HA CI	C2 N3	CT3		0.3150	3	0.	00	!fi	itting to exptl data
X CI	C1 N3	Х		0.3150	3	0.	00	!fr	com HS CT1 N3 CT2
X CI	C2 N3	Х		0.3150	3	0.	00	!fr	com HS CT1 N3 CT2
IMPRO	OPER	,							
!V(in	nprope	er) =	Kpsi	(psi –	psi0)	**2			
!			1. /	1440					
!Kpsi	L: kCa	a⊥/mol	Le/ra	ad**2					
:psi(, aeg	Jrees	0.000	and col-	mn of	numb	ore (0) -	i anorod
:110te	e unat	_ LIIE	seco	na coru	1111 OI		ега (U) 1	rs tanotea
-									

0 psi0 !atom types Kpsi 1 CA CA CA HP 20.000 0 0.000 ! from HA CPB C C (heme) CA CA CA CT2 96.000 0 0.000 ! from CC X X CT1 CA CA CA CTO 0 0.000 ! from CC X X CT1 96.000 CA OCE CA CA 96.000 0 0.000 ! from CC X X CT1 CT1 N3 CT2 CT3 15.6000 0 120.0000 NONBONDED nbxmod 5 atom cdiel shift vatom vdistance vswitch cutnb 14.0 ctofnb 12.0 ctonnb 10.0 eps 1.0 el4fac 1.0 wmin 1.5 !adm jr., 5/08/91, suggested cutoff scheme ! !V(Lennard-Jones) = Eps(i,j)*[(Rmin(i,j)/r(i,j))**12 -2(Rmin(i,j)/r(i,j))**6] 1 !epsilon [kcal/mole]: Eps(i,j) = sqrt(eps(i) * eps(j)) Rmin(i,j) = Rmin/2(i) + Rmin/2(j)!Rmin/2 [A]: ! !atom ignored epsilon Rmin/2 ignored eps,1-4 Rmin/2,1-4 ! -0.2000 0.0 1.8500 ! ΝT OCE 0.0 -0.1521 1.7700 T -0.0200 2.275 0.0 -0.01 1.9 ! from CT, from CT1x -0.0350 2.000 CT0 0.0 0.0 NЗ END

Part B Absolute energies (in atomic units) for all computed species. All QM and QM/MM energies were calculated at the B3LYP/6-31G* level of theory (with LACVP for Fe).

QM energy of triplet oxygen atom	E _{QM} O	=	-75.0573242
QM energy of relaxed Fe(III) porphyrin	E _{QM} (Fe)	=	-1510.614765
QM energy of unrelaxed Fe(III) porphyrin	E _{QM} (Fe*)	=	-1510.653854
Relaxation energy = $E_{QM}(H)$	$Fe) - E_{QM}(Fe^*)$	=	0.039089017

Table S1	Absolute QM/MM energies for Compound I (E _{QM/MM} (FeO)) and
	unrelaxed Fe(III) resting state (E _{QM/MM} (Fe*)) in the 2C9_apo
	simulation

Snapshot [ps]	E _{QM/MM} (FeO)	E _{QM/MM} (Fe*)
0	-1636.907377	-1561.707872
200	-1636.82625	-1561.633356
400	-1636.893422	-1561.711793
600	-1636.391303	-1561.208728
800	-1637.596848	-1562.403147
1000	-1638.148509	-1562.949302
1200	-1637.611517	-1562.402052
1400	-1637.516744	-1562.329535
1600	-1637.603194	-1562.410317
1800	-1638.217694	-1563.026913
2000	-1639.996712	-1564.80418
2200	-1637.638259	-1562.454109
2400	-1637.005229	-1561.812395
2600	-1637.836285	-1562.632844
2800	-1637.469693	-1562.281352
3000	-1638.186007	*
3200	-1638.078274	-1562.891212
3400	-1639.977814	-1564.792337
3600	-1637.425406	-1562.236322
3800	-1637.476232	-1562.287394
4000	-1638.673403	-1563.488725
4200	-1638.593623	-1563.401051
4400	-1638.94762	-1563.749573
4600	-1638.566883	-1563.378925
4800	-1638.035674	-1562.831822
5000	-1638.341865	-1563.13747
	1	

Table S2	Absolute QM/MM energies for Compound I (E _{QM/MM} (FeO)) and
	unrelaxed Fe(III) resting state (E _{QM/MM} (Fe*)) in the 2C9_prox
	simulation

Snapshot [ps]	E _{QM/MM} (FeO)	E _{QM/MM} (Fe*)
0	-2211.369373	-2136.19929
200	-2209.898663	-2134.720503
400	-2210.080927	-2134.897184
600	-2209.552079	-2134.373783
800	-2209.923604	-2134.748977
1000	-2209.444388	-2134.260259
1200	-2211.348313	-2136.163837
1400	-2210.501299	-2135.318172
1600	-2210.842599	-2135.659211
1800	-2210.212184	-2135.031005
2000	-2209.649563	-2134.465454
2200	-2210.259975	-2135.078412
2400	-2210.459221	-2135.281036
2600	-2209.848896	-2134.66971
2800	-2209.5128	-2134.330237
3000	-2210.541031	-2135.360884
3200	-2210.939025	-2135.760973
3400	-2209.922657	-2134.740267
3600	-2210.533676	-2135.355504
3800	-2210.276736	-2135.086851
4000	-2210.579494	-2135.381345
4200	-2210.478699	-2135.274207
4400	-2210.141375	-2134.944585
4600	-2211.045436	-2135.845662
4800	-2211.201947	-2135.98314
5000	-2210.643981	-2135.449476

Table S3	Absolute QM/MM energies for Compound I (E _{QM/MM} (FeO)) and
	unrelaxed Fe(III) resting state (E _{QM/MM} (Fe*)) in the 2C9_dist
	simulation

Snapshot [ps]	E _{QM/MM} (FeO)	E _{QM/MM} (Fe*)
0	-2209.801979	-2134.623378
200	-2209.849037	-2134.67259
400	-2209.814915	-2134.637421
600	-2210.838288	-2135.666213
800	-2209.295205	-2134.108396
1000	-2209.962773	-2134.773681
1200	-2208.770515	-2133.590192
1400	-2209.306404	-2134.126617
1600	-2209.772847	-2134.589697
1800	-2210.299001	-2135.122875
2000	-2210.818539	-2135.631277
2200	-2209.441458	-2134.25566
2400	-2210.480465	-2135.295543
2600	-2210.516308	-2135.326721
2800	-2212.854697	-2137.670703
3000	-2210.14149	-2134.944658
3200	-2210.047482	-2134.864727
3400	-2210.024975	-2134.832673
3600	-2210.470527	-2135.279824
3800	-2210.9494	-2135.765246
4000	-2211.733565	
4200	-2208.860542	-2133.677887
4400	-2209.814868	-2134.619075
4600	-2211.07056	-2135.88986
4800	-2210.790471	-2135.609404
5000	-2210.544899	-2135.35977

Table S4	Absolute QM/MM energies for Compound I (E _{QM/MM} (FeO)) and
	unrelaxed Fe(III) resting state (E _{QM/MM} (Fe*)) in the 2C9_2warf
	simulation

Snapshot [ps]	E _{QM/MM} (FeO)	E _{QM/MM} (Fe*)
0	-2209.090584	-2133.919761
200	-2208.484447	-2133.311804
400	*	*
600	*	*
800	-2210.109172	-2134.929779
1000	-2209.987435	-2134.812278
1200	-2209.290539	-2134.1096
1400	-2210.158613	-2134.977607
1600	-2209.419077	-2134.242999
1800	-2209.445886	-2134.271231
2000	-2210.011443	-2134.834679
2200	-2211.247532	-2136.075983
2400	-2209.993419	-2134.816796
2600	-2210.454279	-2135.285223
2800	-2210.26779	-2135.093347
3000	-2209.859789	-2134.68529
3200	-2209.702458	-2134.530128
3400	-2209.092298	-2133.920762
3600	-2211.543866	-2136.367615
3800	-2209.690391	-2134.514031
4000	-2209.813105	-2134.622426
4200	-2210.039606	-2134.86509
4400	-2210.745014	-2135.5627
4600	-2210.909464	-2135.727775
4800	-2210.765019	-2135.584155
5000	-2210.214085	-2135.03753

Table S5	Absolute QM/MM energies for Compound I (E _{QM/MM} (FeO)) and
	unrelaxed Fe(III) resting state (E _{QM/MM} (Fe*)) in the 2D6_apo
	simulation

Snapshot [ps]	E _{QM/MM} (FeO)	E _{QM/MM} (Fe*)
0	-1638.014747	-1562.844551
200	-1640.779478	-1565.602414
400	-1641.209776	-1566.034947
600	-1641.211843	-1566.035982
800	-1641.658926	-1566.485364
1000	-1641.600708	-1566.41687
1200	-1641.587276	-1566.409671
1400	-1641.338209	-1566.166141
1600	-1641.999665	-1566.823241
1800	-1641.519998	-1566.339204
2000	-1641.475185	-1566.297585
2200	-1641.621403	-1566.444089
2400	-1641.859497	-1566.681695
2600	-1642.389482	-1567.209481
2800	-1641.713168	-1566.533457
3000	-1641.891379	-1566.697581
3200	-1642.161189	-1566.971878
3400	-1642.218429	-1567.018099
3600	-1642.479438	-1567.288124
3800	-1642.623911	-1567.430351
4000	-1642.28249	-1567.089023
4200	-1642.103164	-1566.910081
4400	-1642.479087	-1567.275286
4600	-1641.991913	-1566.789938
4800	-1642.333912	-1567.147974
5000	-1642.261348	-1567.070494

Table S6 Absolute QM/MM energies for Compound I ($E_{QM/MM}(FeO)$) and unrelaxed Fe(III) resting state ($E_{QM/MM}(Fe^*)$) in the **2D6_dex** simulation

Snapshot [ps]	E _{QM/MM} (FeO)	E _{QM/MM} (Fe*)
0	-1987.259326	-1912.080665
200	-1987.456249	-1912.284676
400	-1988.092333	-1912.92082
600	-1987.445434	-1912.274539
800	-1988.469274	-1913.298814
1000	-1987.699525	-1912.52847
1200	-1988.433186	-1913.257741
1400	-1987.716698	-1912.54414
1600	-1988.618842	-1913.447775
1800	-1987.931326	-1912.760063
2000	-1988.108817	-1912.93762
2200	-1988.065904	-1912.893367
2400	-1988.36517	-1913.191774
2600	-1988.744976	-1913.574956
2800	-1988.503928	-1913.330982
3000	-1988.570046	-1913.386814
3200	-1988.304542	-1913.129719
3400	-1988.524511	-1913.345364
3600	-1988.072428	-1912.892492
3800	-1988.144973	-1912.966853
4000	-1988.506091	-1913.330629
4200	-1988.309299	-1913.128781
4400	-1988.059865	-1912.882908
4600	-1988.551285	-1913.369875
4800	-1988.850023	-1913.67086
5000	-1988.250416	-1913.075667

Table S7	Absolute QM/MM energies for Compound I (E _{QM/MM} (FeO)) and
	unrelaxed Fe(III) resting state (E _{QM/MM} (Fe*)) in the 3A4_apo
	simulation

Snapshot [ps]	E _{QM/MM} (FeO)	E _{QM/MM} (Fe*)
0	-1637.836979	-1562.659449
200	-1637.93327	-1562.743602
400	-1638.374702	-1563.197103
600	-1637.976058	-1562.795303
800	-1637.575963	-1562.389738
1000	-1639.020723	-1563.838428
1200	-1637.42385	-1562.234942
1400	-1638.374484	-1563.187701
1600	-1638.322488	-1563.140894
1800	-1638.041727	-1562.85689
2000	-1638.353595	-1563.168274
2200	-1638.763795	-1563.579384
2400	-1638.386076	-1563.198847
2600	-1638.184974	-1563.000893
2800	-1637.498243	-1562.296645
3000	-1637.496843	-1562.312704
3200	-1639.06221	-1563.874851
3400	-1638.910872	-1563.727767
3600	-1637.693371	-1562.504458
3800	-1638.696138	-1563.513448
4000	-1637.164234	-1561.984612
4200	-1639.37596	-1564.199479
4400	-1638.953997	-1563.769435
4600	-1638.740077	-1563.559743
4800	-1638.912378	-1563.731206
5000	-1637.61744	-1562.44117

Table S8Absolute QM/MM energies for Compound I ($E_{QM/MM}(FeO)$) and
unrelaxed Fe(III) resting state ($E_{QM/MM}(Fe^*)$) in the **3A4_dex**
simulation

Snapshot [ps]	E _{QM/MM} (FeO)	E _{QM/MM} (Fe*)
0	-1637.196334	-1562.015364
200	-1637.593503	-1562.411155
400	-1639.365531	-1564.177474
600	-1637.807129	-1562.624513
800	-1638.476493	-1563.291296
1000	-1638.366614	-1563.182127
1200	-1637.023858	-1561.840734
1400	-1637.907142	-1562.727748
1600	-1637.560466	-1562.385689
1800	-1638.511888	-1563.327051
2000	-1638.035538	-1562.851033
2200	-1637.997945	-1562.815032
2400	-1637.848372	-1562.658468
2600	-1638.816799	-1563.638855
2800	-1637.56859	-1562.390537
3000	-1637.22953	-1562.04586
3200	-1638.270617	-1563.082057
3400	-1638.555299	-1563.374452
3600	-1639.133401	-1563.947407
3800	-1637.936961	-1562.755451
4000	-1638.482263	-1563.299429
4200	-1637.98119	-1562.793872
4400	-1637.761715	-1562.582114
4600	-1638.718599	-1563.530535
4800	-1638.870809	-1563.677533
5000	-1638.097815	-1562.909308

Table S9Absolute QM/MM energies for Compound I ($E_{QM/MM}(FeO)$) and
unrelaxed Fe(III) resting state ($E_{QM/MM}(Fe^*)$) in the P450_{cam_}apo
simulation

Snapshot [ps]	E _{QM/MM} (FeO)	E _{QM/MM} (Fe*)
0	-1639.111762	-1563.928181
200	-1638.121693	-1562.939536
400	-1639.970799	-1564.794782
600	-1638.688537	-1563.511184
800	-1641.986597	-1566.807714
1000	-1642.923284	-1567.735062
1200	-1639.618909	-1564.432681
1400	-1637.536004	-1562.351091
1600	-1637.813228	-1562.635077
1800	-1636.459957	-1561.281569
2000	-1637.588059	-1562.412389
2200	-1639.216279	-1564.03621
2400	-1640.84631	-1565.663678
2600	-1638.335671	-1563.152518
2800	-1636.16733	-1560.967914
3000	-1637.127584	-1561.941452
3200	-1638.533717	-1563.354941
3400	-1639.121007	-1563.930711
3600	-1637.465421	-1562.282986
3800	-1637.248251	-1562.05867
4000	-1638.61852	-1563.420791
4200	-1636.126764	-1560.930846
4400	-1639.226436	-1564.043224
4600	-1638.006777	-1562.824499
4800	-1639.93946	-1564.756512
5000	-1637.883969	-1562.707619

Table S10Absolute QM/MM energies for Compound I ($E_{QM/MM}(FeO)$) and
unrelaxed Fe(III) resting state ($E_{QM/MM}(Fe^*)$) in the P450_{cam} prop
simulation

Snapshot [ps]	E _{QM/MM} (FeO)	E _{QM/MM} (Fe*)
0	-1756.239667	-1681.060061
200	-1755.550799	-1680.372462
400	-1755.507125	-1680.331318
600	-1754.774692	-1679.59858
800	-1759.568876	-1684.39224
1000	-1758.434443	-1683.254936
1200	-1755.504909	-1680.324459
1400	-1755.512597	-1680.334612
1600	-1757.118153	-1681.938263
1800	-1756.039641	-1680.860267
2000	-1759.37413	-1684.191072
2200	-1755.816508	-1680.635724
2400	-1758.065581	-1682.888317
2600	-1756.02191	*
2800	-1754.992015	-1679.813666
3000	-1755.652733	-1680.474375
3200	-1757.093883	-1681.912133
3400	-1756.667105	-1681.487211
3600	-1755.315922	-1680.130683
3800	-1754.883525	-1679.701953
4000	-1761.734157	-1686.552884
4200	-1754.662712	-1679.471868
4400	-1755.470241	-1680.297057
4600	-1756.204112	-1681.022579
4800	-1755.411861	-1680.232131
5000	-1753.828087	-1678.648963

Part C Mulliken spin densities for QM/MM optimized snapshots of Compound I

Table S11Mulliken spin densities for individual fragments in QM/MM optimized
snapshots of Compound I taken from the **2C9_apo** MD simulation.

Snapshot [ps]	ρ(Fe)	ρ(Ο)	ρ(S)	ρ(porphyrin)
0	1.16458	0.7704	0.46444	0.57491
200	1.15865	0.77894	0.46042	0.57611
400	1.15712	0.79073	0.34752	0.68449
600	1.15017	0.79744	0.40028	0.62838
800	1.16	0.77848	0.43152	0.60536
1000	*	*	*	*
1200	1.19339	0.73095	0.54593	0.50152
1400	1.14964	0.79372	0.3892	0.64502
1600	1.15576	0.7825	0.43665	0.60299
1800	1.15864	0.78327	0.4134	0.62062
2000	1.15539	0.78359	0.41858	0.6168
2200	1.1557	0.79144	0.35176	0.6821
2400	1.22756	0.71554	0.31268	0.72794
2600	1.22697	0.70616	0.45915	0.58054
2800	1.15007	0.79276	0.41494	0.6185
3000	1.16713	0.77768	0.35994	0.67524
3200	1.15998	0.78368	0.36214	0.67344
3400	1.15496	0.78729	0.40598	0.62966
3600	1.17838	0.76608	0.38792	0.64642
3800	1.16397	0.77651	0.41938	0.61547
4000	1.14767	0.795	0.32154	0.71791
4200	1.1641	0.77307	0.46269	0.57499
4400	1.16529	0.76628	0.54878	0.4898
4600	1.14955	0.79129	0.4609	0.57219
4800	1.19952	0.72865	0.54413	0.49767
5000	1.21418	0.71439	0.56547	0.47556

Snapshot [ps]	ρ(Fe)	ρ(Ο)	ρ(S)	ρ(porphyrin)
0	1.1419	0.81784	0.41677	0.59695
200	1.14638	0.80393	0.52507	0.4956
400	1.1987	0.74574	0.46223	0.56682
600	1.191	0.76186	0.40521	0.61589
800	1.17584	0.77905	0.36049	0.65705
1000	1.19392	0.74885	0.47251	0.55455
1200	1.18681	0.75875	0.48864	0.53745
1400	1.20156	0.74013	0.45879	0.56989
1600	1.20576	0.73815	0.48517	0.53865
1800	1.20366	0.74154	0.47209	0.55214
2000	1.20589	0.7386	0.40525	0.62305
2200	1.21548	0.73126	0.40906	0.6181
2400	1.21561	0.73741	0.3774	0.64177
2600	1.20287	0.7493	0.41731	0.60194
2800	1.15606	0.78984	0.51649	0.50777
3000	1.14809	0.79489	0.50637	0.52087
3200	1.15752	0.78	0.56587	0.45641
3400	1.17254	0.76316	0.56323	0.46104
3600	1.15583	0.78378	0.5512	0.47071
3800	1.17745	0.75426	0.60567	0.42489
4000	1.18138	0.74661	0.7367	0.29064
4200	1.17918	0.74694	0.72577	0.30794
4400	1.18429	0.74624	0.64493	0.38731
4600	1.17466	0.75399	0.68184	0.35327
4800	1.20869	0.70331	0.8112	0.22731
5000	1.14728	0.79474	0.45989	0.56817

Table S12Mulliken spin densities for individual fragments in QM/MM
optimized snapshots of Compound I taken from the 2C9_prox MD
simulation.

Snapshot [ps]	ρ(Fe)	ρ(Ο)	ρ(S)	ρ(porphyrin)
0	1.1418	0.81121	0.32868	0.69943
200	1.14622	0.80949	0.35303	0.6705
400	1.13152	0.81949	0.42969	0.59374
600	1.11956	0.8342	0.41153	0.61109
800	1.1638	0.78084	0.47999	0.54852
1000	1.16592	0.77453	0.49357	0.53777
1200	1.14742	0.80471	0.44512	0.5778
1400	1.1588	0.79499	0.42368	0.59922
1600	1.17591	0.77634	0.42859	0.5954
1800	1.13482	0.82092	0.3785	0.644
2000	1.16062	0.78187	0.48587	0.54482
2200	1.15949	0.78407	0.42842	0.60387
2400	1.16646	0.77746	0.45885	0.57235
2600	1.18926	0.75254	0.53387	0.4946
2800	1.14811	0.79684	0.48111	0.54666
3000	1.16947	0.76633	0.54825	0.48636
3200	1.14971	0.79632	0.46141	0.56709
3400	1.16082	0.7786	0.47446	0.56045
3600	1.16726	0.77445	0.51473	0.51484
3800	1.16081	0.78652	0.49044	0.53386
4000	1.17577	0.76356	0.53235	0.4988
4200	1.16818	0.77988	0.44824	0.57864
4400	1.23419	0.70656	0.50821	0.52122
4600	1.18653	0.76493	0.45592	0.56576
4800	1.16562	0.78934	0.36219	0.66237
5000	1.16978	0.77901	0.46856	0.55692

Table S13Mulliken spin densities for individual fragments in QM/MM optimized
snapshots of Compound I taken from the **2C9_dist** MD simulation.

Snapshot [ps]	ρ(Fe)	ρ(O)	ρ(S)	ρ(porphyrin)
0	1.1004	0.85087	0.40789	0.61346
200	1.1362	0.81208	0.41492	0.60971
400	1.11955	0.8383	0.34379	0.67498
600	1.11792	0.83417	0.38987	0.63253
800	1.13661	0.80731	0.46816	0.56016
1000	1.13425	0.81392	0.4153	0.61113
1200	1.14701	0.79636	0.42769	0.60345
1400	1.1443	0.79926	0.45974	0.56855
1600	1.14865	0.79897	0.43155	0.59006
1800	1.12366	0.82299	0.44662	0.57689
2000	1.15342	0.79387	0.40787	0.61966
2200	1.13761	0.81172	0.3743	0.64715
2400	1.13908	0.81016	0.39248	0.63126
2600	1.10761	0.84517	0.33439	0.68767
2800	1.12564	0.82042	0.45487	0.56555
3000	1.13021	0.82089	0.47228	0.54274
3200	1.13142	0.8204	0.32648	0.69729
3400	1.12339	0.82821	0.37613	0.64257
3600	1.13783	0.81639	0.38016	0.64068
3800	1.14384	0.80901	0.39449	0.62427
4000	1.15519	0.78367	0.50362	0.52938
4200	1.12901	0.82294	0.39102	0.63251
4400	1.17871	0.77872	0.34673	0.67664
4600	1.1373	0.81091	0.431	0.59024
4800	1.18166	0.76628	0.44405	0.57787
5000	1.17686	0.77857	0.31924	0.7049

Table S14Mulliken spin densities for individual fragments in QM/MM optimized
snapshots of Compound I taken from the 2C9_2warf MD simulation.

Snapshot [ps]	ρ(Fe)	ρ(Ο)	ρ(S)	ρ(porphyrin)
0	1.11818	0.83633	0.32575	0.69981
200	1.12532	0.82258	0.38369	0.64593
400	1.13135	0.81873	0.39784	0.62735
600	1.1238	0.82527	0.37681	0.65101
800	1.13335	0.81949	0.38451	0.63862
1000	1.16801	0.77827	0.37614	0.65434
1200	1.13456	0.81369	0.36371	0.66514
1400	1.119	0.83498	0.35165	0.67238
1600	1.13065	0.81642	0.37684	0.65308
1800	1.13659	0.80847	0.40948	0.62041
2000	1.13715	0.81063	0.39852	0.63054
2200	1.12222	0.82573	0.35521	0.6753
2400	1.13741	0.80965	0.41692	0.61088
2600	1.12736	0.81839	0.38225	0.64879
2800	1.13656	0.81006	0.35444	0.67711
3000	1.16476	0.77158	0.43838	0.59917
3200	1.18932	0.7533	0.38255	0.65132
3400	1.17703	0.75624	0.43243	0.60721
3600	1.15619	0.78812	0.35786	0.67638
3800	1.15935	0.78197	0.40577	0.62819
4000	1.17009	0.7699	0.3868	0.65008
4200	1.17955	0.75699	0.4223	0.61543
4400	1.19174	0.73845	0.46729	0.57456
4600	1.20069	0.73181	0.46854	0.57205
4800	1.17422	0.77147	0.3702	0.66183
5000	1.18635	0.75509	0.41889	0.6145

Table S15Mulliken spin densities for individual fragments in QM/MM optimized
snapshots of Compound I taken from the **2D6_apo** MD simulation.

Snapshot [ps]	ρ(Fe)	ρ(O)	ρ(S)	ρ(porphyrin)
0	1.18094	0.76855	0.31245	0.71599
200	1.13824	0.81286	0.33646	0.68415
400	1.1429	0.8032	0.30722	0.71807
600	1.12692	0.8289	0.34525	0.67712
800	1.12204	0.83079	0.32249	0.70369
1000	1.12698	0.82572	0.33975	0.68587
1200	1.14238	0.80802	0.44811	0.57479
1400	1.12532	0.82209	0.36722	0.66182
1600	1.12195	0.82861	0.36436	0.66154
1800	1.13036	0.82146	0.33331	0.69361
2000	1.13359	0.82046	0.37346	0.64907
2200	1.12245	0.82569	0.32972	0.69863
2400	1.12839	0.82149	0.37749	0.64746
2600	1.1245	0.82665	0.36158	0.66302
2800	1.11987	0.82826	0.37331	0.65385
3000	1.15505	0.782	0.46458	0.56876
3200	1.13102	0.81813	0.34826	0.68142
3400	1.14505	0.7987	0.42114	0.60894
3600	1.15107	0.79167	0.45014	0.5786
3800	1.14946	0.79549	0.41051	0.621
4000	1.14064	0.80577	0.34421	0.68928
4200	1.1626	0.7811	0.42216	0.60647
4400	1.15052	0.79186	0.35232	0.59676
4600	1.14267	0.80024	0.43485	0.6775
4800	1.14976	0.79429	0.36963	0.66276
5000	1.14267	0.80024	0.35312	0.6775

Table S16Mulliken spin densities for individual fragments in QM/MM optimized
snapshots of Compound I taken from the 2D6_dex MD simulation.

Snapshot [ps]	ρ(Fe)	ρ(O)	ρ(S)	ρ(porphyrin)
0	1.14961	0.80345	0.41994	0.60257
200	1.15923	0.78353	0.59377	0.42889
400	1.15082	0.80172	0.41374	0.60846
600	1.15442	0.79271	0.45973	0.56563
800	1.16941	0.77449	0.44058	0.58812
1000	1.15707	0.78885	0.45494	0.57244
1200	1.1731	0.77019	0.49435	0.53454
1400	1.1694	0.77427	0.55137	0.47215
1600	1.17799	0.76991	0.42118	0.60511
1800	1.17909	0.76843	0.46633	0.55871
2000	1.14869	0.79432	0.45038	0.57984
2200	1.17317	0.77116	0.45014	0.57872
2400	1.16314	0.7795	0.50505	0.52133
2600	1.14249	0.80244	0.49577	0.52885
2800	1.24724	0.68696	0.52595	0.50963
3000	1.17028	0.77374	0.46172	0.56639
3200	1.18593	0.75669	0.51115	0.51525
3400	1.13653	0.80868	0.50088	0.52365
3600	1.19545	0.74781	0.5241	0.50252
3800	1.16863	0.77846	0.44766	0.57801
4000	1.13985	0.80624	0.45942	0.56704
4200	1.13355	0.81936	0.4289	0.59157
4400	1.14236	0.80089	0.44181	0.58933
4600	1.16568	0.78473	0.41218	0.61216
4800	1.15211	0.7966	0.42974	0.59572
5000	1.14072	0.81377	0.41096	0.60962

Table S17Mulliken spin densities for individual fragments in QM/MM optimized
snapshots of Compound I taken from the **3A4_apo** MD simulation.

Snapshot [ps]	ρ(Fe)	ρ(O)	ρ(S)	ρ(porphyrin)
0	1.14629	0.80234	0.46285	0.55982
200	1.15663	0.78972	0.50919	0.51457
400	1.15637	0.78678	0.48523	0.54402
600	1.15025	0.79751	0.54301	0.47794
800	1.139	0.80457	0.54134	0.48434
1000	1.15435	0.79282	0.54504	0.47613
1200	1.17228	0.77648	0.46697	0.55664
1400	1.11631	0.83044	0.49163	0.53297
1600	1.09405	0.85622	0.47047	0.55122
1800	1.13043	0.81381	0.45957	0.57065
2000	1.14606	0.79941	0.50309	0.52131
2200	1.18543	0.76362	0.43834	0.58721
2400	1.23228	0.71364	0.31938	0.71536
2600	1.11938	0.83062	0.39835	0.62674
2800	1.12857	0.82441	0.35617	0.66875
3000	1.16657	0.77731	0.47053	0.55689
3200	1.21545	0.72995	0.34127	0.69327
3400	1.12094	0.82645	0.42873	0.59826
3600	1.16336	0.78437	0.38109	0.64729
3800	1.13312	0.81414	0.37475	0.65589
4000	1.13503	0.81311	0.39872	0.62857
4200	1.16655	0.77758	0.44805	0.58048
4400	1.12315	0.82725	0.41642	0.60811
4600	1.17109	0.77307	0.43748	0.59229
4800	1.20377	0.73684	0.40737	0.62806
5000	1.19012	0.75405	0.38914	0.64435

Table S18Mulliken spin densities for individual fragments in QM/MM optimized
snapshots of Compound I taken from the **3A4_dex** MD simulation.

Snapshot [ps]	ρ(Fe)	ρ(Ο)	ρ(S)	ρ(porphyrin)
0	1.15479	0.79202	0.31235	0.72117
200	1.15797	0.7865	0.35496	0.67892
400	1.11078	0.84029	0.24124	0.79297
600	1.11142	0.83858	0.30587	0.72622
800	1.13104	0.81932	0.32498	0.70819
1000	1.14568	0.79552	0.41482	0.6202
1200	1.17315	0.77169	0.26007	0.78213
1400	1.1619	0.78473	0.33222	0.70367
1600	1.11041	0.84069	0.29488	0.73757
1800	1.12151	0.82783	0.39445	0.63453
2000	1.1196	0.83433	0.24161	0.79132
2200	1.13692	0.81467	0.33717	0.694
2400	1.1265	0.81986	0.32644	0.70967
2600	1.1701	0.77692	0.33465	0.69906
2800	1.23461	0.70194	0.39419	0.64737
3000	1.21627	0.73001	0.29922	0.73957
3200	1.11918	0.82888	0.34686	0.68427
3400	1.18622	0.75767	0.34164	0.69525
3600	1.1252	0.82213	0.32784	0.70648
3800	1.14088	0.79952	0.4472	0.58725
4000	1.23782	0.70234	0.36271	0.67709
4200	1.18776	0.74749	0.46117	0.57882
4400	1.12786	0.81909	0.36274	0.67072
4600	1.13731	0.81019	0.36497	0.66806
4800	1.14328	0.80213	0.33224	0.70332
5000	1.12557	0.82679	0.32016	0.71095

Table S19Mulliken spin densities for individual fragments in QM/MM optimized
snapshots of Compound I taken from the P450cam_apo MD simulation.

Table S20	Mulliken spin densities for individual fragments in QM/MM optimized
	snapshots of Compound I taken from the P450_{cam}prop MD
	simulation.

Snapshot [ps]	ρ(Fe)	ρ(Ο)	ρ(S)	ρ(porphyrin)
0	1.14589	0.80186	0.27685	0.75303
200	1.14144	0.80471	0.30175	0.72765
400	1.11803	0.83006	0.17405	0.84453
600	1.14078	0.8076	0.25815	0.77252
800	1.13412	0.81603	0.26217	0.76571
1000	1.12172	0.82425	0.25761	0.77202
1200	1.14878	0.79685	0.21995	0.79103
1400	1.15751	0.7841	0.22541	0.80455
1600	1.13989	0.8035	0.21677	0.80803
1800	1.13235	0.81332	0.19768	0.84317
2000	1.16662	0.77629	0.3421	0.69484
2200	1.1449	0.79791	0.25061	0.72981
2400	1.11569	0.83082	0.33637	0.68886
2600	1.1004	0.85295	0.37857	0.64117
2800	1.12464	0.82411	0.22867	0.80452
3000	1.13759	0.80754	0.25551	0.77955
3200	1.18447	0.75801	0.2316	0.80394
3400	1.133	0.81385	0.27753	0.75574
3600	1.18305	0.75691	0.35443	0.68141
3800	1.14215	0.80302	0.27325	0.76297
4000	1.13588	0.80618	0.27444	0.75875
4200	1.17712	0.75755	0.46636	0.56387
4400	1.12129	0.82299	0.30159	0.72203
4600	1.17283	0.77356	0.25203	0.78671
4800	1.12897	0.81789	0.31174	0.72061
5000	1.13741	0.81112	0.24013	0.79644

Part D Mulliken charges for QM/MM optimized snapshots of Compound I

Table S21Mulliken charges for individual fragments in QM/MM optimized
snapshots of Compound I taken from the **2C9_apo** MD simulation.

Snapshot [ps]	Q(Fe)	Q(O)	Q(S)	Q(porphyrin)
0	0.58543	-0.4349	-0.17025	0.11138
200	0.5543	-0.44139	-0.11942	0.09522
400	0.49001	-0.43969	-0.12844	0.17635
600	0.50247	-0.44415	-0.10526	0.12572
800	0.56028	-0.44284	-0.16243	0.13491
1000	0.5447	-0.46286	-0.11467	0.10642
1200	0.59781	-0.45244	-0.17255	0.09952
1400	0.52238	-0.44095	-0.14961	0.15503
1600	0.56108	-0.43368	-0.16944	0.12491
1800	0.53429	-0.43985	-0.14446	0.14103
2000	0.53886	-0.44472	-0.13294	0.13397
2200	0.5142	-0.44162	-0.17303	0.19097
2400	0.49207	-0.51964	-0.15131	0.26474
2600	0.54894	-0.50886	-0.1077	0.14177
2800	0.54741	-0.44048	-0.13168	0.11908
3000	0.53036	-0.45274	-0.16761	0.18254
3200	0.55265	-0.43597	-0.20268	0.18119
3400	0.53143	-0.43775	-0.1384	0.13601
3600	0.53172	-0.45609	-0.15474	0.16282
3800	0.52813	-0.45255	-0.13027	0.13653
4000	0.5343	-0.44107	-0.19449	0.2082
4200	0.56178	-0.44082	-0.15097	0.11095
4400	0.57582	-0.4414	-0.0785	0.02364
4600	0.53501	-0.44152	-0.09301	0.08189
4800	0.59129	-0.4462	-0.14957	0.07576
5000	0.56609	-0.45443	-0.10042	0.05843

Snapshot [ps]	Q(Fe)	Q(O)	Q(S)	Q(porphyrin)
0	0.47332	-0.39046	-0.11996	0.09064
200	0.48429	-0.39371	-0.06207	0.01358
400	0.48447	-0.44736	-0.11432	0.11271
600	0.48847	-0.4537	-0.14324	0.15422
800	0.4618	-0.46546	-0.10123	0.16942
1000	0.50699	-0.46439	-0.11409	0.1021
1200	0.49559	-0.46373	-0.06894	0.08316
1400	0.49471	-0.47987	-0.08442	0.10692
1600	0.50556	-0.47019	-0.09723	0.09207
1800	0 4954	-0 4778	-0.07981	0.10138
2000	0.52327	-0 48438	-0 15729	0.16799
2200	0.32527	-0 47177	-0.1309	0.15655
2400	0.46074	-0.48477	-0.1305	0.18119
2600	0.40774	-0.46442	-0.11333	0.13973
2800	0.40245	0.30661	0.12043	0.02037
3000	0.53529	-0.39001	-0.12045	0.02937
3200	0.31070	-0.39701	-0.11431	0.03130
3400	0.48877	-0.41577	-0.00131	-0.0078
3600	0.31207	-0.42571	-0.01824	-0.01103
3800	0.49788	-0.41465	-0.00924	-0.01147
4000	0.54126	-0.42431	-0.03046	-0.02821
4200	0.61571	-0.41121	0.0062	-0.14134
4400	0.60515	-0.40359	-0.02697	-0.11477
4600	0.57431	-0.41783	-0.04124	-0.05654
4800	0.59833	-0.39873	-0.04772	-0.07676
5000	0.66867	-0.42996	-0.01807	-0.16312
3000	0.50624	-0.40756	-0.09731	0.06727

Table S22Mulliken charges for individual fragments in QM/MM
optimized snapshots of Compound I taken from the 2C9_prox MD
simulation.

Snapshot [ps]	Q(Fe)	Q(O)	Q(S)	Q(porphyrin)
0	0.48227	-0.4511	-0.16032	0.18155
200	0.49407	-0.4445	-0.13931	0.15206
400	0.48956	-0.43174	-0.08548	0.0731
600	0.48584	-0.37944	-0.13798	0.08653
800	0.5076	-0.45954	-0.08581	0.07863
1000	0.4981	-0.44805	-0.07379	0.06487
1200	0.4755	-0.45101	-0.06098	0.08177
1400	0.49389	-0.4455	-0.09169	0.10365
1600	0.51452	-0.44402	-0.13656	0.10866
1800	0.47193	-0.44147	-0.10268	0.12424
2000	0.51658	-0.4516	-0.10784	0.08276
2200	0.50993	-0.47439	-0.10925	0.12152
2400	0.50931	-0.46216	-0.10646	0.10371
2600	0.53377	-0.43974	-0.09373	0.03289
2800	0.51629	-0.43081	-0.09606	0.05797
3000	0.55233	-0.44639	-0.07958	0.01879
3200	0.52678	-0.43794	-0.11429	0.07565
3400	0.54484	-0.44165	-0.1261	0.07908
3600	0.52211	-0.45047	-0.07896	0.05244
3800	0.50584	-0.45596	-0.05108	0.05177
4000	0.53221	-0.45871	-0.07005	0.04574
4200	0.50594	-0.44114	-0.09428	0.08772
4400	0.51659	-0.5127	-0.04447	0.07981
4600	0.49662	-0.44502	-0.0904	0.08627
4800	0.48552	-0.45346	-0.13942	0.16598
5000	0.53863	-0.44635	-0.11565	0.07672

Table S23Mulliken charges for individual fragments in QM/MM optimized
snapshots of Compound I taken from the **2C9_dist** MD simulation.

Snapshot [ps]	Q(Fe)	Q (O)	Q(S)	Q(porphyrin)
0	0.49698	-0.36264	-0.16353	0.08608
200	0.51371	-0.39445	-0.16514	0.09981
400	0.47597	-0.38049	-0.16806	0.14061
600	0.49304	-0.37951	-0.16064	0.09597
800	0.51056	-0.3936	-0.1287	0.05461
1000	0.50117	-0.39203	-0.16363	0.10734
1200	0.52261	-0.40215	-0.17108	0.10461
1400	0.49834	-0.40324	-0.1302	0.07047
1600	0.49218	-0.40888	-0.11997	0.08956
1800	0.48016	-0.38185	-0.13663	0.07671
2000	0.49988	-0.41094	-0.15373	0.12814
2200	0.48638	-0.39665	-0.17992	0.13707
2400	0.49088	-0.40288	-0.15062	0.11576
2600	0.46076	-0.37741	-0.16838	0.14634
2800	0.49399	-0.38383	-0.11563	0.05119
3000	0.50095	-0.38181	-0.10773	0.02981
3200	0.47995	-0.39868	-0.19146	0.17227
3400	0.47501	-0.39076	-0.15592	0.11375
3600	0.4948	-0.39731	-0.16794	0.1149
3800	0.47114	-0.40186	-0.13468	0.11228
4000	0.55451	-0.38575	-0.19841	0.07286
4200	0.47108	-0.3865	-0.14794	0.1099
4400	0.47506	-0.46148	-0.1627	0.18678
4600	0.48824	-0.43681	-0.11665	0.1095
4800	0.48581	-0.4512	-0.09298	0.09501
5000	0.45853	-0.46348	-0.14488	0.20631

Table S24Mulliken charges for individual fragments in QM/MM optimized
snapshots of Compound I taken from the 2C9_2warf MD simulation.

Snapshot [ps]	Q(Fe)	Q(O)	Q(S)	Q(porphyrin)
0	0.47352	-0.39067	-0.14899	0.16648
200	0.51394	-0.3871	-0.15731	0.12998
400	0.49673	-0.39559	-0.12145	0.12148
600	0.50851	-0.3888	-0.15999	0.14273
800	0.48874	-0.39761	-0.11979	0.13086
1000	0.50744	-0.46191	-0.12387	0.17717
1200	0.50533	-0.39888	-0.16603	0.16548
1400	0.49872	-0.38888	-0.14193	0.14587
1600	0.52852	-0.3809	-0.18213	0.14737
1800	0.5416	-0.38417	-0.19609	0.12765
2000	0.53314	-0.39197	-0.1737	0.13613
2200	0.52395	-0.38248	-0.19738	0.16608
2400	0.51502	-0.39172	-0.15087	0.11393
2600	0.5267	-0.38824	-0.19563	0.14381
2800	0.52808	-0.39486	-0.20263	0.17417
3000	0.56289	-0.43099	-0.17999	0.13755
3200	0.531	-0.46384	-0.16003	0.18805
3400	0.55975	-0.4852	-0.13244	0.15744
3600	0.55377	-0.47296	-0.17661	0.20282
3800	0.55582	-0.46304	-0.16568	0.15664
4000	0.56263	-0.4603	-0.17574	0.17542
4200	0.5576	-0.46678	-0.14353	0.1494
4400	0.60607	-0.48404	-0.17439	0.14064
4600	0.57828	-0.48619	-0.13402	0.13233
4800	0.53206	-0.45467	-0.15118	0.1813
5000	0.52536	-0.46591	-0.12591	0.1478

Table S25Mulliken charges for individual fragments in QM/MM optimized
snapshots of Compound I taken from the **2D6_apo** MD simulation.

Snapshot [ps]	Q(Fe)	Q(O)	Q(S)	Q(porphyrin)
0	0.4477	-0.4419	-0.14312	0.23641
200	0.45991	-0.41121	-0.11841	0.16611
400	0.47704	-0.4177	-0.16672	0.20502
600	0.47518	-0.39344	-0.16903	0.17313
800	0.47146	-0.39421	-0.19163	0.20247
1000	0.4828	-0.39623	-0.17932	0.18436
1200	0.48791	-0.40168	-0.10921	0.08888
1400	0.48198	-0.39911	-0.17033	0.1659
1600	0.46152	-0.39668	-0.14514	0.16396
1800	0.45735	-0.40428	-0.1662	0.19708
2000	0.46937	-0.3962	-0.17624	0.16508
2200	0.46531	-0.39936	-0.1901	0.19912
2400	0.47899	-0.39533	-0.15492	0.16545
2600	0.48267	-0.39491	-0.17534	0.15675
2800	0.47039	-0.39421	-0.14988	0.15341
3000	0.51132	-0.41551	-0.1207	0.09822
3200	0.49169	-0.39183	-0.19658	0.17305
3400	0.4917	-0.4088	-0.14439	0.12511
3600	0.47836	-0.41783	-0.0927	0.09352
3800	0.47926	-0.41289	-0.14211	0.14517
4000	0.46075	-0.41363	-0.15759	0.19143
4200	0.50766	-0.42428	-0.14053	0.12124
4400	0.47395	-0.41874	-0.16856	0.17449
4600	0.48769	-0.41434	-0.1178	0.12548
4800	0.49456	-0.41605	-0.17202	0.16878
5000	0.47741	-0.41944	-0.1611	0.16943
	-			

Table S26Mulliken charges for individual fragments in QM/MM optimized
snapshots of Compound I taken from the **2D6_dex** MD simulation.

Snapshot [ps]	Q(Fe)	Q(O)	Q(S)	Q(porphyrin)
0	0.49002	-0.4487	-0.06554	0.08565
200	0.53828	-0.44926	-0.00876	-0.04949
400	0.4807	-0.4667	-0.06399	0.10463
600	0.51438	-0.42254	-0.09474	0.06909
800	0.52464	-0.45961	-0.10847	0.1096
1000	0.50948	-0.44358	-0.07872	0.07663
1200	0.53352	-0.45889	-0.07603	0.06482
1400	0.52061	-0.45368	-0.02219	0.00123
1600	0.48924	-0.44152	-0.08971	0.10955
1800	0.50774	-0.44797	-0.07303	0.07675
2000	0.52925	-0.43568	-0.11029	0.07669
2200	0.50859	-0.4527	-0.08416	0.08905
2400	0.52665	-0.44318	-0.05719	0.03558
2600	0.51276	-0.44349	-0.04881	0.02816
2800	0.50999	-0.50712	-0.02955	0.08444
3000	0.51965	-0.43892	-0.08521	0.06884
3200	0.51107	-0.44863	-0.05122	0.03887
3400	0.52462	-0.43593	-0.05529	0.02537
3600	0.53093	-0.45199	-0.04333	0.03932
3800	0.51213	-0.44362	-0.09008	0.08322
4000	0.5214	-0.41888	-0.09558	0.05656
4200	0.49984	-0.44154	-0.08567	0.07587
4400	0.51784	-0.44476	-0.10326	0.08989
4600	0.49159	-0.44258	-0.09375	0.11026
4800	0.51231	-0.45187	-0.08371	0.08932
5000	0.48293	-0.44975	-0.05349	0.09647
	-			

Table S27Mulliken charges for individual fragments in QM/MM optimized
snapshots of Compound I taken from the **3A4_apo** MD simulation.

Snapshot [ps]	Q(Fe)	Q(O)	Q(S)	Q(porphyrin)
0	0.50219	-0.45127	-0.05418	0.05825
200	0.52298	-0.44378	-0.05296	0.02409
400	0.53728	-0.45313	-0.09296	0.06029
600	0.51604	-0.44955	-0.02133	-0.00798
800	0.52887	-0.43827	-0.05227	-0.00639
1000	0.53069	-0.44533	-0.03852	-0.00723
1200	0.51452	-0.44814	-0.08233	0.06893
1400	0.53341	-0.414	-0.08543	0.01581
1600	0.51249	-0.39273	-0.07419	0.00159
1800	0.54103	-0.43234	-0.10793	0.05983
2000	0.53467	-0.43683	-0.07297	0.01913
2200	0.48793	-0.47186	-0.06317	0.09374
2400	0.49299	-0.51581	-0.13811	0.22645
2600	0.52405	-0.43852	-0.11547	0.09044
2800	0.49404	-0.45452	-0.11535	0.1352
3000	0.51022	-0.42955	-0.09117	0.05929
3200	0.47083	-0.51431	-0.11506	0.21694
3400	0.51975	-0.43404	-0.11288	0.07601
3600	0.50952	-0.47844	-0.12445	0.14126
3800	0.50549	-0.45019	-0.1264	0.13094
4000	0.5131	-0.44964	-0.11089	0.10679
4200	0.49507	-0.47994	-0.04642	0.08714
4400	0.525	-0.44163	-0.10337	0.08663
4600	0.50984	-0.47784	-0.08505	0.09773
4800	0.49143	-0.51297	-0.07315	0.14584
5000	0.49553	-0.48451	-0.13169	0.16459

Table S28Mulliken charges for individual fragments in QM/MM optimized
snapshots of Compound I taken from the **3A4_dex** MD simulation.

Snapshot [ps]	Q(Fe)	Q(O)	Q(S)	Q(porphyrin)
0	0.52828	-0.45817	-0.18372	0.2162
200	0.52042	-0.44589	-0.16132	0.17277
400	0.5183	-0.43379	-0.23685	0.24447
600	0.5247	-0.42316	-0.20889	0.19066
800	0.53442	-0.43593	-0.18535	0.18496
1000	0.55236	-0.4431	-0.1535	0.12439
1200	0.52741	-0.45041	-0.24597	0.27689
1400	0.54048	-0.42724	-0.20258	0.19534
1600	0.54302	-0.42377	-0.21408	0.19938
1800	0.52856	-0.42307	-0.14489	0.12249
2000	0.51139	-0.4321	-0.22498	0.24494
2200	0.52158	-0.43794	-0.17771	0.17426
2400	0.53756	-0.42671	-0.19584	0.19238
2600	0.51336	-0.44255	-0.17777	0.19864
2800	0.55217	-0.49644	-0.16948	0.20195
3000	0.51146	-0.4781	-0.19346	0.2575
3200	0.54826	-0.42451	-0.2009	0.16393
3400	0.50624	-0.46762	-0.16599	0.21917
3600	0.54941	-0.4343	-0.20652	0.18964
3800	0.58472	-0.42179	-0.18346	0.10647
4000	0.53131	-0.49622	-0.17966	0.21897
4200	0.58627	-0.43123	-0.17612	0.11485
4400	0.55477	-0.42371	-0.1794	0.15221
4600	0.54422	-0.43099	-0.17988	0.15229
4800	0.55551	-0.42985	-0.21891	0.19185
5000	0.50829	-0.43473	-0.16943	0.18267

Table S29Mulliken charges for individual fragments in QM/MM optimized
snapshots of Compound I taken from the P450cam_apo MD simulation.

Snapshot [ps]	Q(Fe)	Q(O)	Q(S)	Q(porphyrin)
0	0.48426	-0.42561	-0.22807	0.23858
200	0.47991	-0.42166	-0.21832	0.2146
400	0.48373	-0.43223	-0.27344	0.29852
600	0.48767	-0.43336	-0.23297	0.24716
800	0.47328	-0.43651	-0.20624	0.2358
1000	0.49331	-0.42158	-0.24862	0.24349
1200	0.50934	-0.44741	-0.24427	0.25855
1400	0.49873	-0.45937	-0.23625	0.27983
1600	0.51337	-0.45074	-0.27231	0.27706
1800	0.50433	-0.42256	-0.31258	0.29973
2000	0.50862	-0.439	-0.17368	0.19585
2200	0.5152	-0.45092	-0.2072	0.19539
2400	0.46374	-0.41897	-0.13853	0.15653
2600	0.48917	-0.36474	-0.1545	0.09519
2800	0.49655	-0.43917	-0.21531	0.26158
3000	0.48502	-0.4409	-0.19134	0.24881
3200	0.50623	-0.47596	-0.19757	0.27501
3400	0.49107	-0.4361	-0.20009	0.21892
3600	0.52381	-0.4593	-0.16871	0.18681
3800	0.4941	-0.44212	-0.17589	0.2354
4000	0.50896	-0.44001	-0.20854	0.22535
4200	0.58208	-0.48147	-0.08363	0.07782
4400	0.49817	-0.4015	-0.17398	0.1815
4600	0.46935	-0.44594	-0.20203	0.28003
4800	0.47621	-0.44197	-0.13529	0.20123
5000	0.48214	-0.45039	-0.18593	0.27591

Table S30Mulliken charges for individual fragments in QM/MM optimized
snapshots of Compound I taken from the P450cam_prop MD
simulation.

Part E Key bond lengths and hydrogen bond distances

Table S31Distances [in Å], between the heme iron and Cys435sulfur, heme iron and ferryl oxygen, Cys435 sulfur and the
backbone nitrogen atoms of Val436, Gly437 and Glu438 in
the QM/MM optimized snapshots from the 2C9_apo simulation.

Snapshot [ps]	d(Fe-S)	d(Fe–O)	d(S-Val436)	d(S-Gly437)	d(S-Glu438)
0	2.77984	1.61488	3.31776	2.32686	3.47932
200	2.67446	1.61826	3.39141	2.36771	3.41419
400	2.56206	1.62288	3.2112	2.41874	3.42235
600	2.57893	1.62014	3.29596	2.3496	3.57655
800	2.70439	1.61817	3.19405	2.29746	3.38096
1000	2.70766	1.61719	3.23435	2.26208	3.46235
1200	2.88243	1.61439	3.07147	2.21397	3.61365
1400	2.61673	1.62312	3.12328	2.41222	3.29346
1600	2.72544	1.61849	3.37019	2.39243	3.2794
1800	2.66767	1.61981	3.32001	2.29854	3.45354
2000	2.65047	1.62104	3.18175	2.26728	3.39207
2200	2.61385	1.62119	3.25106	2.26454	3.54927
2400	2.56638	1.6272	3.12316	2.27817	3.43631
2600	2.67321	1.62236	3.29426	2.31892	3.55777
2800	2.65971	1.61954	3.36428	2.32332	3.77502
3000	2.63418	1.61971	3.24441	2.26553	3.41537
3200	2.67076	1.61687	2.78732	2.2777	3.42221
3400	2.62353	1.62146	3.29985	2.3061	3.63222
3600	2.64818	1.62065	2.99	2.2646	3.574
3800	2.61668	1.6202	3.32289	2.32301	3.33275
4000	2.6145	1.62266	3.23869	2.25001	3.60284
4200	2.71022	1.61561	3.24027	2.25211	3.57293
4400	2.72864	1.61739	3.20553	2.50124	3.93607
4600	2.63486	1.61818	3.58957	2.37818	3.51961
4800	2.81916	1.6095	3.28931	2.28351	3.27236
5000	2.78146	1.61537	3.03701	2.3617	3.7115

Snapshot [ps]	d(Fe-S)	d(Fe–O)	d(S-Val436)	d(S-Gly437)	d(S-Glu438)
0	2.62792	1.61964	3.26053	2.46248	3.56521
200	2.64668	1.61814	3.19536	2.55341	3.65963
400	2.61001	1.61857	3.33809	2.28099	3.46768
600	2.62345	1.61941	3.13009	2.26732	3.5494
800	2.55855	1.62595	3.32603	2.52627	3.52832
1000	2.61652	1.61952	3.42603	2.336	3.24168
1200	2.60956	1.62058	3.17366	2.5911	3.65928
1400	2.57118	1.62195	3.14763	2.34604	3.40921
1600	2.61572	1.61975	3.28428	2.42006	3.38235
1800	2.58686	1.62045	3.2748	2.44035	3.5874
2000	2.61873	1.6219	3.14318	2.40971	3.19751
2200	2.59962	1.6217	3.06453	2.3124	3.86068
2400	2.56699	1.6225	3.36355	2.28588	3.55914
2600	2.6234	1.62013	3.45146	2.38699	3.62052
2800	2.71616	1.61564	2.97324	2.44718	3.66927
3000	2.64382	1.61538	3.134	2.27144	3.31443
3200	2.64067	1.61847	3.62377	4.18154	3.06029
3400	2.65189	1.61911	3.38164	4.19436	3.04256
3600	2.623	1.62228	3.78012	4.45076	3.12401
3800	2.72698	1.61594	3.4006	4.18632	3.17671
4000	2.88982	1.61252	3.73696	5.08974	3.60525
4200	2.94193	1.61041	3.58033	4.48109	3.18757
4400	2.81914	1.61386	3.59279	4.6289	3.13005
4600	2.90536	1.61018	3.68846	4.5584	3.22345
4800	3.16717	1.61138	3.39394	5.05818	3.81201
5000	2.61807	1.61745	3.05706	4.35654	2.70921

Table S32Distances [in Å], between the heme iron and Cys435
sulfur, heme iron and ferryl oxygen, Cys435 sulfur and the
backbone nitrogen atoms of Val436, Gly437 and Glu438 in
the QM/MM optimized snapshots from the **2C9_prox** simulation.

Snapshot [ps]	d(Fe-S)	d(Fe–O)	d(S-Val436)	d(S-Gly437)	d(S-Glu438)
0	2.54704	1.62578	3.28194	2.46948	3.31352
200	2.5754	1.6225	3.37709	2.46482	3.55044
400	2.54798	1.62429	3.28189	2.38342	3.60804
600	2.58604	1.62092	3.34743	2.35855	3.54075
800	2.60737	1.6227	3.66642	2.47128	3.49943
1000	2.59792	1.62413	3.55487	2.64526	3.22014
1200	2.54801	1.62415	3.46724	2.57563	3.56532
1400	2.58486	1.62629	3.26315	2.59252	4.01358
1600	2.63922	1.61878	3.29235	2.30364	3.58111
1800	2.5341	1.62586	3.46633	2.36391	3.50752
2000	2.62083	1.61856	3.62647	2.39087	3.32125
2200	2.55915	1.6225	3.59881	2.37629	3.34787
2400	2.58817	1.62216	3.62891	2.42589	3.49093
2600	2.66695	1.61678	3.56385	2.34441	3.54289
2800	2.59812	1.62011	3.4211	2.43245	3.54969
3000	2.68672	1.6201	3.43584	2.43704	3.62966
3200	2.60881	1.62019	3.4326	2.42766	3.46375
3400	2.66863	1.61916	3.33684	2.32112	3.5617
3600	2.64655	1.61976	3.29241	2.42765	3.64094
3800	2.58898	1.62126	3.38915	2.75468	3.67338
4000	2.66061	1.6161	3.15577	2.52828	3.76819
4200	2.58992	1.62133	3.09151	2.5355	3.71231
4400	2.58726	1.62396	3.47272	2.49044	3.87887
4600	2.58725	1.61968	3.55538	2.47028	3.52296
4800	2.57945	1.62588	2.91674	2.37823	3.63516
5000	2.6558	1.61792	3.08313	2.31247	3.97602

Table S33Distances [in Å], between the heme iron and Cys435
sulfur, heme iron and ferryl oxygen, Cys435 sulfur and the
backbone nitrogen atoms of Val436, Gly437 and Glu438 in
the QM/MM optimized snapshots from the **2C9_dist** simulation.

Table S34Distances [in Å], between the heme iron and Cys435
sulfur, heme iron and ferryl oxygen, Cys435 sulfur and the
backbone nitrogen atoms of Val436, Gly437 and Glu438 in
the QM/MM optimized snapshots from the **2C9_2warf** simulation.

Snapshot [ps]	d(Fe-S)	d(Fe–O)	d(S-Val436)	d(S-Gly437)	d(S-Glu438)
0	2.59809	1.61896	3.27265	2.29955	3.40715
200	2.61504	1.61892	3.23935	2.36327	3.44195
400	2.5959	1.62102	3.25932	2.38322	3.42764
600	2.58384	1.61973	3.41683	2.37598	3.24985
800	2.63182	1.6178	3.32325	2.25759	3.87655
1000	2.61399	1.61821	3.08668	2.27252	3.61312
1200	2.64939	1.61729	3.02154	2.221	3.50065
1400	2.60604	1.61802	3.21679	2.26604	3.35655
1600	2.59898	1.62036	3.13973	2.37981	3.75301
1800	2.5825	1.62023	3.27	2.25119	3.77244
2000	2.61649	1.62006	2.9285	2.34805	3.51487
2200	2.59536	1.61964	2.83598	2.20873	3.52809
2400	2.60891	1.62216	3.00176	2.25666	4.13609
2600	2.56283	1.62077	2.93198	2.26348	3.85535
2800	2.63306	1.61722	3.18377	2.31568	3.50049
3000	2.65155	1.61767	3.25307	2.34028	3.96453
3200	2.56994	1.62198	2.70007	2.21185	3.58988
3400	2.58769	1.6216	3.27673	2.3268	3.22176
3600	2.63713	1.62023	3.25052	2.43599	3.12734
3800	2.64754	1.61902	3.27323	2.38919	3.47872
4000	2.86436	1.61384	3.28125	2.31917	3.99774
4200	2.60734	1.6206	3.01422	2.38007	3.30387
4400	2.63608	1.62021	2.8973	2.33562	3.61224
4600	2.58581	1.62169	3.06449	2.26743	3.6374
4800	2.59165	1.61692	3.12778	2.42518	4.00107
5000	2.55301	1.62465	3.26924	2.29367	3.42748

Table S35Distances [in Å], between the heme iron and Cys435
sulfur, heme iron and ferryl oxygen, Cys435 sulfur and the
backbone nitrogen atoms of Leu231, Gly232 and Glu233 in
the QM/MM optimized snapshots from the **2D6_apo** simulation.

Snapshot [ps]	d(Fe-S)	d(Fe–O)	d(S-Leu231)	d(S-Gly232)	d(S-Glu233)
0	2.5517	1.62119	3.33462	2.41898	2.41898
200	2.65183	1.61607	3.36153	2.46744	2.46744
400	2.60261	1.6189	3.38863	2.43906	2.43906
600	2.62462	1.61735	3.16814	2.51229	2.51229
800	2.60793	1.62079	3.24407	2.65953	2.65953
1000	2.59699	1.62152	3.5083	2.56662	2.56662
1200	2.60634	1.62007	3.2825	2.3986	2.3986
1400	2.59684	1.61971	3.20034	2.60621	2.60621
1600	2.68605	1.61534	3.65205	2.46294	2.46294
1800	2.70494	1.61464	3.49221	2.31274	2.31274
2000	2.69456	1.61738	3.49415	2.36745	2.36745
2200	2.6628	1.61727	3.611	2.38071	2.38071
2400	2.64427	1.6166	3.75287	2.37353	2.37353
2600	2.65165	1.61737	3.57289	2.34524	2.34524
2800	2.65012	1.61789	3.61253	2.35651	2.35651
3000	2.74895	1.61886	3.82427	2.41707	2.41707
3200	2.64015	1.61964	3.27829	2.30305	2.30305
3400	2.70028	1.62738	3.01739	2.44369	2.44369
3600	2.69057	1.62684	3.10586	2.60952	2.60952
3800	2.69636	1.62672	2.97109	2.2928	2.2928
4000	2.68771	1.62267	3.20189	2.3023	2.3023
4200	2.691	1.62383	3.31937	2.32626	2.32626
4400	2.78258	1.61884	3.19099	2.28815	2.28815
4600	2.75616	1.62298	3.50578	2.41385	2.41385
4800	2.63758	1.61962	3.45819	2.38868	2.38868
5000	2.63356	1.62232	3.43312	2.32808	2.32808

Table S36	Distances [in Å], between the heme iron and Cys435
	sulfur, heme iron and ferryl oxygen, Cys435 sulfur and the
	backbone nitrogen atoms of Val436, Gly437 and Glu438 in
	the QM/MM optimized snapshots from the 2D6 dex simulation.

Snapshot [ps]	d(Fe-S)	d(Fe–O)	d(S-Val436)	d(S-Gly437)	d(S-Glu438)
0	2.56172	1.62691	3.12794	2.36478	3.98708
200	2.54171	1.62561	3.24152	2.47921	3.61618
400	2.55798	1.62362	3.21544	2.30421	3.15807
600	2.5977	1.62207	3.27797	2.38437	3.30023
800	2.58144	1.62198	3.24545	2.32542	3.3352
1000	2.61286	1.62125	3.3767	2.40861	3.28494
1200	2.63366	1.61857	3.86877	2.44147	3.23768
1400	2.59547	1.62066	3.33286	2.22766	3.47152
1600	2.57124	1.62194	3.53327	2.4034	3.26208
1800	2.56412	1.62312	3.48287	2.32821	3.47447
2000	2.60515	1.6207	3.48651	2.34127	3.21922
2200	2.55706	1.62345	3.44664	2.25261	2.94158
2400	2.61521	1.62002	3.41586	2.41835	3.43735
2600	2.60118	1.61976	3.40756	2.31109	3.40795
2800	2.57544	1.62089	3.6776	2.33757	3.08154
3000	2.65011	1.61972	3.74154	2.28264	3.2786
3200	2.63713	1.61879	3.56	2.32201	3.05852
3400	2.60784	1.62049	3.62416	2.36953	3.1993
3600	2.59789	1.62173	3.98175	2.58766	3.09273
3800	2.60979	1.62285	3.54975	2.41454	3.83071
4000	2.55376	1.62471	3.46486	2.27264	3.22146
4200	2.65457	1.62109	2.99175	2.26352	4.34017
4400	2.54583	1.62564	3.31587	2.18211	3.88177
4600	2.60275	1.62163	3.64398	2.35901	3.45967
4800	2.62027	1.6221	3.41091	2.34232	3.35471
5000	2.55858	1.62355	3.5737	2.33696	3.05052

Snapshot [ps]	d(Fe-S)	d(Fe–O)	d(S-Ile443)	d(S-Gly444)	d(S-Met445)
0	2.54948	1.62425	3.57787	2.47925	3.57892
200	2.65542	1.61959	3.71568	2.75166	3.36163
400	2.52809	1.62339	3.62655	2.47182	3.38699
600	2.6104	1.62169	3.45592	2.49764	3.50858
800	2.60937	1.62062	3.4085	2.38463	3.49413
1000	2.59176	1.62263	3.39424	2.52522	3.79959
1200	2.66236	1.62146	3.55362	2.51125	3.4857
1400	2.59033	1.61792	3.3245	2.45426	3.7097
1600	2.56327	1.62326	3.18677	2.42727	3.48701
1800	2.62387	1.62405	3.18684	2.41638	3.95541
2000	2.61608	1.622	3.28161	2.32087	3.61306
2200	2.57867	1.62082	3.32718	2.36258	3.55952
2400	2.62378	1.62151	3.64123	2.46826	3.58075
2600	2.57554	1.62417	3.37042	2.37146	3.74436
2800	2.6368	1.6282	3.56697	2.49823	3.48246
3000	2.60135	1.62042	3.43016	2.46732	3.53767
3200	2.59016	1.62085	3.44674	2.43555	3.46625
3400	2.59821	1.62015	3.2628	2.44198	3.75605
3600	2.6877	1.61893	2.96565	3.217	4.0255
3800	2.59411	1.62082	3.38041	2.45898	3.39734
4000	2.58755	1.61847	3.17663	2.34012	3.44116
4200	2.54853	1.62062	3.27672	2.33742	3.43549
4400	2.60142	1.62428	3.27643	2.42086	3.43139
4600	2.57599	1.62532	3.33483	2.34263	3.64294
4800	2.5641	1.62258	3.24631	2.38233	3.6952
5000	2.55198	1.62378	2.80286	2.87831	3.93779

Table S37Distances [in Å], between the heme iron and Cys435
sulfur, heme iron and ferryl oxygen, Cys435 sulfur and the
backbone nitrogen atoms of Ile443, Gly444 and Met445 in
the QM/MM optimized snapshots from the **3A4_apo** simulation.

_

Table S38	Distances [in Å], between the heme iron and Cys435
	sulfur, heme iron and ferryl oxygen, Cys435 sulfur and the
	backbone nitrogen atoms of Ile443, Gly444 and Met445 in
	the QM/MM optimized snapshots from the 3A4_dex simulation.

Snapshot [ps]	d(Fe-S)	d(Fe–O)	d(S-Ile443)	d(S-Gly444)	d(S-Met445)
0	2.57156	1.62312	3.50036	2.55537	3.47199
200	2.60573	1.62026	3.41812	2.5851	3.42451
400	2.64463	1.61837	3.4289	2.34525	3.21903
600	2.60038	1.62051	3.57741	2.66213	3.49044
800	2.60053	1.61903	3.58565	2.46803	3.17569
1000	2.65973	1.61935	3.58472	2.72298	3.7921
1200	2.63405	1.6191	3.1274	2.43298	3.8081
1400	2.60111	1.6191	3.47612	2.41952	3.13885
1600	2.57066	1.62091	3.59078	2.48356	3.20564
1800	2.61311	1.62139	3.33409	2.42019	3.13834
2000	2.63327	1.61907	3.82036	2.58403	3.13351
2200	2.56301	1.62504	3.1611	2.48063	3.33685
2400	2.54517	1.62893	3.09647	2.34776	3.2793
2600	2.56666	1.62336	3.48055	2.60381	3.09331
2800	2.53479	1.6258	3.2146	2.43801	3.19202
3000	2.59263	1.62108	3.32546	2.45919	3.10902
3200	2.53714	1.62901	3.2448	2.42473	3.27916
3400	2.58162	1.62487	3.30375	2.41087	3.11531
3600	2.56629	1.62761	3.24922	2.47287	3.00457
3800	2.54878	1.62445	3.036	2.27485	3.25651
4000	2.57435	1.62668	3.10801	2.46336	3.26362
4200	2.55148	1.62777	3.33863	2.54678	3.40789
4400	2.58106	1.62339	3.20649	2.56911	3.42629
4600	2.56825	1.6246	3.49163	2.48929	3.21795
4800	2.54254	1.63152	3.4238	2.46579	3.34019
5000	2.5741	1.62824	2.96693	2.32234	3.2092

Table S39Distances [in Å], between the heme iron and Cys435
sulfur, heme iron and ferryl oxygen, Cys435 sulfur and the
backbone nitrogen atoms of Leu358, Gly359 and Gln360 in
the QM/MM optimized snapshots from the P450cam_apo simulation.

Snapshot [ps]	d(Fe-S)	d(Fe-O)	d(S-Leu358)	d(S-Gly359)	d(S-Glu360)
0	2.58441	1.62225	3.3539	2.49144	3.20664
200	2.57702	1.62086	3.59579	2.46691	3.07238
400	2.54508	1.62452	3.09282	2.18901	3.25571
600	2.57258	1.62334	3.33024	2.29819	2.77933
800	2.60923	1.61684	3.33265	2.32239	3.93951
1000	2.66457	1.61755	3.13482	2.26707	4.21688
1200	2.61835	1.62333	3.10566	2.22525	3.33671
1400	2.65534	1.61895	3.06539	2.17597	3.89262
1600	2.60171	1.62022	3.24797	2.22675	3.25898
1800	2.59521	1.61717	3.48437	2.32446	3.56742
2000	2.56429	1.62247	3.18492	2.19521	3.27362
2200	2.59203	1.62094	3.32706	2.23016	3.52423
2400	2.62197	1.61906	3.10512	2.19662	3.6625
2600	2.58987	1.62088	3.35666	2.21635	3.45889
2800	2.69206	1.62223	3.33231	2.28583	3.93691
3000	2.5894	1.62367	3.41707	2.18107	3.50681
3200	2.61844	1.61874	3.20236	2.23647	3.2654
3400	2.60134	1.62673	3.34336	2.23629	3.78851
3600	2.62518	1.61979	3.07917	2.16815	3.58588
3800	2.74567	1.61236	3.12861	2.15271	3.83288
4000	2.65491	1.62613	3.4862	2.23243	3.51808
4200	2.79157	1.61688	3.39661	2.30285	3.78807
4400	2.67098	1.61937	3.44906	2.24855	3.65051
4600	2.64935	1.618	3.3385	2.24726	3.77022
4800	2.65589	1.6176	3.00056	2.17869	3.53183
5000	2.56399	1.62029	3.33678	2.22803	3.94871

Table S40Distances [in Å], between the heme iron and Cys435
sulfur, heme iron and ferryl oxygen, Cys435 sulfur and the
backbone nitrogen atoms of Leu358, Gly359 and Glu360 in
the QM/MM optimized snapshots from the **P450**cam_prop simulation.

Snapshot [ps]	d(Fe-S)	d(Fe-O)	d(S-Leu358)	d(S-Gly359)	d(S-Glu360)
0	2.59327	1.62497	3.43013	2.4338	2.80913
200	2.57574	1.62632	3.33553	2.36145	2.91568
400	2.55939	1.62583	3.13577	2.37845	2.66767
600	2.59933	1.6257	3.37723	2.47677	3.12338
800	2.55454	1.62593	3.12432	2.34927	3.12344
1000	2.61251	1.6238	2.99158	2.32562	3.2824
1200	2.58295	1.62558	3.0789	2.35892	3.30834
1400	2.55243	1.62751	3.27636	2.37267	2.82634
1600	2.60402	1.62626	3.12073	2.27852	2.82024
1800	2.60962	1.62434	3.08298	2.26633	2.62332
2000	2.62775	1.62003	3.4914	2.46214	3.80849
2200	2.59403	1.6266	3.36034	2.26581	3.65158
2400	2.57118	1.62483	3.52656	2.48967	3.63594
2600	2.60358	1.61762	3.36898	2.31313	3.83907
2800	2.58086	1.62637	3.31236	3.92331	2.50206
3000	2.58966	1.62366	2.97097	4.38875	2.82808
3200	2.57741	1.62882	3.26317	4.05405	2.60739
3400	2.60879	1.62592	3.2397	3.96641	2.48779
3600	2.63197	1.62237	3.46319	3.55102	2.4783
3800	2.60967	1.62526	3.25683	4.36917	2.7542
4000	2.62745	1.62506	3.22151	3.97257	2.53851
4200	2.70086	1.61948	3.72022	5.13102	2.88738
4400	2.61125	1.62378	3.17462	4.35443	2.86593
4600	2.60599	1.62635	3.36837	4.00431	2.7249
4800	2.58707	1.62549	3.11928	4.42946	2.91666
5000	2.5893	1.62606	3.18237	4.00909	2.62153

References

(1) Brooks, B. R.; Bruccoleri, R. E.; Olafson, B. D.; States, D. J.;

Swaminathan, S.; Karplus, M. J. Comput. Chem. 1983, 4, 187.

(2) MacKerell, A. D.; Bashford, D.; Bellott, M.; Dunbrack, R. L.;

Evanseck, J. D.; Field, M. J.; Fischer, S.; Gao, J.; Guo, H.; Ha, S.; Joseph-McCarthy,

D.; Kuchnir, L.; Kuczera, K.; Lau, F. T. K.; Mattos, C.; Michnick, S.; Ngo, T.; Nguyen, D. T.; Prodhom, B.; Reiher, W. E.; Roux, B.; Schlenkrich, M.; Smith, J. C.;

Stote, R.; Straub, J.; Watanabe, M.; Wiorkiewicz-Kuczera, J.; Yin, D.; Karplus, M. J. Phys. Chem. B 1998, 102, 3586.

(3) Zurek, J.; Foloppe, N.; Harvey, J. N.; Mulholland, A. J. *Org. Biomol. Chem.* **2006**, *4*, 3931.

(4) Oláh, J.; Mulholland, A. J.; Harvey, J. N. *Proc. Natl. Acad. Sci. USA* **2011**, *Advance Article*, doi:10.1073/pnas.1010194108.

(5) Bathelt, C. M.; Zurek, J.; Mulholland, A. J.; Harvey, J. N. *J. Am. Chem. Soc.* **2005**, *127*, 12900.

(6) Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. J. Chem. Phys. **1983**, 79, 926.

(7) Ryckaert, J.-P.; Ciccotti, G.; Berendsen, H. J. C. J. Comput. Phys. **1977**, 23, 327.