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ABSTRACT
By carrying out oligonucleotide-directed mutagenesis, in vitro, on a 3.3 kb XhoI-HindfI fragment
from Moloney murine leukaemia virus Mo-MuLV proviral DNA, inserted into the phagemid pTZ19R,
nine separate fragments have been prepared in which mutations have been inserted at and around
the gag-pol gene junction. Using these mutant fragments Mo-MuLV proviral DNA has been
reassembled and cloned into pBR322. Examination of the mutant proviral DNAs in mouse culture
cells indicates that a terminator codon at the gag-pol junction is essential for function, but any of
the three chain terminator codons gives an active virus. Also the region of secondary structure
surrounding the terminator codon must be preserved.

INTRODUCTION
The components which retroviruses have in common consist of the three genes gag, pol
and env. The initial protein products of these genes are cleaved to give small functional
proteins (See ref. 1 for a review). The gag and pol precursor proteins are translated from
the same genomic mRNA. The pol precursor protein is synthesized only as a part of a
larger product of the gag and pol genes (2,3), which requires a read-through mechanism
of a chain terminator codon at the end of the gag gene (3,4). In some of the retroviruses,
e.g. murine mammary tumour virus (MMTV) (5,6) and HIV (7), this involves a
frameshifting mechanism, but for Moloney murine leukaemia virus (Mo-MuLV) it is
accomplished by the insertion of a glutamine residue at the terminator codon, UAG, by
a nonsense suppression mechanism (8). A UAG suppressor glutamine tRNA is coded for
by mouse host cells and its amount is increased by infection with Mo-MuLV (9). This
glutamine tRNA , in assays in vitro, is able to read through the leaky UAG terminator
codon of TMV RNA (9).

Since in the retroviruses such as Mo-MuLV read-through of a terminator codon is
necessary for expression of the pol gene, it is likely that this mechanism plays an essential
role in the function of the virus. Also since it is likely that the suppressor glutamine tRNA
is selectively utilized in reading particular terminator codon(s), such as that located at the
junction of gag-pol genes of Mo-MuLV, the context of the terminator codon is of
importance. Previously it has been suggested that the secondary structure may be an
important factor in suppression efficiency (10,11).

In order to provide further insight into the importance of the terminator codon at the
gag-pol junction, and the secondary structure which surrounds it we have prepared a series
of mutations at and around the gag-pol gene junction ofMo-MuLV and examined the effects
of these mutations on the infectivity and reproduction properties of the virus in NIH3T3 cells.
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Near the completion of this work Felsenstein and Goff (12) reported results on the
expression of a mutated Mo-MuLV in which the UAG terminator codon had been replaced
by the normal glutamine codon, CAG. our results with this mutant support their findings.

MATERIALS AND METHODS
Materials
Chemicals used were of the highest purity available. Radiochemicals were from Amersham.
T4-DNA ligase, T4 polynucleotide kinase and DNA polymerase I -'Klenow' fragment
were from Boehringer Mannheim. DNA polymerase I and restriction endonucleases were
in the main from Toyobo Co. Ltd. The phagemid pTZ19R and the helper phage M13K07
for use with the phagemid were obtained from Pharmacia. For oligonucleotide-directed
mutagenesis a kit available from Amersham was used, and DNA sequencing was, in the
main, carried out using the 7-deazaguanosine kit from Takara Shuzo (13).
The proviral Mo-MuLV DNA used in this work originates from clone #48, which is

a lambda clone containing an EcoRI DNA fragment from a Mo-MuLV infected mouse
fibroblast line (14). This DNA fragment was subcloned into EcoRI cut pBR 322. This
recombinant plasmid is infectious and the Mo-MuLV proviral DNA inserted into it was
found to be different from the published sequence (4) by a single C to G base change
in the sense strand at position 2255.
General Methods
Plasmid/phagemid preparations. Rapid plasmid preparations were carried out by the alkaline
lysis method (Ref. 15, p368 -9). Purified plasmid DNA samples were prepared from 50
ml cell cultures, grown overnight at 370, by scaling up the method. After the phenol:
CHC13 step the DNA was precipitated with 0.6 Vol. isopropanol and washed with 70%
ethanol. This crude DNA was dissolved in 400 Al of 10 mM Tris-HCl pH8.0, 1 mMEDTA
(TE) containing DNase-free RNase (20 Ag/ml) and incubated at 370 for 1-2 h. After
extraction with phenol: CHC13, the DNA was precipitated with 2 Vol. cold ethanol, and
washed with 70% ethanol. The pellet was dissolved in 4 ml 50 mM Tris-HCl, pH 8.0,
1 mM EDTA to which 4 g CsCl and 0.2 ml ethidium bromide (10 mg/ml) were added.
The solution was centrifuged at 45,000 rpm in a vertical rotar (Beckman, VTi65-2) for
between 10 h and 16h. The lower band (visualized using 360 nm light) was collected and
the ethidium bromide removed by several extractions with isopropanol saturated with a
saturated CsCl solution. To each portion of 400 /td solution, 500 ,41 H20, 100 ,ul 3M
sodium acetate, pH 5.2 and 530 yd isopropanol was added. After mixing and keeping at
room temperature for 5 min. the precipitated DNA was collected by centrifugation. The
combined pellets were dissolved in 100 1l 0.1 x TE, pH 8.0, and the plasmid DNA was
reprecipitated with cold ethanol and washed with 70% ethanol. Depending on the plasmid
or phagemid used, between 30 ,tg and 60 /g of purified plasmid DNA was obtained.
Sequencing ofDNA. Sequencing was routinely carried out by the dideoxy-method of

Sanger (16) using c-32P-dCTP (400 Ci/mmole) as the label and the '7-deazaguanosine'
protocol and kit provided by Takara Shuzo (13). In earlier work single stranded DNA
was used as the template but in later work it was found that sufficient sequence information
could be obtained using double stranded DNA. For sequencing DNA obtained from rapid
plasmid preparations, the DNA was firstly partially purified by precipitation from a solution
containing 0.5 M NaCl and 6.0 % polyethylene glycol. The double stranded DNA was
denatured at room temperature in 2N NaOH: 2 mM EDTA prior to annealing the primer.
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Fig. 1. Construction of pTZ19 recombinant. * indicates the position of the gag terminator codon in XH4. The
recombinant is designated pTZ/EHI.

Construction of mutant proviral DNA-containing plasmids.
Preparation ofthe recombinant phagemid, p7Z/EHI. Initial attempts to obtain an XhoI/KpnI
fragment of about 1.1 kb containing the gag-pol junction of proviral Mo-MuLV were
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5'- CAGACCTCCCTCCTGACCCTAGATGACTAGGGAGGTCAGGGTCAGGAGCCCCCCOCTGAACCCAGGATAACCCTCAAAGTC

GGTCCTATTGGGAG1TT -5'
mutant primer

A TCTACTGATTCCTCCAGTC -5'

B ATCTACTGGTCCCTCCAG -5'

D ATCTACTGACTCCTCCAGTC -5'

E GATCTACTGTTCCCTCCAG -5'

H TGGAGGGAGAACTGGGATCTACTGATCCCTCCAGTCCCAGTTCTCGGGGGC -5'

K -A C

L G T

Fig. 2. Sequences of synthetic oligonucleotides. The top line shows part of the sequence of the template single
stranded pTZ/EHl DNA. A-L are the synthetic oligonucleotides used for mutagenesis. Mismatched bases are
shown underlined. The synthetic primer used for sequencing the mutant DNAs is also shown.

unsuccessful owing to the resistance of the proviral DNA to digestion at the KpnI site
downstream from the junction. It was decided, therefore, to clone a larger fragment into
the phagemid pTZ19R (17) for oligonucleotide-directed mutagenesis rather than into M 13
since, during replication, M13 recombinant DNA containing an insert of greater than 2
kb tends to be unstable. Fig. 1 outlines the construction of PTZ/EH1. Recombinant phagemid
containing colonies were obtaining by selecting white colonies from plates containing X-
gal, IPTG and ampicillin. The recombinant phagemid DNA (pTZ/EH1) was isolated from
these colonies by the method described above and identified by restriction enzyme analysis.
Preparation ofsingle stranded p7iZ/EHI DNA. The procedure described by the suppliers
of pTZ19R (Pharmacia) using the helper phage M13107 was followed. 10 ml overnight
cultures yielded of the order of 100 Ag of DNA.
Oligonucleotide-directed mutagenesis. Oligonucleotide-directed in vitro mutagenesis was
performed based on the method of Eckstein and his co-workers (18) using a commercially
available kit from Amersham. The restriction endonuclease Ncil was used to nick the non-
mutant strand, since a suitable site is located in the 3.3 kb fragment approx. 300 bp from
the gag-pol junction. Fig. 2 shows the sequence of the template DNA around the gag-pol
junction and the sequences of the synthetic oligonucleotides used for the mutagenesis.
Mismatched base pairs are shown underlined. oligonucleotides A and B were synthesized
chemically using a DNA synthesizer (Applied Biosystems 380A). Oligonucleotides D, E,
H, K and L were purchased from Operon Technologies, Inc., San Pablo, Ca. USA and
were obtained after purification by HPLC. After the mutagenesis reactions, E. coli cells
strain TGI (K12, A(lac-pro), supE, thi, hsd D5/F' tra D36, proA+B+, laclq,
lacZAM15) were transformed with the d.s. pTZ/EHI mutant DNAs and plated onto
amplicillin containing plates.
Reassembly ofproviral Mo-MuLVDNAs incorporating the mutations. Fig. 3 outlines the
reassembly of proviral Mo-MuLV mutants constructed in a truncated pBR322 vector.
pArMLV was derived from the original proviral Mo-MuLV, clone #48, subcloned into
pBR322. This recombinant plasmid was digested with EcoRI and partially digested with
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Fig. 3. Reconstruction of mutant pMo-MuLVs. *indicates the position of the gag terminator codon.

XhoI, and the 15.5 kb/XhoI-EcoRI fragment was isolated. This was then ligated into
SalIlEcoRI digested pBR 322 to yield pArMLV. This now has as single XhoI and HindIll
site. In order to obtain the mutant pArMLV plasmids, pArMLV and the pTZ/EHl mutants
were each digested with XhzoI and Hindml and the mutant 3.3 kb fragments isolated from
the pTZ/EH1 phagemids were ligated into the 15 kb fragment isolated from pArMLV.
The resulting mutant plasmids (pArMLV-A, -B, -D, -E, -H, -K, -L, -M, -N) were cloned
in E. coli cells, strain SCSI (F-, recAl, endAl, gyrA96, thi, hsdR17, (rk-, mk+),
supE44, relAl,X -). The reassembly was also carried out using the 3.3 kb fragment isolated
from non-mutant pTZ/EHl. This is designated pArMLV-48.
Biological assays of wild-type and mutant pArMLV plasmids. Semiconfluent cultures of
NIH3T3 cells (105 cells per 60 mm Petri dish) were co-transfected with 10 yg pArMLV
and 2 itg pSV2neo using the standard calcium precipitation method. The selection in G418
(200 ,ug/ml) was started 36 h after transfection. Two week later about three hundred G418
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Table I. Replication and Interfering Capacity of Mutated Moloney Murine Leukemia Virus Genomes

Genome Number of XC plaques XC plaque titer Formation of
per 105 neor in the culture XC cell syncytia
transfected cells medium in the Mo-MuLV

(pfu/ml) superinfected culture

pArMLV-48 Confluent 1.6 x 104 nd
-A Confluenta 1.8 x 102
-B ob ob +
-D Confluent 1.3 x 104 nd
-E 34 11 +
-H Confluent 1.3 x 10& nd
-K Confluent 1.5 x 104 nd
-L 8 0 +
-M 8 0 +
-N Confluent 1.1 x lo, nd

a: Atypical fusion pattern was detected in XC assay.
b: Serial passages for approximately 3 months produce XC positive populations.
nd: not detected.

resistant colonies appeared on each transfected plate. These were pooled and, after removal
of an aliquot, the remainder of the cells were cultured in a corning 25cm2 flask for
harvesting of the virus one week later. The aliquot (105 cells) was plated onto a 60 mm
petri dish and this culture was submitted to XC assay after three days. The XC assay (19)
was performed as follows: the infected cells were UV-irradiated at a dose of 500 erg/mm2
and overlaid with XC cells (106 cells per 60 mm dish). The medium was changed on the
following day and the cultures were fixed two to three days later.

RESULTS
Oligonucleotide-directed mutagenesis. After transformation of TGI cells a few colonies
were selected randomly, and from these the recombinant phagemid DNA was isolated
and examined by restriction enzyme analysis and DNA sequencing. It was found that
50-75% of the DNA samples examined after each mutagenesis contained the expected
base change(s). The primer used for sequencing is shown in Fig. 2. In one exceptional
case, using oligonucleotide L, unexpectedly, additional base changes were found in the
mutant recombinant phagemid. This is dealt with in more detail in the Discussion Section.
Analysis ofmutantpArMLVplasmids. Because of the large size of the Mo-MuLV fragment
used in the mutagenesis experiments it was impractical to carry out complete nucleotide
sequence analysis on the mutant fragments. However, using the sequencing primer (Fig.
2), approx. 200 nucleotide residues of the mutated and reconstructed wild-type pArMLV
plasmids were sequenced at and around the region bounded by the synthetic oligonucleotides.
Also for mutants A and B, the 3.3 kb fragments were digested with a series of restriction
endonucleases (AluI, AvaIl,BamHI, HaeIII, HinJI, HpaII, Sau3A) and their patterns of
fragments on agarose gel electrophoresis were compared with the patterns obtained after
digestion of the wild-type 3.3 kb fragment. The mutants and the wild -type gave identical
patterns of fragments. This indicates that no unexpected gross random mutations had taken
place in regions distant from the gag-pol junction. This along with the fact that the expected
sequences were obtained in the region of mutagenesis provides strong evidence that only
the site-specific mutations were present.
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Fig. 4. Proposed RNA secondary structure around the gag-pol junction of Mo-MuLV and site-specific mutations.
The underlined UAG indicates the gag terminator codon.

Viral activity ofMo-MLVproviral DNA mutants. The results of the XC and viral interference
assays are shown in Table 1. After the two week selection in G418, about three hundred
colonies appeared on each transfected plate. An aliquot of these was subjected to the XC
assay as described in the 'Methods' Section. The number ofXC plaques appearing in each
dish is shown in the first column of Table 1. The cultures transfected with pArMLV-D,
-H, -K, -N or with wild-type Mo-MuLV, clone #48 (pArMLV-48) developed massive
fusions of XC cells The cultures transfected with pArMLV-E, -L and -M developed a
small number of the typical XC plaques (7-30 plaques/105 transfected cells). XC plaques
appearing in the latter category of the transfectants are judged as revertants generated late
in the culture. This is because the condition of the culture was the same for all the
transfectants and the speed of propagation of fully infectious MLV cannot vary among
similarly transfected cultures. The cells transfected with pArMLV-A failed to develop the
typical XC cell fusions. In order to check whether this transformant is producing XC
negative interfering virions or they are not producing such virions at all, the pArMLV-A
transfected cells were plated in a Coming 12 well plate (104 cells/well), and infected with
the wild type Mo-MuLV serially diluted 10-fold. As shown in Fig. 5, the pArMLV-A-
transfected cells failed to develop typical XC plaques, indicating that the cells were producing
XC-negative virions. Similar interference assays revealed that pArMLV-B, -E, -L, or -
M-transfected cells were susceptible to wild type Mo-MuLV infection. Namely, they were
not producing interfering MLV virions (last column in Table 1).
The supematants of the cultures of the above transformants (taken about three weeks

after the transfection) were assayed for XC plaque forming virus. The two day culture
fluid was serially diluted 10-fold, and used to infect NIH3T3 cells (5 x I04 cells/30 mm
Petri dish) The XC plaque titer of each transformant is listed in the second column in
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''S**
Fig. 5. Interference test. pArMLV-A, or pArMLV-B transfected NIH3T3 cell, or control NIH3T3 cells were
infected with Mo-MuLV (wild-type) serially diluted 10-fold. The XC plaque assay was performed four days
past infection. The cultures were fixed with formalin and stained with crystal violet.
Note. The light mottled effects seen in some areas of the wells (e.g. pArMLV-A, 100 x NIH3T3) are not plaques
but are an artifact of the photography.

Table 1. The cells transfected with pArMLV-B, -L and -M produced an undetectable amount
of MLV, and those transfected with pArMLV-E produced MLV of a very low titer.
pArMLV-48, -A, -D, -H, -K, and -N-transfected cells gave relatively high XC titers. As
pArMLV-A-transfected cells were XC-negative, and as their supernatant contained XC-
positive MLV, they must have produced XC-negative virions together with XC-positive
virions. As for pArMLV-B, the above data do not indicate any sign of MLV replication
in the transfected cells. However, prolonged culture (for as long as two months) resulted
in an appearance of XC positive cells. This means that the pArMLV-B transfected cells
were actually harbouring the viral genome but failed to produce virions which are detectable
by the interference or the XC test. The XC positive cells which appeared two months
later are considered to harbour revertant viruses.

In summary, pArMLV-B, -E, -L, and -M had a defect in replication, while pArMLV-
A, though capable of replication, probably had a defect in some step of viral replication,
very probably in env gene expression. The reversion frequency was relatively high for
pArMLV-E, -L, -M and -A, while it was low for pArMLV-B. This difference in reversion
rates was reproducible, but its cause is not known.

DISCUSSION
Mutations at the gag-pol gene junction of Mo-MuLV were obtained using the
oligonucleotide-directed mutagenesis method usually performed with M13 clones. Because
of the large size of the proviral Mo-MuLV DNA fragment being used in this study it was
inserted into the phagemid pTZ19R (see Fig. 1). Preparation of single stranded DNA from
the recombinant phagemid pTZ/EH1 using the helper phage M13K07 proved to be straight
forward and good yields of s.s. DNA (sense strand of Mo-MuLV proviral DNA) were
obtained.
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Using the in vitro mutagenesis kit provided by Amersham and following, in the main,
their protocol, the mutagenesis proceeded smoothly, on the whole, when carried out using
single stranded pTZ/EH1 DNA. For reasons we cannot explain it was found that the
annealing reaction was more efficient (as judged by the clarity of the sequencing gels when
the oligonucleotides containing the mismatched base(s) were used as primers in sequencing
reactions) if, after annealing at 60-65° and allowing to cool slowly to room temperature,
the mixtures were stored at -20° for several hours (usually overnight).
When oligonucleotide L was used for mutagenesis, as well as obtaining a phagemid

containing the expected G to A base change, two additional mutants were isolated and
characterized by sequencing. As well as containing the G to A base change, one, M,
contained an A to C base change upstream from the gag-pol junction and the other, N,
contained a C to G base change downstream from the designed G to A base change (see
Table 2). Sequence analysis of the region (greater than 200 nucleotides) showed no other
unexpected base changes. It is difficult to be sure what might have caused these additional
base changes, but the most likely cause would be in the synthesis of the oligonucleotides.
In both cases the 'wrongly' inserted nucleotide follows a run of G residues and it is either
the same residue as the one succeeding it (M) or the one preceding it (N). Therefore L
may have been a mixture of three oligonucleotides of the same length but differing in one
residue which did not separate during purification by HPLC. This mixture then gave rise
to the three mutants L, M and N.
The series of mutants which have been designed involve changes at the terminator codon

and in the proposed stem region surrounding it. The proposed (20) stem-loop structure
of this region of the genomic mRNA along with the mutations which we have introduced
are shown in Fig. 4. It will be seen that four separate mutations have been made to the
UAG terminator codon. Two of these, UAG - UAA (A) and UAG - UGA (D) have
converted the amber terminator codon into the ochre and opal terminator codons
respectively. The two other mutations UAG - CAG (B) and UAG - AAG (E) have
converted the terminator codon into sense codons. The CAG mutant (previously reported
by Felsenstein and Goff, 12) codes for glutamine, the amino acid found in the read-through
protease (8) and the AAG mutant codes for lysine. This latter mutant was introduced as
a control in order to determine whether the insertion of any amino acid at this site is
permissible.
The other mutations are to the stem structure, and were designed to weaken and then

to restore base-pairing. The changes made at positions 2220 (C to U) and 2252 (G to A)
do not alter the amino acid sequence. The single mutations C to U (K) and G to A (L)
each destroy the G-C base pair, although the C to U change would introduce the weaker
G-U base pair (21). The double mutant (H) C to U plus G to A restores the base pairing
but replaces the original C-G base pair with a U-A base pair. Mutants M and N are derived
from L (see above) and therefore have the G to A base change at position 2252. In addition
mutant M has an A to C base change at position 2223. This removes an A-U base pair
and therefore two base pairs are absent from the stem of mutant M. The A2223 to C
mutation also alters the coding at this position from threonine to proline (See Table 2).
Mutant N has an additional C to G base change at position 2256. This introduces an
additional C-G base pair at the foot of the stem. So, although, a base pair is lost in the
G to A base change at position 2252 this is compensated for by the second mutation. The
C to G base change at position 2256 also introduces a coding change from proline to alanine
(see Table 2).
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Reassembly of the complete Mo-MuLV proviral DNA was carried out using the wild-
type 3.3 kb fragment and each of the mutant fragments. This reconstructed wild type Mo-
MuLV (pArMLV-48) was used as a control for the biological testing.
The G418 selection was started earlier than usual. This is because revertants with high

infectivity, if they appear, will propagate rapidly among the cells and become dominant.
As the G418 selection inhibits replication of the host cells, the secondary infection will
be reduced to the minimum with this procedure. With this precaution, we could distinguish
the mutants pArMLV- D, -H, -K, -N and the mutants pArMLV-E, -L, -M, and judge
that the latter mutants were originally replication incompetent.
The results of the biological testing show some extremely interesting results (See Table

I and 2). Firstly, supporting the previously findings of Felsenstein and Goff (12), it is
clear that chain termination at the gag-pol junction is essential for viral reproduction, since
proviral DNA with the sense codon for glutamine (pArMLV-B) at this position fails to
induce XC plagues. In the light of this result the similar negative result with the other
sense mutant coding for lysine (pArMLV-E) is to be expected.

Interestingly, for viral reproduction, it would appear that any of the three terminator
codons, UAA, UAG or UGA is acceptable. The results with the mutant proviral DNA
(pArMLV-A) containing the UAA chain terminator are not so clear since the XC plague
titer is two orders of magnitude less than with the wild-type and the fusion pattern is
somewhat atypical. In molecular terms, however, the activity present in this mutant is
not surprising since it might be expected that the suppressor glutamine tRNA (anticodon
UmUG) would be able to read UAA as well as UAG by 3rd base (codon) wobble (22).
For reading UAG and UAA 1st base (codon) G-U base pairing is also required. It has
been reported previously that such base-pairing occurs with yeast glutamine tRNA (23, 24).
Much more surprising is the result with the UGA mutant (pArMLV-D). This mutant

proviral DNA is very nearly as active as the wild-type, which presumably means that chain
termination and read-through take place with efficiencies similar to the wild-type. There
are no reports of a suppressor tRNA reading both a UAG and a UGA codon, therefore,
it is highly unlikely that the suppressor glutamine tRNA reads through the UGA terminator
in this mutant. It is possible, therefore, that a suppressor tRNA., other than the already
identified glutamine tRNA, is present or is induced in the host cell, the most likely candidate
being a UGA suppressor serine tRNA (25). Work is currently in progress to search for
such a tRNA and to determine whether a different amino acid is inserted in the protease
and the read-through PrI80gag-PoIprecursor in response to UGA. It will be interesting to
determine whether the presence of UGA specifically induces the synthesis of a 'new'
suppressor tRNA or brings about a specific modification to an 'existing' tRNA providing
it with suppressor activity.
The fact that the secondary structure of the mRNA at the gag-pol junction is important

is supported by the results with mutants pArMLV-H, -K, -L, -M, and -N. In mutant
pArMLV-L a G to A change at position 2252, which removes a single base pair in the
stem structure leads to a total loss of viral reproduction. The additional change of an A
to C at position 2223 (pArMLV-M) removes a second base pair and this double mutant
has also lost all activity. However, the additional C to G change at position 2256 (pArMLV-
N) introduces an extra base pair at the foot of the stem and this base pair partially
compensates for the loss of the C2220-G2252 base pair, since viral reproduction is restored,
albeit at a lower level. Also here the substitution of alanine for proline is likely to be an
acceptable amino acid change for the protease activity. Perhaps at this point it is worthwhile
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pointing out that the original Mo-MuLV proviral DNA that was sequenced (4) is inactive.
This has a C at position 2255 which removes a base pair from the foot of the stem.
The C to U base change at position 2220(pArMLV-K) also amends the C2220-G2252 base

pair but the replacement ofC by U would still allow a base pair to be formed at this position
but of somewhat lower strength (21). This mutant and the double mutant (pArMLV-H)
in which the C2220-G2252 base pair is replaced with a U-A base-pair are both positive in
the XC assay but the latter has lower activity.
The mutants we have generated at and around the gag-pol gene junction of Mo-MuLV

clearly show that the terminator codon at this site and its context within the structure of
the RNA are important for virus activity. Using these mutants in in vitro expression systems
should help us to clarify the mechanism of read through and identify any additional factors
which may be involved.
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ADDENDUM
After submission of this manuscript, Y.-X. Feng et al. (J. Virol. 63, 2870-2873, 1989)
reported that mutants of Mo-MuLV containing UAA and UGA at the gag terminus were
suppressed both in infected cell and in reteculocyte lysates.
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