SUPPORTING INFORMATION

Exploration of possible binding sites of nanoparticles on protein by crosslinking chemistry coupled with mass

spectrometry

Ni Li,^a Shang Zeng,^a Le He, Wenwan Zhong*

Department of Chemistry, University of California, Riverside, 92521

^{*a*} These authors contributed equally to the work.

Figure S1a. TEM image of the PAA-Fe₃O₄ NP (average diameter = 8.02 ± 1.26 nm (n = 100)).

Figure S1b. Zeta potential calculation from CE data. Top: Electropherogram of the 8.02-nm NPs; Bottom: Zeta potential calculated by the electrophoretic mobility of NPs from the equation¹ shown below the plot.

Fe ₃ O ₄	Electrophoretic mobility	Zeta potential
NPs	(m ² V ⁻¹ S ⁻¹)	(mV)
8.02 nm	$-3.44 \times 10^{-8} \pm 4.01 \times 10^{-11}$	-44.03 ± 0.08

$$\xi = \frac{\mu_e \bullet \eta}{\varepsilon} = \frac{\mu_e \bullet \eta}{\varepsilon_0 \bullet \varepsilon_r} = \frac{\mu_e \bullet 8.90 \text{E} - 4}{8.854187817 \text{E} - 12 \bullet 78.4}$$

Reference:

1. Schnabel, U.; Fischer, C.-H.; Kenndler, E. J. Microcolumn Sep. 1997, 9, 529-534.

Figure S1c. K _D	values for interaction	of the PAA-Fe	e ₃ O ₄ NPs with va	arious
proteins.				

Protein	Mw (kDa)	Dimension (nm)	n	$K_D(M)$
apo-calmodulin	17	$2.1 \times 2.1 \times 5.8$	2.1	1.51 ×10 ⁻⁸
beta-casein	24		1.3	4.60 ×10 ⁻⁶
bovine serum			·	
albumin	66	$2.7 \times 2.7 \times 11.6$	1.1	1.37×10^{-5}
gamma-globulin	60-70		1.0	3.36 ×10 ⁻⁷
Superoxide			·	
dismutase	32.5	$7.2 \times 4.0 \times 3.8$	Too weak to measure	
Insulin	5.8	$2.0 \times 2.5 \times 2.0$	Too weak to measure	

Figure S2. MALDI-Q-TOF MS/MS results for peptide peak at m/z 1640 KVPQVSTPTLVEVSR. Search result was obtained by MASCOT with an ions score of 44. There are 22 matches out of 84 fragment ions using 64 most intense peaks.

Figure S3. MALDI-TOF-MS spectrum for the tryptic digestion of HSA. A total of 13 peptides were consistently identified and they are listed in the table below.

List of typical HSA peptides found in our samples:

m/z	Sequence	
649	CASLQK	
674	TPVSDR	
715	AACLLPK	
789	LVTDLTK	
927	YLYEIAR	
940	DDNPNLPR	
961	FQNALLVR	
1074	LDELRDEGK	
1149	LVNEVTEFAK	
1226	FKDLGEENFK	
1386	YICENQDSISSK	
1640	KVPQVSTPTLVEVSR	
2045	45 VFDEFKPLVEEPQNLIK	

Figure S4. Circular dichroism spectra of 2.2×10^{-7} mol/L HSA (black) and 2.2×10^{-7} mol/L HSA with 2.4×10^{-8} mol/L PAA-Fe₃O₄ NPs (red).

Figure S5a. Electropherograms showing no interaction between ibuprofen and the PAA-coated Fe₃O₄ NPs. In this test, the ibuprofen was dissolved in 50% ethanol (HPLC grade, Fisher Scientific) to make a series of stock solutions with concentration from 4.84×10^{-4} M to 9.70×10^{-3} M. Two micro liters of the drug stock solution at different concentration was mixed with 9.4×10^{-12} mol NPs in a total volume of 20 µL which contained 5% ethanol. After overnight incubation, these samples were analyzed with capillary electrophoresis. No shift was observed in either the peak of NPs or that of ibuprofen, indicating no interaction occurring between these two. All traces were measured at 200 nm.

Figure S5b. Electropherograms of incubation of HSA with NPs and ibuprofen at ibuprofen concentration equal to or larger than 9.70×10^{-4} M. Traces were measured at 288 nm.

Figure S5c. Crystal structure of HSA bound with fusidic acid (PDB ID: 2VUF)

Figure S5d. Effect of fusidic acid on binding affinity between HSA and PAA-Fe₃O₄ NPs. The θ obtained with no fusidic acid was set as 1.0 for normalization.

Figure S6. Molecular structures of ibuprofen and fusidic acid.

Ibuprofen

Fusidic Acid