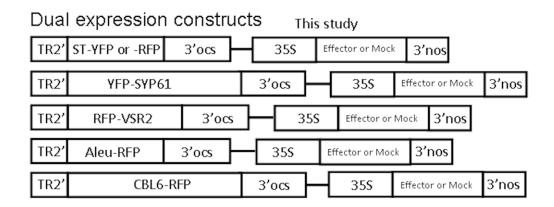


Supplemental figure 1: Co-transformation efficiency of two different genes from a single T-DNA region. Tobacco leaf infiltration with an Agrobacterium strain harbouring pRainbow yielding YFP-labelled plasma membrane (green) and RFP-labelled tonoplast (red) on the same T-DNA. A) Low magnification image illustrating the high correlation between the two fluorophors in a large number of cells. The scale bar represents 100 microns. B) High magnification image demonstrating red and green signals at the cell periphery that are strictly correlated with respect to intensity. The scale bar represents 20 microns.

Supplemental figure 2: Separation of plasma membrane from tonoplast. Tobacco leaf epidermis cells were co-infiltrated with an Agrobacterium strain harbouring the plasma membrane marker YFP-SYP121 (green) and another strain harbouring CBL6-RFP (red). A) Low magnification image illustrating that both markers label the cell periphery but CBL6-RFP labels additional transvacuolar strands and wraps around the nucleus (white arrows), as opposed to YFP-SYP121, which does not label transvacuolar strands and strictly leaves the nucleus inside the cell. The box in the Merged image (right) is the magnified regions shown below. B) High magnification inset from panel A (white box), illustrating clear separation of YFP-SYP121-labelled plasma membrane from the CBL6-RFP-labelled tonoplast. The scale bars represent 20 microns in both A) and B).


Supplemental figure 3: Rab NI mutants do not impair constitutive secretion. (A) Constant amounts (15 μ g) of α -amylase encoding-plasmid were electroporated with constant amounts (30 μ g) of PAT, Rab11(NI), Rha1(NI), Ara6(NI) or Rab7(NI) dual expression vectors. None of the mutants affected the transport of the secretory cargo α -amy. (B) An Agrobacterium strain harbouring a dual expression vector encoding GFP-Vam3 and Rab7(NI) was co-infiltrated with a sec-RFP strain. Integrity of the secretory route is maintained under conditions in which Rab7(NI) induces the formation of TGN-PVC GFP-Vam3 clusters. No accumulation of sec-RFP in the clusters was observed and normal apoplastic accumulation is evident when comparing with the bright-field image (BF). Scale bar is 10 μ m.

Supplemental figure 4:

Schematic drawings of recombinant genes used in this study

Single expression constructs

	'			
35\$	Amy-spo		3'nos	Pimpl et al., 2003
35\$	Aleu-amy		3'nos	This study
35\$	Amy-chi		3'nos	This study
35\$	Amy-BN2SA		3'nos	This study
35\$	α-Amy		3'nos	Phillipson et al., 2001
35\$	secRFP	3'no	s	This study
35\$	Aleu-RFP	3'no	s	Foresti et al., 2010
35\$	RFP-chi	3'no	s	This study
35\$	GFP-Vam3		3'nos	Foresti et al., 2006
35\$	CBL6-RFP		3'nos	This study
35\$	αTIP-YFP		3'nos	Hunter et al., 2007

Supplemental figure 5: Oligonucleotides used in this study

A) Primers to generate vacuolar cargo

Chitinase	NtChis 5'-GATCGGACTTCTTGTTGATACTATGTAAT-3' NtChias 5'-CTAGATTACATAGTATCAACAAGAAGTCC-3'
BN2SA	BN2SAs 5'-GATCTCCCAATGAGATGTCCAATGGGTGGATCTATTGCTGGTTTTTAAT-3' BN2SAas 5'-CTAGATTAAAAACCAGCAATAGATCCACCCATTGGACATCTCATTGGAGA-3'
Amy	Amys 5'-CCAGCTTGGCTAGCGGGCAAGTCCTCTTTCAGGGCTTCAACTG-3' 3'nosas 5'-ATAATTGCGGGACTCTAATCA-3'
RFP- chitinase	35Ss 5'-CCACTATCCTTCGCAAGA-3' RFPchias 5'-TTAGCCTCTAGAGTTACATAGTATCAACAAGAAGTCCGATCTCGGAACCT TCTGCTCCGG-3'
CBL6 (At4g16350)	CBL6s 5'-TTTTGGGATCGATGATGCAATGTTTAGATGG-3' CBL6as 5'-CACATCCCGCTAGCTCCATCCAGCTCACTAGGAGTG-3'

B) cDNA cloning oligonucleotides

Rab6 (At2g44610)	Rab6s 5'-TTGAGAAACCATGGCTCCGGTCTCGGCACTCGC-3' Rab6as 5'-GTTGTTGTCTAGAAATCTAACAAGAGCATCCTC-3'
Rab8 (At5g03502)	Rab8s 5'-TCTGACCATGGCGGT TGCGCCGGCAAGAGC-3' Rab8as 5'-CAATCAGGATCCTAAACGTAACTACAGCAAGCTG-3'
Rab11	Rab11s5'-AGTGTAACCATGGCGAGAAGACCGGACGAAG-3'
(At1g09630)	Rab11as5'-AACACAAACGGATCCTTTCAAGACGATGAGCAACAAGG-3'
Rha1	Rha1s 5'-TCAGTCAACCATGGCTAGCTCTGGAAACAAGAAC-3'
(At5g45130)	Rha1as 5'-CTCTTCAGTCTAGAATCTAAGCACAACACGATGAACTC-3'
Ara6 (At3g54840)	Ara6s 5'-GGGGTAAGCCATGGGATGTGCTTCTTCTCTCCAG-3' Ara6as 5'-TGATTCAACTCTAGAATCATGACGAAGGAGCAGGACGAGG-3'
Rab7	Rab7s5'-GGATCGCCATGGGTTCTTCTCGCCGGAGAGTTCTTC-3'
(At3g16100)	Rab7as5'-AAACTTTTTCTAGATTAGCATTCACACCCTGTTGA-3'

Supplemental figure 5: Oligonucleotides used in this study Cont.

C) Mutagenesis oligonucleotides

Rab6(NI)	Rab6(NI)s 5'-TAGTCGTGCTTGTGGGAATCAAAACTGATCTAGTGGA-3' Rab6(NI)as 5'-TCCACTAGATCAGTTTTGATTCCCACAAGCACGACTA-3'
Rab8(NI)	Rab8(NI)s 5'-CAAAATATTGGTTGGTATCAAAGCTGATATGGATG-3' Rab8(NI)as 5'-CATCCATATCAGCTTTGATACCAACCAATATTTTG-3'
Rab11(NI)	Rab11(NI)s 5'-ATGCTTCAGATCTGTCTTGATCCCAATCAACATGAT-3' Rab11(NI)as 5'-ATCATGTTGATTGGGATCAAGACAGATCTGAAGCAT-3'
Rha1(NI)	Rha1(NI)s 5'-TGGCTCTTGCTGGAATCAAAGCTGATTTATT-3' Rha1(NI)as 5'-AATAAATCAGCTTTGATTCCAGCAAGAGCCA-3'
Ara6(NI)	Ara6(NI)s 5'-TGGCTCTGGTTGGTATCAAAGCTGATCTACA-3' Ara6(NI)as 5'-TGTAGATCAGCTTTGATACCAACCAGAGCCA-3'
Rab7(NI)	Rab7(NI)s 5'-TTGTTGTGTTGGGGATCAAGACTGATGTTGA-3' Rab7(NI)as 5'-TCAACATCAGTCTTGATCCCCAACAACAA-3'

D) Primers to generate the dual expression vector

TR2	TR2EcoRls 5'-GCCAGTGAATTCGAGCTCGGTACCCGGCCTGAATTTCGCGGG-3' TRSTYas 5'-CTTCAAGTTGGTATGAATCATCGATTTGGTGTATCGAGATTGGTTATG-3'
ST-YFP	TRSTYs 5'-CATAACCAATCTCGATACACCAAATCGATGATTCATACCAACTTGAAG-3' STYas 5'-AGCAGGACTCTAGACTACTTGTACAGCTCGTCCATGCC-3'
3'ocs	3ocsXba1s5'-CTGTACAAGTAGTCTAGAGTCCTGCTTTAATGAGATATGC-3' 3ocs35sas5'-TTGATGAGACCTGCTGCGTAGGAGCTTGCATGCCTGCAGGTCCT-3'
35S	3ocs35ss5'-AGGACCTGCAGGCATGCAAGCTCCTACGCAGCAGGTCTCATCAA-3' amyas5'-GAAGTTGTACCACCCGCCATTGTGCTTCC-3'