Quantitative characterization of the influence of nanoscale morphology of nanostructured surfaces on bacterial adhesion and biofilm formation

Ajay Vikram Singh^{1,2}, Varun Vyas^{1,2}, Rajendra Patil³, Vimal Sharma^{1,4}, Pasquale Emanuele Scopelliti^{2,4}, Gero Bongiorno⁴, Alessandro Podestà², Cristina Lenardi^{2,4}, *Wasudev Namdev Gade³, *Paolo Milani^{2,4}.

¹ European School of Molecular Medicine (SEMM), IFOM-IEO Campus, via Adamello 16, 20139, Milano, Italy.

² Interdisciplinary Centre for Nanostructured Materials and Interfaces (CIMAINA) and Department of Physics, via Celoria 16, Università degli Studi di Milano, 20133, Milano, Italy.

³ Department of Biotechnology, University of Pune, Ganesh Khind, Pune-411007, India.

⁴ Micro and Nano Fabrication Platform, Fondazione Filarete, Viale Ortles 22/4, 20139 Milano, Italy.

* Corresponding authors. E-mail: pmilani@mi.infn.it; wngade@unipune.ernet.in

Supporting Text S1

Table of Contents

- 1 Calculations of morphological parameters from AFM images
- 2 Contact angle measurements and surface energy calculation on ns-TiO2 films
- 3 Bacterial live-dead cell counting using ImageJ

References

1 - Calculations of morphological parameters from AFM images

Several statistical morphological parameters have been calculated from AFM topographies: rootmean-square roughness (Rq), Skewness (Rsk), and Kurtosis (Rku), specific area A_{spec} [2]. Rq represents the rms deviation of height values from the mid plane value \overline{h} . For a Gaussian surface, about 68% of surface points have height between \bar{h} -Rq and \bar{h} +Rq. Gaussian surface possess a symmetric height values distribution, peaks and valleys being equally represented. Skewness (Rsk) is a statistical measure of the symmetry of the height distribution and it can highlight a prominence of valleys over peaks $(Rsk<0)$, or vice versa $(Rsk>0)$; for a symmetric surface, Rsk=0). Kurtosis quantifies the 'peakedness' of a surface. A surface with a Gaussian height distribution has a kurtosis value of 3; a surface with a narrower height distribution (sharp peaks and valleys over a rather flat background) has a kurtosis value greater than 3, while a surface that has a broader height distribution (rather continuous rounded asperities and valleys) has a kurtosis value of less than 3. AFM topographies are 2-dimensional arrays of height values, organized in rows and columns. Specific area is defined as the ratio of surface area to projected area; it is always larger than unity for rough surfaces. Statistical morphological parameters are calculated from AFM maps as listed below:

$$
R_{q} = \sqrt{\frac{1}{N} \sum_{i,j} (h_{ij} - \overline{h})^{2}};
$$

\n
$$
R_{sk} = \frac{1}{NR_{q}^{3}} \sum_{i,j} (h_{ij} - \overline{h})^{3} ;
$$

\n
$$
R_{ku} = \frac{1}{NR_{q}^{4}} \sum_{i,j} (h_{ij} - \overline{h})^{4} ;
$$

\n
$$
A_{spec} = \frac{1}{N} \sum_{i,j} \sqrt{1 + \nabla_{ij}^{2}}.
$$

where h_{ii} represent the height values in the AFM topographic map (i, j) are the row and column indices), *N* the total number of heights values in the map, $\bar{h} = \frac{1}{N} \sum_{i,j} h_{ij}$, $\frac{1}{N} \sum_i h_{ij}$ if the average height of the surface (the quota of the surface mid plane), and ∇^2_{ii} is the squared i,j-th element of the (discrete) surface gradient.

2 - Contact angle measurements and surface energy calculation for ns-TiO2 films

The Sessile Drop Technique was employed to measure contact angles of water and other liquids on ns-TiO2 films and to calculate the solid surface energies based upon the Owens/Wendt theory [3], which relates the dispersive and polar components of the surface energy (γ^d and γ^p) of the solid surface and the wetting liquid to the contact angle θ and the total surface energy of the liquid:

$$
\gamma_L(1+\cos\theta) = 2\left(\sqrt{\gamma_L^d \gamma_S^d} + \sqrt{\gamma_L^p \gamma_S^p}\right)
$$

The Owens-Wendt equation strictly holds for smooth surfaces; when applied to rough surfaces, the obtained surface energies should be considered as semi-empirical, not necessarily coincident with the thermodynamically-defined surface energies. In the case of rough ns-TiO2 surfaces, reported SE represent the effective surface energies, which characterize this material with respect to its chemical nature and specific surface topography. In Table 1 of the present work total surface energies are reported, as calculated by instrument software by summing different surface free energy contributions (Lifshitz–van der Waals, acid/base, electron acceptor and electron donor.

3 - Bacterial live-dead cell counting using imageJ

The imageJ tool enabled us to quantify the bac-light stained live-dead bacterial cells attached on ns-TiO₂ using four basic steps. We change the scale of the image to micrometer to spatially calibrate the image using line selection tool (Analyze>Set Scale). Next, we converted the image into grey scale by using Image>Type>RGB Stack command which split the image in the 3 channels (no blue channel in our case). Subsequently, we segmented (isolate) the red-green stained dead-live bacterial cells using thresholding and made the montage of the red-green

channel to quantify the stained bacterial cells by measuring the threshold area and area fraction tools (*Analyse>Measure*).

References

- [1] Teague, E. C., Scire, F. E., Baker, S. M. & Jensen, S. W. Three-dimensional stylus profilometry. *Wear* 83, 1-12 (1982).
- [2] Gadelmawla, E. S., Koura, M. M., Maksoud, T. M. A., Elewa, I. M. & Soliman, H. H. Roughness parameters. *Journal of Materials Processing Technology* 123, 133-145 (2002).
- [3] D.K. Owens and R.C. Wendt, *J Appl Polym Sci* **13** (1969), p. 1741.