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Figure S1. Relationship between Correlation, Optimal Portfolio Weights, and Portfolio 

Variance  
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Optimal portfolio weight wsun (wwind = 1 – wsun) increases as a function of the correlation 

coefficient between sun and wind outcomes. The background color indicates portfolio standard 

deviation (blue = small sd, red = large sd). Optimal portfolio weights (for variance minimization) 

are displayed as white line, the gray lines indicate the 10% interval around the optimal choice (a 

deviation of that amount from the optimal weights would result in a 10% higher sd).  In the 

example displayed in (A), the sd of resource B is twice the sd of resource A (B = 2*A). In half 

of the blocks (randomly determined) subjects experienced the opposite relation (B = 1/2*A) 

and in that case the depicted optimal weight function is mirrored around a horizontal axis at 

wA=0.5. This transformation from correlation coefficient to portfolio weights remained constant 

during the entire experiment. (B) Same plot as in A) but with a sd ratio A/B = 4 (top) and 

A/B = 1.5 (bottom). This plot illustrates that the dynamic range of optimal weights decreases as 

the ratio increases. In contrast, the steepness at which deviations from the optimum weight 

influence performance decreases on smaller ratios. The sd ratio of A/B = 2:1 is optimally suited 

for our experiment as it provides the best tradeoff between dynamic range and specificity.  
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Figure S2. Variance Minimization Strategies  

Plotted are example time series for outcome values of resource A (blue) and B (orange) and the 

combined portfolio outcome value Vp (black). The portfolio is based on MPT calculated weights 

to minimize variance. Shown are three cases with A and B having (A) positive correlation (B) 

negative correlation (C) no correlation. 
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Figure S3. Neural Correlates of Risk 

FMRI signals in striatum relate to individual outcome risk (left) and signals in left anterior insula 

relate to risk prediction error (right). While these results are not a central aspect of our study, 

they replicate previous findings from (Preuschoff et al., 2006) and confirm that our subjects did 

indeed form a representation of outcome risk while working on our task. Results in this figure 

are displayed at a threshold of p<0.005 uncorrected.  



5 

 

 

 

Figure S4. Functional Coupling of Right Medial Insula during Updating of Values 

Areas showing increased functional coupling with right medial insula (xyz = 48, 5, -5) at the time 

of outcome in a physiological/psychological interaction (PPI) analysis. At FWE corrected 

significance (p<0.05 at the cluster level) bilateral insula (xyz = 36, 2, -5; Z=5.13 and -45, 9, -2; 

X=4.48), bilateral middle frontal gyrus (xyz = -33, -22, 43; Z=4.55 and 36, -19, 46; Z=4.26), 

bilateral central sulcus (xyz = -21, 31, 64; Z=4.10 and 6, -1, 61; Z=4.02), right enthorinal area 

(27, -28, -23; Z=4.19), brainstem (xyz = 9, -34, -32; Z=4.03), right angular gyrus (xyz = 60, -58, 

31; Z=3.83), and DMPFC (implicated in translating new information into weight updates; xyz = 

6, 44, 37; Z=3.52) extending into right superior frontal gyrus (xyz = 15, 47, 40; Z=3.74) showed 

increased functional coupling. At a lower uncorrected threshold we also observed increased 

coupling with rostral ACC (implicated in encoding correlation prediction errors; xyz = 6, 32, 7; 

Z=3.42). Results are displayed at p<0.001 uncorrected. 
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Table S1. Individual Subjects’ Performance  

The payout bonus benchmarks the portfolio fluctuation realized by the subject against the fluctuation that 
would result from an optimal strategy (bonus = sdoptimal / sdsubject). The performance index benchmarks 
subjects’ actual responses to optimal responses of an omniscient agent (normalized between 0=random 
choice and 1=perfect choice). 

 

Subject R2 in behavior on 
model regression  

BIC 
Correlation 

model 

BIC 
Coincidence 

model 

BIC 
Q-

Learning 
model 

Payout 
bonus 
% of 

maximum 

Subject 
performance 

index 

1 0.88   -11.37 161.25 384.72 0.81 0.67 
2 0.84    78.19 149.94 282.01 0.77 0.67 
3 0.76   257.58 382.73 488.64 0.82 0.66 
4 0.70   289.51 385.76 449.02 0.73 0.5 
5 0.64   318.27 362.56 441.13 0.59 0.44 
6 0.82   197.48 363.15 489.30 0.76 0.61 
7 0.57   263.47 265.03 365.85 0.73 0.46 
8 0.77   164.91 258.83 375.37 0.62 0.6 
9 0.86    16.18 77.67 353.14 0.81 0.76 

10 0.83   207.88 367.55 445.79 0.82 0.66 
11 0.79   184.50 327.32 441.23 0.82 0.66 
12 0.68   371.54 455.56 529.41 0.64 0.48 
13 0.84   105.88 258.71 333.91 0.86 0.75 
14 0.89    19.38 263.31 226.11 0.84 0.73 
15 0.42   423.82 402.21 490.17 0.74 0.41 
16 0.84   103.03 269.14 391.43 0.80 0.64 

 
 

To make population inferences on model fits, we used Bayesian Model comparison (Stephan et al., 2009) 
on the behavioral fit data. The exceedance probability in this test provides a likelihood that one model is 
more likely than the other in the population. This test provides significant evidence for the correlation 
learning model in all pair wise tests  (p>0.999), i.e. all other models are less likely than the correlation 
model. 
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Supplemental Experimental Procedures 

In addition to the correlation learning model described in the main text we created the following 

alternative models that do not require learning of covariance information.  

Model free RL learning 

The most basic one in terms of reinforcement learning is model-free RL that learns Q-values for 

actions (moving the slider right or leftwards, corresponding to increasing or decreasing weights), 

based on the portfolio outcome. A model free learner would in the beginning start somewhere on 

the slider (in our modelling we used the center) and then makes an action at (a move either left or 

right). After observing the portfolio outcome he calculates a prediction error as the absolute 

deviation of this outcome Vp,t from the target outcome M (the grand mean of the portfolio 

outcomes). The Q-value for that action is then updated by the RL-prediction error in the current 

trial. 

 Qa,t = Qa,t + αδRL
t (1) 

 with δRL
t = |(Vp – M)|/100 - Qa,t (2) 

If the subject experiences a large deviation from the target, then the current move is penalized 

more than if the subject experiences a small deviation. The Q value for moving in the opposite 

direction was 1-Qa. 

Because the values of the two available actions were directly linked, each outcome provided 

equal information for both actions. Consistent with the other models we used greedy action 

selection to determine how weights are updated in every trial (Sutton and Barto, 1998). An 

additional parameter allowed fluctuations in the step size of resulting weight changes across 

subjects. 

 

Heuristic based on coincidence detection (outcome – outcome associations) 

Instead of learning the relation between two outcomes via their co-variation (a statistical measure 

related to risk and variance) individuals could form simple associations between one and the 

other outcome. A subject performing such associative learning would learn an outcome-outcome 
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association and update the strength of this relation by a trial-by-trial prediction error. This 

concept is easy to describe for the case of probabilistic outcomes of constant magnitude. If 

outcome O1 is present its predictive strength is updated depending on the presence of O2 as  

 V12 = V12 +  (O2 – V12) (3) 

If O1 is absent, then the strength is inversely updated as 

 V12 = V12 -  (O2 – V12) (4) 

This updating strategy increases the associative relationship between O1 and O2 whenever the 

outcomes are both either present or absent and decreases the relationship if only one outcome is 

present. In our experiment the resource outcomes were always present but fluctuated in their 

magnitude. To test if subjects nevertheless reduced the problem to mere coincidence detection, 

we simulated such a strategy by treating resource values greater than the mean as ‘present’ and 

below the mean as ‘absent’.  

We used this model to test whether subjects might take out the quantification of risk from the 

problem and instead solve the experiment qualitatively by detecting trials in which the two 

outcomes coincide (a positive relation would result if both are above average or both below 

average, and a negative if one is above and the other below average). The transformation of 

outcome association strength (replacing the correlation coefficient) to weight was done similarly 

as in the full correlation model to allow a direct comparison of the two methods at the learning 

level. 

 

Sliding window model 

A common approach to estimate the local temporal correlation of a time series is to calculate the 

correlation coefficient over the past n trials. We did this by using a sliding window of size n and 

calculated the correlation coefficient over these trials: 

  
(xi  x )(yi  y )

(xi  x )2 (yi  y )2
 (5) 
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While this model has little biological plausibility, it is the way of how correlations are often 

computed in applied mathematics or finance. We therefore include data from the model fit for 

comparison to the reinforcement learning approach.  

The best fitting window size parameter n in a fit of model to subjects’ behavior allows us to put 

the learning rate in the RL algorithm (using an exponential kernel) in relation to a span of 

observed trials if the correlation was calculated normatively. 

 

1/N Heuristic 

This simple heuristic from behavioral finance keeps the weights constant at equal weights for all 

N assets (N=2 in our case) 

wsun = wwind = 1/N = 0.5 

Our task was not a fair test for whether subjects would use the 1/N rule in an uncertain 

environment because our adaptive design punished the use of constant weights. We nevertheless 

include parameters from this strategy in our summary table for comparison. The gain from using 

an optimal strategy over this heuristic decreases with larger N or if the decision maker has very 

imprecise information about correlations. 

Random choice  

A random weight (within the range [-1, 2] is chosen on every trial). 
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Supplemental Text 

 

Variance minimizing strategies in a portfolio 

Modern portfolio theory (MPT) is a theory of investment which normatively maximizes 

expected return for a given amount of risk, or equivalently minimizes risk for a given level of 

expected return, by solving for the optimal proportions of various assets.  It is therefore ideally 

suited to describe the best possible strategy for setting portfolio weights that minimize overall 

fluctuation. 

The optimal mixing of the two assets depends on their individual variance and their correlation 

but to simplify our task we kept the mean return of both assets and the standard deviations 1 

and 2 constant with the relationships of either 1 = 2*2 or 1 = 0.5*2. Hence for the purpose 

of our experiment the optimal portfolio weight w1 could be described as a fixed (nonlinear) 

function of the correlation coefficient. We will explain in the following section how the portfolio 

variance can be minimized for three cases of a (1) positive correlation, (2) negative correlation 

and (3) zero correlation. 

1) Single trial outcomes from two highly correlated assets tend to deviate from the mean in the 

same direction and the asset with the larger fluctuation will on average be the one that deviates 

more. The investor therefore buys assets with the lesser risk and short sells a smaller number of 

assets with the higher risk. This is realized by a large positive portfolio weight for the outcome 

that has the smaller variance and a negative weight for the other outcome. Large deviations of 

the lower risk stimulus are thereby offset by a subtraction of the deviation of the higher risk asset 

(Fig. S2A).  

2) If the two assets are negatively correlated, they tend to deviate from their mean in opposite 

direction. The portfolio variance is minimal with some form of averaging over both assets (Fig. 

S2B), i.e. in the optimal solution here the weights for both assets are positive. 
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3) In a scenario where the assets are truly uncorrelated, the outcome of one reward has no 

predictive power over the other and their mixing has little effect on variance minimization. In 

this case the best strategy is to mostly bet on the reward with the lower intrinsic variance. 

The relationship between correlation and optimal portfolio weights in our task is depicted as a 

function in Figure S1. 

 

Optimal weights for minimum portfolio variance 

In general form, the portfolio variance is: 
 

p
2  wiw j

j


i

 i jij  

 
For a portfolio with only two assets A and B this is: 

p
2  wA

2A
2  wB

2B
2  2wA wBABAB  wA

2A
2  (1 wA )2B

2  2wA (1 wA )covAB  

To find the minimum variance weighting we differentiate and solve: 

 p
2

wA

 wAA
2 B

2  wAB
2  covAB  2wA covAB 

!

0

wAA
2  wAB

2  2wA covAB B
2  covAB

wA 
B

2  covAB

A
2 B

2  2covAB  

 

 


