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Web Appendix A: Selection of Knots, Penalty and Smoothing Parameters

In practice, we need to choose the appropriate knots and determine the magnitude of

the smoothing parameter qs. For the selection of knots, we recommend that the knots

be placed at equally spaced sample quantiles of the predictor variable. As suggested by

Ruppert (2002) and confirmed by our simulation study, 5-10 knots seem quite adequate

for most smoothing applications, especially monotonic or unimodal functions. If the

nonparametric function has a discontinuity, then it is important to have a knot near it.

A detailed discussion of the choice of knots has been given in Ruppert (2002).

The quadratic penalty function is commonly used. However, in some cases, e.g. the

nonparametric function has discontinuity, the non-quadratic penalty may be a better

choice for P-spline smoothing. Ruppert and Carroll (1997) gave a general δ penalty form∑T
t=1 |αr+t|δ, δ > 0, and pointed out that penalties with δ less than or equal to 1 can

outperform a quadratic penalty for the discontinuity function. Otherwise, the quadratic

penalty is preferred.

Selecting a suitable value of smoothing parameter qs is crucial to good curve fitting.

In this article, we borrow the idea of Qu and Li (2006) and define the generalized cross-

validation (GCV) score as,

GCV(qs) = −
1
n
l∗n

(1− 1
n
df)2

,

where l∗n = ppln(η; qs) +
1
2
nqsθ

TΨθ, df = trace{G(qs)} is the effective degree of freedom,

G(qs) =
(

∂2l∗n
∂θ∂θT

− nqsΨ
)−1 ∂2l∗n

∂θ∂θT
. Then q̂s = argminqsGCV(qs). In practice, this min-

imization can be carried out by searching over a grid of qs values. Similar to Yu and

Ruppert (2002) and according to our simulation experience, in this article we select qs

over 30 grid points where the values of log10(qs) are equally spaced between −6 and 7.
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Web Appendix B: Assumptions and Proof of Theorem 1

Some notations are introduced as follows:

The first derivative of ppln(η; qs) is denoted as

Qn(η; qs) =
∂ppln(η)

∂η
=

K∑
k=0


nk∑
j=1

u∗(ykj, xkj, zkj; η)

 ,

where u∗(ykj, xkj, zkj; η) =
∂logf(ykj |xkj ,zkj ;θ)

∂θ
− ∂Q(xkj ,zkj ;η)/∂θ

Q(xkj ,zkj ;η)
− ∂(vT h(xkj ,zkj ;η))/∂θ

1+vT h(xkj ,zkj ;η)
− qsΨθ

−I{0<k<K}1k(
1
πk

− nK

nk

1
πK

)− ∂Q(xkj ,zkj ;η)/∂π

Q(xkj ,zkj ;η)
− ∂vT h(xkj ,zkj ;η)/∂π

1+vT h(xkj ,zkj ;η)

− h(xkj ,zkj ;η)

1+vT h(xkj ,zkj ;η)

 ,

where I{0<k<K} is a indicator function, 1k denotes a (K − 1)-dimensional vector with the

kth component is 1 and the rest are zero.

We further denote u(ykj, xkj, zkj; η) =
∂logf(ykj |xkj ,zkj ;θ)

∂θ
− ∂Q(xkj ,zkj ;η)/∂θ

Q(xkj ,zkj ;η)
− ∂(vT h(xkj ,zkj ;η))/∂θ

1+vT h(xkj ,zkj ;η)

−I{0<k<K}1k(
1
πk

− nK

nk

1
πK

)− ∂Q(xkj ,zkj ;η)/∂π

Q(xkj ,zkj ;η)
− ∂vT h(xkj ,zkj ;η)/∂π

1+vT h(xkj ,zkj ;η)

− h(xkj ,zkj ;η)

1+vT h(xkj ,zkj ;η)

 ,

which do not involve the penalty term. In the following, for brevity, we sometimes use

ukj(η) and u∗
kj(η) to denote u(ykj, xkj, zkj; η) and u∗(ykj, xkj, zkj; η).

To establish the asymptotic properties, we make the following assumptions:

A1) The parameter space Θ is a compact subset ofRd, the true value η0 = {θT0 , πT
0 ,0

T
(K−1)×1}T

lies in the interior of Θ.

A2) Assume u(Y,X,Z; η) is continuously differentiable for all η ∈ Θ and E||u(Y,X,Z; η)||2+δ <

∞ for some positive constant δ.

A3) Assume E{u(Y,X,Z; η)u(Y,X,Z; η)T} and −E{ ∂
∂η
u(η)} are positive definite at

η0, and E|| ∂
∂η
u(Y,X,Z; η)|| is bounded for all η ∈ Θ where ||.|| denotes the Euclidean

norm.

A4) Assume that nk/n → ρk ≥ 0 for k = 0, . . . , K.

A5) The smoothing parameter qs is assumed to satisfy qs = o(1) for the consistency

of the proposed estimator and satisfy qs = o(1/
√
n) for the asymptotic normality.
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Following is the proof of Theorem 1.

(i) Proof of Consistency

The consistency proof is similar to the proof of Theorem 4.1 in Lehmann (1983). We

sketch the outline of the proof in the following. By the law of large numbers and notice

of that the qs = o(1), we have 1
n
Vn(η; qs) =

1
n
∂2ppln(η;qs)

∂η∂ηT
converges to a negative definite

V (η) in probability, where V (η) =
∑K

k=0 ρkE
{

∂
∂η
uk1(η)

}
. By a Taylor expansion around

η0 in a neighborhood of η0 with the notice of that V (η) is a negative definite matrix,

we have 1
n
ppln(η0) >

1
n
ppln(η) a.s. in a neighborhood of η0. Thus, 1

n
ppln(η) has a local

maximum in a small neighborhood of η0. The consistency is achieved by the smoothness

of the likelihood function.

(ii)Proof of Asymptotic Normality

By the law of large numbers and notice of that qs = o(1/
√
n), we have Qn(η;qs)

n
→ Q(η)

in probability, where Q(η) =
∑K

k=0 ρk[E{uk1(η)}]. When evaluated at η0, using the similar

arguments to Weaver (2001), we can show Q(η0) = 0.

To show the asymptotic normality of (θ̂T , π̂T , v̂)T , we expand 1
n
Qn(η; qs) at η0 such

that
1

n
Qn(η; qs) =

1

n
Qn(η0; qs) +

1

n
Vn(η0; qs)(η − η0) + op(n

−1/2),

then we have
√
n(η̂ − η0) = −(

1

n
Vn(η0; qs))

−1 1√
n
Qn(η0; qs) + op(1).

If the smoothing parameter qs = o(1/
√
n), then 1√

n
nqsΨθ =

√
nqsΨθ = o(1). By the

central limit theorem, we have 1√
n
Qn(η0; qs) → N(0d×1, U(η0)) in distribution, where

U(η0) =
K∑
k=0

ρk[Cov{uk1(η0)}],

According to that 1
n
Vn(η; qs) converges to V (η) in probability and continuous mapping

theorem, we have
√
n(η̂ − η0) → N(0d×1,Σ) in distribution. The covariance matrix

Σ can be estimated consistently by Σ̂ = V̂ −1Û V̂ −1, where V̂ = 1
n
Vn(η̂; qs), and Û =

1
n

∑K
k=0

∑nk
j=1 û

∗
kj(η̂)û

∗T
kj (η̂) by the consistent results and the continuous mapping theorem.
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