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ABSTRACT
The relationship between G+C-content and codon usage in genes of human, mus, rat, bovine and
chicken nuclear genomes was investigated. Correlation and lineal regression analyses were carried
out on plots that related the frequency of each codon within each synonymous codon group to the
G+ C-content of the coding sequence as a whole. Under GC pressure, in most of the quartet codon
groups there is a preferential choice of the C-ending codon, except in leucine and valine codon groups
where the choice of the G-ending codon is preferred. Among duets, the choice of codons specifying
phenylalanine and glutamate shows the strongest dependence on G+C-content. The relationship found
between G+C-content and codon usage in these genomes correlate with taxonomic distance.

INTRODUCTION
Early works showed that the base ratio A+T/G+C of overall DNA differs among different
species (1), and that different DNA segments isolated from organisms of a given species
have the same base ratio (2,3).
However, in vertebrates there are large differences in base composition between different

DNA regions in the same genome. It has been shown recently (4), that the nuclear genome
of warm-blooded vertebrates exhibits a compositional compartmentalization, being a mosaic
of very long DNA sequences which are relatively homogeneous in their G+ C-content
(either G+C-rich or A+T-rich). These segments are named 'isochores', and it has been
proposed that genes that map in chromosomal R-bands belong to G+C-rich isochores,
and those in G-bands to A+T-rich isochores (4-8).
According to the degeneracy of the genetic code one might expect that differences in

G+C-content among genes could be accounted for by changes in G+C-content at the third,
and to a lesser extent, at the first codon position, while the second codon position is
constrained by the choice of amino acid. The G+C level found at each codon position
in vertebrate genes shows a positive linear relationship to the G+C-content of the
corresponding coding sequences; the slopes of the regression lines increase from second,
to first, to third positions. Furthermore, a high correlation is found between the G+C-
content at the third codon position of exons and the neighboring introns and flanking
sequences. These relationships indicate the existence of compositional constraints operating
on both coding and noncoding sequences (5-7,9,10).
The variation in G+ C-content through the genome is accompanied by changes in codon

usage (4-7). In vertebrate genes, the G+C-content at the third codon position is distributed
over a wide range (7), and subsequently, the codon-choice patterns of various genes in
the same organism may differ considerably.
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Fig. 1 RSCU values of the CGC codon (Arg4) plotted against the G+C content (G+C/G+C+A+U) of
the coding sequence in human genes. The regression line may be drawn connecting the Y marks on the
plot frame. No. of genes = 277, correlation coefficient = .511, slope = 5.76.

In this paper we deal with the effect of differences in the G+ C-content of genes on

codon usage. Our approach was to investigate at the level of synonymous codon groups,

examining the choice of codons within each codon group in relation to the G+ C-content
of the coding sequence.

DATA AND METHODS
Our starting material is the compilation by Ikemura and coworkers (1 1) from the GenBank
Genetic Sequence Data Bank (release 50.0) of codon appearances in the nuclear genomes
of Homo sapiens (HUM), Mus musculus (MUS), Rattus norvegicus (RAT), Bos taurus

(BOV) and Gallus gallus (CHK).
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In this work we have tentatively divided the amino acids encoded by six codons (arginine,
leucine, and serine) into four-fold degenerate (Arg4, Leu4 and Ser4) and two-fold degenerate
(Arg2, Leu2 and Ser2) codon groups, which contain codons differing only in the third
nucleotide. Methionine and tryptophan which have only one codon each, are not relevant
in this study. Termination codons have not been considered as they appear only once in
each gene.
To allow codon choice to become apparent, in our analyses we included only those genes

for which at least five codons of the pertinent codon-group were present, because of this
the number of genes differs in each analysis. The number of five codons was chosen after
carrying out trials setting 1, 3, 5, 7 and 10 codons as lower limits, the slopes obtained
in these conditions were in most of cases within the interval of 1 standard error of those
computed for the limit of five codons.
To express the nature of the relationships between codon usage and G+C-content we

proceeded as follows. In the first place, we computed the relative synonymous-codon usage
value (RSCU) of each codon as defined by Sharp et al. (12). The RSCU value for a codon
is the observed frequency of that codon divided by the frequency expected if usage of
synonymous codons was uniform. This draws attention to the particular choice of codons
irrespective of the amino acid composition of the gene product, and enables comparison
between data sets of different sizes.

In the second place, for each genome and codon we made a diagram, in which each
gene is represented by a point whose coordinates are the RSCU value of the codon under
analysis (Y axis), and the G+C-content of the coding sequence (X axis). Thus we obtained
a scatter of points relating the choice of each codon to the G+C-content of the coding
sequence. Then, we computed the correlation coefficient, and a regression line (y = a
+ bx) was drawn in each graph, as an example the plot for the CGC codon (Arg4) in
human genes is given in Fig. 1. For these tasks we used BMDP6D and BMDP1R programs
(13).

Finally, we made a numerical evaluation of the extent of genomic differences by
computing a 'distance' between each pair of genomes. The distance measure used is simply
the sum of differences between the values of the slopes of the regression lines for two
genomes. This distance is a version of the 'Manhattan metric' often used by numerical
taxonomists (14).

RESULTS AND DISCUSSION
The G+ C-content of a coding sequence can be increased by the choice of codons ending
in G or C. In the case of four-fold degenerate codon groups, both G- and C-ending codons
are available. In the case of two-fold degenerate codon groups there are two modalities:
the pyrimidine-restricted codon groups (where the third codon position is U or C), and
the purine-restricted codon groups (where the third position is A or G). The codon group
of isoleucine is unique in that the choice can be made among A-, U- and C-ending codons.
Codon choice in four-fold degenerate codon groups
In Table 1 the results of correlation and regression analyses for four-fold degenerate and
isoleucine codon groups are given; as indicated in the method section, these were carried
out after plotting the RSCU values of codons ending in each of the four bases A, T, C
and G in each codon group against the G+C-content of the coding sequence as a whole.
As the correlation coefficients indicate, in most quartet codon groups, the usage of both

G- and C-ending codons increases as the G+ C-content of the coding sequence does, while
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Table 1. Quartet codon groups. Correlation coefficients (R) and slopes (s) when plotting the RSCU values of codons ending
in bases A, T, C and G against the G+C content of the coding sequence as a whole. N = number of genes. The first two
bases of the codon are given in brackets.

Ending base of the codon
A U C G

N R s R s R s R s

-.532 -4.68 -.425 -3.52 .511 5.76
-.420 -5.16 -.349 -3.80 .591 8.16
-. 103* - 1.28* -.381 -3.96 .428 6.56
-.615 -3.92 -.545 -2.96 .272* 3.00*
-.315 -2.36 -.668 -8.48 .623 7.72

-.557 -2.08 - .631 -3.80 .076* 0.44*
-.377 -1.80 -.542 -3.56 -.026* 0.20*
-.367 -2.28 -.446 -3.76 .074* 0.56*
-.642 -2.40 -.457 -3.24 .276 1.52
-.411 -1.40 -.759 -4.64 .290 2.20

-.534 -4.04 -.445 -4.04 .599 5.96
-.439 -4.36 -.202 -2.52 .397 4.96
-.465 -5.16 -. I 19* -1.44* .339 4.32
-.553 -4.00 -.465 -3.28 .470 4.04
-.460 -3.76 -.570. -7.24 .458 6.84

-.536 -4.00 -.547 -4.20 .578 5.72
-.394 -3.60 -.505 -4.56 .407 4.96
-.249 -2.92 -.291 -3.64 .354 5.12
-.424 -3.00 -.483 -3.08 .401 3.24
-.784 -8.60 -.593 -5.56 .665 9.00

-.450 -4.00 -.488 -4.16 .466 4.84
-.314 -3.08 -.285 -2.56 .285 3.28
-.436 -4.52 -.275 -2.60 .501 6.96
-.492 -3.44 -.386 -3.24 .514 4.48
-.786 -7.56 -.688 -6.52 .755 10.72

-.526 -3.68 -.588 -4.32 .606 5.60
-.430 -3.88 -. 122* - 1.08* .180 1.96
-.359 -3.24 -.385 -3.40 .341 4.16
-.555 -4.20 -.562 -3.48 .615 5.32
-.728 -5.56 -.526 -5.12 .646 7.40

-.499 -4.52 -.406 -2.32 .506 4.64
-.591 -5.76 -.211 -1.64 .583 6.12
-.457 -4.56 -.204 -1.60 .496 6.24
-.525 -4.00 -.307 -1.48 .364 2.64
-.640 -5.32 -.511 -4.40 .634 6.72

-.543 -3.12 -.621 -4.28 .209 1.52
-.328 -1.84 -.632 -5.36 -.033* 0.28*
-.272 -1.92 -.569 -4.80 .067* 0.76*
-.601 -2.32 -.374 -2.16 .404 2.68
-.652 -3.16 -.694 -4.84 .290 2.48

.249 2.44

.064* 0.80*
130* - 1.36*
.323 3.88
.331 3.12

.631 5.44

.551 5.56

.512 5.52

.587 4.12

.436 3.84

.365 2.12

.296 1.96

.347 2.28

.668 3.24

.437 4.16

.397 2.48

.452 3.24

.220 1.44

.446 2.84

.538 5.16

.570 3.32

.350 2.32

.022* 0.20*

.379 2.20

.602 3.36

.453 2.40

.423 3.00

.402 2.48

.560 2.36

.480 3.32

.326 2.20

.164 1.28
-.013* 0. 12*
.496 2.84
.374 3.00

.570 5.84

.640 7.56

.389 5.96

.253 1.84

.546 5.52

(continued)

Arg4 (CG-)
HUM 277
MUS 125
RAT 166
BOV 42
CHK 49

Leu4 (CU-)
HUM 396
MUS 177
RAT 224
BOV 68
CHK 68

Ser4 (UC-)
HUM 374
MUS 173
RAT 158
BOV 59
CHK 56

Thr (AC-)
HUM 371
MUS 172
RAT 203
BOV 59
CHK 65

Pro (CC-)
HUM 370
MUS 161
RAT 199
BOV 59
CHK 59
Ala (GC-)
HUM 395
MUS 176
RAT 216
BOV 65
CHK 68

Gly (GG-)
HUM 381
MUS 166
RAT 217
BOV 62
CHK 69

Val (GU-)
HUM 379
MUS 171
RAT 202
BOV 67
CHK 68
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Table 1 (continued)

Ending base of the codon
A U C G

N R s R s R s R s

Ile (AU-)
HUM 323 -.445 -2.04 -.571 -4.59 .682 6.63
MUS 165 -.547 -3.48 -.504 -4.80 .718 8.28
RAT 195 -.360 -2.43 -.359 -5.49 .523 7.92
BOV 53 -.511 -2.37 -.411 -2.85 .556 5.22
CHK 31 -.651 -2.67 -.732 -4.95 .847 7.62

* Not significant at 0.05 level

the opposite occurs for A- and U-ending codons. However, in some codons the expected
behavior is not found, and the choice of these codons seems not to be dependent on the
genomic G+C-content. The codons which show non statistically significant correlation
coefficients are: CGG (in MUS and RAT genomes); CUC (in HUM, MUS and RAT);
UCU (in RAT); CCG (in RAT); GCU (in MUS); GUC (in MUS and RAT); and GGG
(in RAT). Some of them also show rather low correlation coefficients in the other genomes.
This observation undoubtedly requires further investigation in order to elucidate the
constraints involved in the usage of these codons. As a common feature, these codons
are G+C-rich, with the exception of UCU, and it is remarkable that all they are quite
frequently used in all the five genomes, being their averaged RSCU values slightly greater
than 1, ( that means that they are used more than 25 % of the times to code for the
corresponding amino acid). Thus, it is not the avoidance of these codons that makes them
insensitive to changes in the G+C content of genes.
We used linear regression analysis to quantify the association shown by correlation. The

slopes of the regression lines drawn in each plot (Table 1) indicate the increase (or decrease)
in the relative frequency of the codon under analysis when the G+ C-content of the coding
sequence increases. The higher the slope, the greater the preference (or avoidance) for
that codon when the G+ C-content of the coding sequence increases.

Results in Table 1 show that in most of the codon groups with four-fold degeneracy
there is a clear bias favoring the choice of C-ending codons under GC pressure, except
in the cases of leucine (quartet) and valine, where G-ending codons are used more frequently
as the G+ C-content increases (the exception is the bovine genome where the C-ending
codon of valine is preferred). This general trend of C prevailing over G in the third codon
position was already noted by previous authors (5), by investigating the correlations between
base compositions of the three codon positions and those of the corresponding exons.
The increase in usage of G- or C-ending codons is concomitant with a decrease in the

usage of A- and U-ending codons (negative correlation coefficients and slopes). Codon
groups of leucine (quartet), valine and isoleucine show higher slopes in -the case of the
U-ending codon (the exception, again, is the bovine genome). The glycine codon group
show higher slopes for the A-ending codon in all genomes. In the remaining codon groups,
there is a slight tendency towards higher slopes in the A-ending codon, although the standard
errors of slopes (not shown) are often overlapping.
Codon choice in two-fold degenerate codon groups
In the case of duets there is an excess of pyrimidine-restricted groups (which increase
C-ending codons under GC pressure) over purine-restricted groups (which increase G-
ending codon use under GC pressure). In Table 2 the correlation coefficients and slopes
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Table 2. Duet codon groups. Correlation coefficients (R) and slopes (s) when plotting the RSCU value of the C-ending codon
(pyrimidine restricted duets) or the G-ending codon (purine restricted duets) against the G+C content of the coding sequence
as a whole. N = number of genes. The first two bases of the codon are given in brackets.

Pyrimidine-restricted duets (C-ending codon)
N R s N R s N R s

Ser2 (AG-) Asn (AA-) His (CA-)
HUM 324 .571 3.26 326 .638 4.10 261 .664 4.36
MUS 126 .423 2.82 162 .566 3.68 128 .306 2.20
RAT 166 .363 2.96 172 .368 3.16 98 .434 3.64
BOV 51 .696 4.18 45 .767 4.22 40 .638 4.78
CHK 41 .592 3.52 54 .829 4.66 43 .706 4.82

Asp (GA-) Tyr (UA-) Cys (UG-)
HUM 366 .661 3.48 292 .627 3.58 276 .609 3.68
MUS 167 .661 4.26 133 .497 3.38 120 .483 3.50
RAT 202 .468 3.26 140 .302 3.06 111 .497 3.18
BOV 59 .671 3.46 47 .633 3.34 47 .617 2.98
CHK 55 .729 4.74 42 .646 4.78 29 .531 3.92

Phe (UU-)
HUM 346 .710 4.18
MUS 165 .671 4.26
RAT 177 .611 4.38
BOV 62 .787 4.30
CHK 53 .655 4.44

Purine-restricted duets (G-ending codon).
N R s N R s N R s

Arg2 (AG-) Leu2 (UU-) Lys (AA-)
HUM 239 .605 3.36 161 .648 4.80 372 .688 3.58
MUS 116 .254 1.66 75 .261 1.92 172 .537 3.18
RAT 150 .297 2.40 75 .330 1.96 213 .397 2.32
BOV 38 .743 5.06 19 .529 2.40 61 .523 2.68
CHK 31 .778 6.90 22 .630 4.16 68 .797 3.68

Gln (CA-) Glu (GA-)
HUM 367 .605 2.88 391 .791 4.44
MUS 150 .513 3.46 172 .747 5.48
RAT 198 .541 3.42 219 .727 4.50
BOV 55 .449 1.90 63 .822 4.62
CHK 53 .646 3.22 63 .745 4.48

of the regression lines for duet codon groups are given. Results in Table 2 correspond
to the C-ending codon in the case of pyrimidine-restricted groups, and to the G-ending
codon in the case of purine-restricted groups. The figures for the synonymous U- and
A-ending codons are the same with a negative sign.

In duet codon groups the highest slope values are found in the phenylalanine codon group
among the pyrimidine-restricted, and in the glutamate codon group among the purine-
restricted codon groups. It is worth noting that in the leucine (duet) codon group, the slope
in human genes is more than twice that of rodents; in most of cases, the chicken genes
show the highest slopes.
Codon choice at first position
Some degeneracy at the first codon position creates a mechanism that allows the overall
G+C composition of the coding sequence to be reflected in the codon usage at that position.
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Table 3. Correlation coefficients (R) and slopes (s) in plots of the ratio Arg4/Arg2, Leu4/Leu2 and Ser4/Ser2 against the G+C
content of genes.

RARG RLEU RSER
N R s N R s N R s

HUM 367 .391 0.21 377 .522 0.57 401 -.085* -0.01*
MUS 159 .325 0.15 164 .531 0.75 177 -.070* 0.02*
RAT 199 .358 0.23 203 .467 0.46 219 .055* 0.02*
BOV 61 .322 0.17 60 .508 0.41 66 -.004* 0.00*
CHK 55 .601 0.25 53 .514 0.62 65 .198* 0.04*

* Not significant at 0.05 level

Arginine and leucine provide a choice at first position between C (Arg4) or A (Arg2),
and C (Leu4) or U (Leu2), respectively. In the case of serine the choice at the first codon
position is between A (Ser4) or U (Ser2), and, therefore, no effect of the G+C content
is expected on that choice.
To examine the effect of G+C content on the choices at first codon position, we have

plotted the proportion of codons Arg4/Arg2 (RARG), Leu4/Leu2 (RLEU), and Ser4/Ser2
(RSER) in each gene against the G+C content of the coding sequence as a whole.
Correlation coefficients and linear regression analyses are shown in Table 3.
These results confirm the relationship between base composition and codon usage.

Correlation coefficients and slopes of regression lines are higher in plots for RLEU than
in plots for RARG in all five genomes, this indicates that leucine codons are more affected
by G+C content than are arginine codons. Correlation coefficients and slopes in plots
of RSER were all nonsignificant.

It is interesting to note that the two sets of serine codons cannot be converted into each
other by single nucleotide mutations. This fact has been beautifully exploited by Brenner
(15) to make a reconstruction of the pathway of molecular evolution of the active-site
sequences of enzymes that have analogous essential serine residues; thus, serine residues
coded for by the duet and the quartet codon groups are preserved through evolution due
to mutational distance and to insensitivity to genomic changes in the G+C content.
Comparison of genomic differences
In the previous sections we made a statistical characterization of the compositional constraint
(G+ C-content) that could affect codon choice in vertebrate genes. To examine the degree
of relatedness between these genomes, we have computed a matrix of distances by using
a 'Manhattan metric' with the slopes of regression lines obtained for each codon (Table
4). It should be mentioned that the value of these distances has no biological meaning
and only their relative magnitudes are important. It can be seen that there is a certain
correlation between the computed genomic distance and taxonomic distance between these

Table 4. Distances between genomes. The distance between a pair of genomes in the sum of the differences between the values
of the slopes obtained in each plot.

HUM -

MUS 47.7 -
RAT 48.6 42.4 -
BOV 47.2 67.9 63.5 -
CHK 66.2 93.5 91.5 91.4 -

HUM MUS RAT BOV CHK
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species, thus mus and rat are the more closely related species, and each mammal is more
distant to chicken than to any other mammal. The basis of these relationships is unknown,
but could reflect similarities and differences in the availabilities of tRNA species or in
the isochore organization among these genomes. For example, it has been reported the
existence of differences in the heavy components of human and mouse genomes (16)
concerning the presence in the human genome of a G+ C-rich fraction containing a large
number of genes and specific repetitive sequences which is not represented in the mouse
genome.
Concluding remarks
Many factors have been considered to influence the non-random usage of synonymous
codons. Most of them are related to translational efficiency through the stability of the
codon-anticodon complex (17), or in terms oftRNA availability (18) and the level of gene
expression (12, 19-23). Other hypotheses have considered nucleic acid secondary structure
(24, 25) and contextual constraints (26-28). Evolutionary aspects of codon usage have
also been considered(29-31).
The role of the organism's G+C-content in relation to codon choice has been noted

in a number of papers (32, 33 and references therein), being referred to as a rule by Ikemura
and Ozeki (34) in explaining non-random patterns of codon choice. It is worth mentioning
that in enterobacterial genes it has been shown that the bias in codon choice due to genomic
G+C content is greater in modestly expressed genes than in highly expressed genes (35).
The importance of the G +C-content in molding codon choice has been emphasized by

Bernardi and coworkers (5, 6) who claimed that codon usage is largely determined by
compositional constraints concerning both G+C content and the content of individual bases.
They suggested that there exists a compositional strategy of the genome, providing a
rationale for the 'genome hypothesis' of Grantham and coworkers (36, 37). Recently, it
has been proposed that differences in base composition in vertebrate genomes are caused
by different mutational bias of DNA polymerases in germline cells (38), or by variation
in mutation patterns along the replication timing of different chromosomal regions in the
germline (39).
Our work provides further support for and substantiation of the relationship between

G+C-content and codon choice, giving a picture of how it works on individual codons
in vertebrate genes. One possible bias in our approach is that genes included in the study
may be submitted to different functional constraints which can be superimposed on the
compositional constraint analysed here. Perhaps the most important finding is that there
are different linear relationships between the G+C-content of coding sequences and the
choice of particular codons, and that these relationships, which are a reflection of the coding
strategy of each genome, seem to be correlated with taxonomic distance. This strategy
seems to have been well conserved ever since the radiation of mammals (about 80 million
years) and is somewhat different in birds (divergence time from mammals 270 million
years).
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