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Supplementary Methods 
Environmental Volatility and Learning Rate Estimation 

In Simulation 6 in the main text, we simulated the PRO model in a 2-arm bandit task similar to a 
previously reported study1.  A reinforcement learning model was then fit to the trial-by-trial choice 
behavior of the PRO model in order to recover effective learning rates in stable and volatile periods.  The 
reinforcement learning model is described by a learning law that tracks the value (V) of choices i, and an 
actor component that determines the probability of making a particular response.  To learn the value of 
each choice i, we used a delta-learning rule: 

𝑉𝑉𝑖𝑖,𝑡𝑡+1 = 𝑉𝑉𝑖𝑖,𝑡𝑡 + 𝛼𝛼(𝑅𝑅𝑖𝑖 ,𝑡𝑡  − 𝑉𝑉𝑖𝑖,𝑡𝑡)                                                               (1) 

where 𝑅𝑅𝑖𝑖,𝑡𝑡  is the level of reward (0 or 1) observed for choice i on trial t and 𝛼𝛼  is a learning rate 
parameter.   The probability of selecting a choice i was computed by a softmax function: 

𝑃𝑃𝑖𝑖 = 𝑒𝑒𝛾𝛾𝑉𝑉𝑖𝑖
∑ 𝑒𝑒𝛾𝛾𝑉𝑉

                                                                                

where  𝛾𝛾 is a scaling parameter which determines the confidence  in choice i.  The reinforcement learning 
model contained 5 free parameters: 𝛾𝛾, and four learning rate parameters 𝛼𝛼 , one for each period in the task 
(Training, Volatile 1, Volatile 2, Stable).  The estimated learning rates for the PRO model are shown in 
Fig. 4b in the main text, along with learning rates estimate for a lesioned version of the model in which 
surprise signals had no effect on learning. 

Similarly, we implemented a Bayesian learner similar to one previously described1 that tracks reward 
probabilities and estimated environmental volatility.  The Bayesian learner was trained using choice data 
generated by the PRO model, and for each period in the task, the mean estimated volatility was calculated 
(Fig. 4b in the main text). 

 

Supplementary Discussion 

Comparison with other models of performance monitoring 

The PRO model suggests that error effects in mPFC derive essentially from a discrepancy (subtraction) 
between actual and expected outcomes.  Theories of mPFC function depend heavily on the apparent role 
of mPFC in detecting and processing errors.  Beginning with early ERP studies 2, 3, effects of error have 
been routinely observed in human EEG and imaging studies.   Theoretical accounts of error effects can be 
divided into several categories.  One view treats mPFC as dealing with error qua error: error is an explicit 
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quantity which is signaled (if not calculated) directly by mPFC.  An alternative view is that error is an 
implicit term which emerges from computational processes which do not directly calculate error. 

Explicit Calculation of Error 

The explicit view of error processing in turn leads to the question of what constitutes an error.  That is, 
what is the computational form of the error calculation, and over what terms is this computation 
conducted?  The notion of error as a discrepancy suggests a simple form for calculating error: 

Error = Expected− Actual 

This definition leaves open the questions of what quantity is expected, and what actual quantity is 
experienced.  One possibility is that aversive events are the result of incorrect or inappropriate actions, 
and that the error computation compares intended actions to actual actions 4.  Nonetheless, others have 
shown that error feedback leads to an ERN-like signal, even when the action was generated as intended 5.  
This suggests a comparison between actual and intended outcomes, consistent with neurophysiological 
findings in monkeys 6.    

The PRO model builds on these accounts by specifying that the “expected” quantity reflects the 
conjunction of responses and outcomes.  Furthermore, rather than reflecting intended response-outcome 
conjunctions, the PRO model treats the “expected” quantity as a more general prediction of the likelihood 
these conjunctions will occur, regardless of affective valence and whether they are intended or not 7.  In 
this context, then, the PRO model casts error in a more general frame.  Rather than reflecting differences 
between desired and actual outcomes or responses, error reflects how well or poorly future events are 
predicted, with mPFC strongly signaling surprising non-occurrences of predicted events, as well as the 
surprising occurrence of unexpected events.   

Implicit Error Signals 

Implicit calculation of error is perhaps best embodied by the conflict theory of mPFC 8-10.  Under this 
view, mPFC signals response conflict, calculated as the product of the activation of mutually 
incompatible responses.  Error is not directly calculated as a discrepancy, but is implicitly signaled by the 
continued, simultaneous activation of potential responses following the generation of an erroneous 
response.  The logic is that when an error is committed in the presence of conflict, then the correct 
response is also likely to have been prepared, even though it was overwhelmed by the incorrect response 
process.  Thus a state of conflict exists between the incorrect and correct response representations on error 
trials, whereas no such state exists on correct trials. 

The conflict account of mPFC function is appealing due to the number of observed phenomena which it 
describes using the straightforward principle of behavioral conflict.  Like the PRO model, conflict theory 
accounts for commonly observed effects in mPFC, including error and conflict 9, and the amplitude of the 
N2 as a function of accuracy 11.  Given the array of effects in common which are described by the conflict 
and PRO models, it is an important question as to whether they make distinct predictions. 

One data set that may discriminate between the conflict and PRO models focuses on partial errors.  Burle 
and colleagues 12 investigated the conflict theory using the Eriksen flanker task 13.  Specifically, they 
looked at the amplitude of the ERN following partial errors, in which an incorrect response is prepared to 
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a certain extent but then suppressed (as indicated by sub-threshold electromyographic activity).  While the 
conflict model predicts that ERN amplitude should decrease with time due to increased temporal 
separation between incorrect and correct responses, the authors found that ERN amplitude actually 
increased with time.  This finding presents a challenge to the conflict account.  The PRO model may 
account for this effect.  In the main text, Simulation 3 (Fig. 2c) treats a slightly different situation in 
which the N2 amplitude in a flanker task is binned by RT.  The human data show a positive correlation 
between N2 amplitude and response time, similar to a positive correlation found between RT and BOLD 
activity in human mPFC14, 15.  The PRO model accounts for this positive correlation.  Specifically, mPFC 
activity increases with unexpectedly delayed outcomes, because in the PRO model, activity predicting an 
expected outcome continues to rise unchecked until an actual outcome occurs to meet (suppress) the 
prediction.  Thus, longer delays until the action or feedback correlate with greater mPFC activity.  
Variation in response generation due to processing noise in response units in the PRO model could be a 
source of delay; slower-than-average responses following partial errors (or any other expected 
action/outcome) would therefore be expected to result in increased model activity. 

The PRO model also suggests a reconciliation between conflict and error likelihood theories of mPFC 
function.  Recent work (Fig. 2b, right) has argued that mPFC effects are consistent with conflict but not 
error likelihood effects11.  The N2 is greater for slower and more accurate trials than faster trials with 
error likelihood.  On its face, this seems to contradict the finding of error likelihood effects in mPFC16.  
Nevertheless, the PRO model shows error likelihood effects.  How can this be?  The answer lies in the 
distinction between cue-based error likelihood and RT-based error likelihood.  The PRO model shows 
greater activity when a cue predicting a higher error likelihood appears relative to a lower error likelihood 
cue (Fig. 1b).  This cue-based error likelihood signal is averaged over the entire RT distribution for each 
corresponding cue.  If instead a single cue is isolated and the responses analyzed by RT, then those trials 
in slower RT bins will yield greater activation with a lower error likelihood, and those cues in the faster 
RT bins will yield less activation with greater error likelihood (Fig. 2b, right).  Overall, the guiding 
principle is that error likelihood effects are found across cued conditions (cue-based error likelihood), but 
inverted error likelihood effects are found across the speed-accuracy tradeoff curves of a single condition 
(RT-based error likelihood). 

Reinforcement Learning 

The PRO model bears a close resemblance to models which suggest that mPFC activity reflects a 
temporal difference error.  Like these previous models, the PRO model implements a reinforcement 
learning algorithm based on temporal difference learning 5, 17.  However, there are two key differences 
introduced by the PRO model.  First, the PRO model learns to predict multiple outcomes using a vector 
reinforcement term which indicates the occurrence of one or more events.  In contrast, previous models 5, 

17 use a scalar reinforcement learning signal which does not signal the occurrence of an event as such, but 
instead reports the valence of an event (i.e., rewarding or aversive).  As noted in the main text, the 
reinforcement signal in the PRO model does not ascribe a particular valence to the observed event; 
unexpected aversive outcomes are learned in the same manner as unexpected rewarding events.  Previous 
reinforcement learning models of mPFC, however, incorporate affective valence as a part of the learning 
signal: worse-than-expected occurrences are assigned negative values while better-than-expected 
occurrences are given positive values.  In the case of composite events which may have a rewarding 
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component as well as an aversive component, the scalar learning signal reports some combination of the 
rewarding and aversive components of the composite event.   

The significance of these differences is that while the PRO model independently represents predictions of 
each possible future event, previous models based on reinforcement learning represent combinations of 
the value of future events.  In these previous models, the ERN observed in the mPFC is modeled as the 
(negative) TD error.   Consequently, these models are able to signal errors but not unexpected affectively 
positive events, such as a surprising win of a gamble with low probability of winning.  This is a 
significant limitation, given recent findings that mPFC shows such effects 7, which the PRO model is able 
to simulate (Fig. 4c, main text). 
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Figure S1. PRO model diagram.  The PRO model consists of three components.  The 
representation component (blue) learns to represent the probability of various 
possible combinations of responses and outcomes (“response-outcome 
conjunctions”) depending on the incoming stimuli.  The predicted probabilities 
serve as a basis for the control signal to the actor component of the model (green), 
which maps stimuli to actions.  Weights from the representation to actor 
components are adjusted by a gating signal which indicates the affective valence 
of an event, i.e. good or bad.  The critic component (red) implements a variant of 
temporal difference learning, but with multiple predictions instead of a single 
prediction.  Specifically, the learning signal is computed as the difference 
between an actual outcome (i.e. response and outcome conjunction, whether good 
or bad) and the predicted outcome, based on incoming stimulus signals.  
Decomposed into positive and negative surprise signals, 𝜔𝜔𝑃𝑃and 𝜔𝜔𝑁𝑁, the learning 
signal is used to modulate the rate at which associations between task stimuli and 
response-outcome conjunctions are learned.  Here we use the term actor to refer to 
the mechanisms that map stimuli to responses, and not to refer to the unit that 
predicts the outcome of actions, even though the latter could be thought of as a 
“cognitive actor” to the extent it generates predictions and is computationally 
similar to the actor in previous actor-critic models.  See text for description of 
model terms. 
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