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S1 Exact calculation of steady-state activities
Single TF molecules. We first treat the case where the cell contains only a single molecule
of each TF species, NA = NB = 1. The equilibrium statistics of the system is described by
the canonical ensemble of statistical physics. The appropriate Boltzmann weight for a single TF
binding to one of LG sites in a non-specific DNA background is qns = exp(−Ens) (see below
for the most general case with an arbitrary background and larger TF numbers). For a purely
non-specific background and S = Vcell/VTF � LG unbound states, the partition function is

Zback = LG(LG − 2L)q2
ns + S2

+ 2SLGqns

+ ω
(
LGq

2
ns + S

)
. (S1)

The first three terms describe the non-interacting states, whereA andB are either separately bound
to the DNA to non-adjacent sites, or both are free but not dimerized, or one is DNA-bound and the
other is free. The fourth term corresponds to the states where A and B are dimerized, either on the
DNA or unbound. The fraction of dimers in the background corresponds to the ratio of the weights
of the dimerized states to the weight of all possible states, ω (LGq

2
ns + S) /Zback. Rewriting this

expression in terms of the monomer DNA binding ratio α = Pd/Pc = qnsLG/S, one obtains

Pdimer(α, ω) =
ω

ω + (S(α2 + 1) + 2α) /(αqns + 1)
. (S2)

For a binding ratio of one, i.e. when the monomers are optimized for independent search, Pdimer(ω) =
ω/(ω+2LG), which is the case plotted in Fig. 3A. Here, a dimerization probability of 0.5 is reached
at ω1/2 = 2LG, while we would have ω1/2 = S for α→ 0 and ω1/2 = LG for α→∞.

Eq. S1 provides the binding-statistics on non-target states. To study the full system, we add the
target states with weights qT = exp(−ET ) for the full partition function

Ztot = Zback + [2(LG − L− 1)qns + S]qT + ωq2
T , (S3)

where the second term is the weight of a single occupied target and the third term is the weight
for both targets to be occupied simultaneously. Hence the double target occupation probability
is pab = ωq2

T/Ztot. This equation can be solved for qT at given values of pab and ω (since our
analysis assumes a fixed pab corresponding to the optimal occupation-probability of the targets
in the ON-state). Hence we obtain an explicit expression for ET (ω, pab) (not shown), which we
use throughout this paper to determine ET for the kinetic model and stochastic simulations in the
N = 1 case. Furthermore, to calculate the fold-change φ = pab/pa at a given ET (ω, pab) we
determine the probability of single TF target binding pa in the absence of a partner. By calculating
the partition function for a system of a single TF, we find

pa = pb =
e−ET (ω, pab)

(LG − 1)qns + S + e−ET (ω, pab)
. (S4)

For small ω, this probability scales as ∼ ω−1/2.
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Multiple TF molecules. For the case of multiple TF molecules, we calculate the exact equi-
librium statistics of our full model using the standard transfer matrix approach from statistical
physics, see e.g. (1, 2). The calculation is based on the grand canonical ensemble, i.e. the average
copy numbers NA, NB of the proteins A and B are set by the corresponding chemical potentials
µA , µB . The total partition function Z of the complete system then factorizes,

Z = ZdZc , (S5)

into a product of a “DNA partition function” Zd involving only the DNA-bound states of the TFs
and a “cytosol partition function”Zc involving only the unbound states (the factorization is possible
because DNA-bound TFs do not interact with unbound TFs and because the TF numbers are not
conserved in the grand canonical ensemble). Due to the low TF concentrations in the cytosol, steric
exclusion between unbound TFs is negligible, and Zc takes the simple form

Zc =
(
1 + eµA + eµB + ω eµA +µB

)S
, (S6)

where S � LG is the number of solvent states (i.e. the ratio of the cell volume to a characteristic
TF volume, S = Vcell/VTF) and the statistical weight for an unoccupied solvent state is one. For
the calculation of the DNA partition function Zd, we do take the steric exclusion of DNA-bound
TFs into account. The number of base pairs covered by a single TF molecule is denoted by L.
Each base pair i = 1 . . . LG on the genome can then be in one of 2L+ 1 states: In state 0, the base
pair is not covered by a TF. In state 1, it is the leftmost contact position of a TF of type A, in state
2 it is the second leftmost contact position, and so on, up to state L corresponding to the rightmost
contact position of A. States L+ 1 up to 2L are analogous for B. The transfer matrix Qi describes
the statistical coupling between the states of the neighboring DNA positions i and i + 1. Each Qi

is a square matrix of dimension 2L+1, defined such that the partition function is equal to the trace
of the (ordered) product of all transfer matrices,

Zd = Tr

(
LG∏
i=1

Qi

)
, (S7)

for a circular DNA with LG basepairs (for a linear DNA molecule, the trace operation would have
to be replaced by multiplication of a row vector from the left and a column vector from the right,
with the vector components properly chosen to enforce the boundary conditions). Let us denote
by [Qi]ss′ the element in row s and column s′ of the transfer matrix at position i. It takes on a
non-negative value, which corresponds to the conditional statistical weight of finding position i in
state s′, provided that position i − 1 is in state s. Thus, each [Qi]ss′ is a Boltzmann factor that
accounts for the contribution to the total configurational energy that stems from position i and its
interaction with position i + 1. The Boltzmann factor is zero, if the two states are incompatible
(overlapping TFs or a single TF binding to non-contiguous basepairs). The non-zero entries of
Qi contain the protein-DNA binding energy landscapes EA

i and EB
i , the cooperativity ω, and the



Physical limits on cooperative protein-DNA binding 3

chemical potentials. For illustration, we show the transfer matrix Qi for TFs of length L = 2,

Qi =


1 e−E

A
i +µA 0 e−E

B
i +µB 0

0 0 1 0 0

1 e−E
A
i +µA 0 ω e−E

B
i +µB 0

0 0 0 0 1

1 e−E
A
i +µA 0 e−E

B
i +µB 0

 . (S8)

The entries with value one reflect the mere compatibility of neighboring states without an energetic
contribution (e.g., when position i − 1 is in state 1, position i must be in state 2, and there is no
additional energy contribution to take into account). Note that we assume a directional interaction
between the TFsA andB (the attractive contact only occurs whenB is bound directly downstream
from A).

From the partition function (S5), we can obtain exact expressions for the occupation probabil-
ities of DNA sites by differentiation. For instance, the probability that a TF molecule of type A is
bound to the site starting at position i on the DNA is

pAi = − ∂

∂EA
i

logZ . (S9)

The derivative is straightforward to evaluate explicitly, leading to an expression of the form pAi =
Z ′d/Zd, where the restricted partition function Z ′d has the same form as (S7), but with a projection
matrix next toQi inside the trace. This exact expression is easily computed numerically, in particu-
lar when large parts of the binding energy landscapesEA

i andEB
i are flat (equal to the non-specific

binding energy Ens), since large parts of the product in (S7) then reduce to matrix powers (which
are quickly calculated via diagonalization). Similarly, the probability of cooperative binding at site
i is calculated starting from the expression

pABi =
∂2

∂EA
i ∂E

B
i+L

logZ , (S10)

where the derivatives enforce that a B molecule is bound directly adjacent to the A molecule, such
that together they cover the DNA positions from i to i + 2L − 1. Finally, the average number of
TF molecules in the system at given values of the chemical potentials µA , µB are obtained by
summing over the occupation numbers of all states, e.g.

NA =

LG∑
i=1

pAi +
S(eµA + ω eµA +µB )

Zc
. (S11)

Similarly, the average number of dimers in the system is

Ndimer =

LG∑
i=1

pABi +
S ω eµA +µB

Zc
, (S12)

from which the fraction of dimers, Pdimer(ω) = Ndimer/N , in Fig. S2A is computed. The fold-
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change φ in Fig. S2B is calculated as the ratio of the dimer occupancy (S10) at the target site pair
in the presence of both TFs (µA = µB ≡ µ such that NA = NB ≡ N ) to the monomer occupancy
(S9) at its target site when only one TF is present (µA chosen such that NA = N while µB is set
to a large negative value such that NB ≈ 0).

The above framework can be used to calculate any equilibrium observable exactly for our full
model and it also provides a reference point for our kinetic simulations, which produce equilib-
rium values in the long-time average. However, it is also useful to derive a simple approximation
to the exact solution of the multiple TF molecule case, which still incorporates the effect of a
(nonspecific) DNA background, but neglects steric exclusion between the TFs in the background.
Assuming eEns � 1 and N � LG, and again taking a DNA binding ratio of one, such that
SeEns = LG, we find

qns ≡ e−Ens+µ ≈

√
1 + N

LG
ω − 1

ω
, (S13)

which leads to the background dimerization fraction

Pdimer(ω) ≈ 1− 2LG

Nω

(√
1 +

Nω

LG

− 1

)
(S14)

that we use in Eq. 4 of the main text for the approximative form of the cooperative search time.

S2 Stochastic simulation of cooperative search kinetics
To study the cooperative search process within the full reaction scheme of Fig. 2B, we implemented
a kinetic Monte Carlo simulation based on the standard Gillespie algorithm. For our simulations,
we used fixed numbers, NA and NB, of A and B molecules (i.e., any equilibrium values computed
in these simulations correspond to thermodynamic averages in the canonical ensemble). The state
of the system is specified by the state of each TF molecule, which can be either free or dimerized
in solution, or bound to the DNA at position p. The simulations generate stochastic continuous-
time trajectories in this discrete state space. Each simulation step consists of one of the moves
depicted in Fig. 2B, however the set of available moves depends on the current state of the system.
In particular, moves that would violate the steric constraint that each DNA basepair can be be in
contact with only a single TF molecule cannot be chosen. Thus, TF molecules can, for instance,
not change the order at which they are bound along the DNA solely via sliding moves.

To measure the average cooperative search time 〈τ〉, we perform 100 simulations for each set of
model parameters. Each simulation run is initialized in the state where all molecules are unbound
(this mimics the condition of a cell prior to receiving a signal that triggers allosteric activation
of TF-DNA binding), and terminated once the the two adjacent target sites are both occupied
simultaneously. The data points in Fig. 3C, Fig. 4, and Fig. S2C correspond to the simulation
time averaged over the 100 runs. Another observable of interest here is the relative contribution
of the dimer pathway to the search process, as shown in Fig. 3D and Fig. S2D. This observable
corresponds to the fraction of simulation runs where the final state is reached by a dimer move,
such that both targets simultaneously become occupied by their cognate TF molecule.



Physical limits on cooperative protein-DNA binding 5

S3 Analytical description of the cooperative search kinetics
Here, we develop a simplified analytical description of the cooperative search kinetics, which
distinguishes only the target occupation states and the two search modes (dimeric vs. monomeric).
As shown in Fig. S1, this description corresponds to a kinetic scheme with four states and six
effective rates. The scheme amounts to two competing Michaelis-Menten type processes which
lead to the same final state. The initial state 2 corresponds to the state of our TF-DNA system
where both proteins are unbound. From there, the target state can either be reached via state 1
(dimer pathway) or via state 3 (monomer pathway). The dimer pathway is kinetically characterized
by the effective dimerization rate r−2 , the effective dissociation rate r+

1 , and the dimer search rate
r−1 ≡ 1/〈τD〉. Similarly, the monomer pathway is characterized by the three rates r+

2 , r−3 , and r+
3 .

Since state 3 does not distinguish whether A or B is bound, the rate r+
2 ≡ 2/〈τM〉 is twice the

monomer search rate. In contrast, the rate r+
3 ≡ 1/2〈τM〉 corresponds to only half the search rate

of a monomer because one target is already occupied and the other target is accessible from one
side only. Finally, r−3 is the total rate at which a monomer dissociates from its target, either via
sliding or unbinding.

We can express the three remaining undetermined rate constants r−2 , r+
1 , and r−3 in terms of our

underlying model parameters. For arbitrary binding energy landscapes, the effective dimerization
rate is

r−2 =
∑
i 6=a,b

[(
kA+
i + kB−i+L+1

)
pAi p

B
i+L+1 + ka p

A
i P

B
c + ka p

B
i P

A
c

]
+ kaP

A
c P

B
c , (S15)

where we have used the equilibrium probabilities introduced above in section A of ‘Methods’, and
PA
c , PB

c denote the equilibrium probabilities for the TFs to be unbound in solution. The rates kA+
i

and kA−i denote the forward and backward sliding rates from position i, see section ‘Full model’.
Using our approximations from section A for a non-specific background, we find the simpler form
for the effective dimerization rate

r−2 =

(
2 ksl

LG

− ka
)
P 2
d + ka , (S16)

where Pd = 1− PA
c = 1− PB

c is the probability to find a TF molecule bound to DNA. Similarly,
the effective dissociation rate has the general form

r+
1 =

∑
i 6=a

pABi
ω

(
kA,off
i + kB,off

i+L + kA−i + kB+
i+L

)
+ kd P

AB
c , (S17)

where kA,off
i denotes the site-specific DNA-unbinding rate for A and PAB

c is the probability to find
the two TFs dimerized in solution. The simplified effective dissociation rate for a non-specific
background is

r+
1 =

2PAB
d

ω
(ksl + koff) + kd P

AB
c , (S18)

where PAB
d is the total probability to find the TFs non-specifically bound to the DNA as a het-
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erodimer. Finally, the total rate for monomer loss from a target is

r−3 = koff,a + 2 ksl,a . (S19)

where the index a indicates that these are unbinding and sliding rates from the target site, which are
slower than their bulk counterparts by the additional Boltzmann factor corresponding to the energy
difference between the non-specific binding energy and the target binding energy, see section ‘Full
model’.

With these rates, the average assembly time of the two TFs on the double target corresponds
to the mean first passage time (MFPT) of a random walker hopping between the four sites at the
given site-dependent jump rates. The random walker starts at site 2 and terminates on the target
site. We use the standard MFPT formalism as described, for instance, in Ref. (3) to calculate this
cooperative search time. The general formula for the MFPT 〈τ(M)〉 starting from site M on a
linear lattice with N + 1 sites, with the two boundary sites 0 and N both absorbing, is

〈τ(M)〉 = W (M)
N−1∑
m=1

m∑
n=1

1

r+
n

m∏
j=n+1

r−j
r+
j

−
M−1∑
m=1

m∑
n=1

1

r+
n

m∏
j=n+1

r−j
r+
j

, (S20)

where W (M) is the total probability to exit to site N ,

W (M) =

1 +
M−1∑
m=1

m∏
j=1

r−j
r+j

1 +
N−1∑
m=1

m∏
j=1

r−j
r+j

. (S21)

For the problem at hand, we have N = 4 and M = 2. Defining the Michaelis-Menten-type
constant K1 = (r−1 + r+

1 )/r−2 for state 1 and K3 = (r+
3 + r−3 )/r+

2 for state 3, we can rewrite the
cooperative search rate, i.e. the inverse average search time, in the compact form

1

〈τ〉
=

K1 r
+
3 +K3 r

−
1

K1 +K1K3 +K3

, (S22)

which is the expression used to obtain the lines in Fig. 3C. In the limit where r−2 vanishes, this
reduces to the average search rate for two independent monomers,

1

〈τA,B〉
=

r+
3

1 +K3

. (S23)

Using the relation 2 r−3 pa = r+
2 (1− pa), we can rewrite the corresponding search time in the form

〈τA,B〉 =

(
5

2
+

1− pa
pa

)
〈τM〉 , (S24)

which best explains the effect of missed encounters where 1/pa is the average number of times
a TF must return to the target before finding the other target occupied. In the small ω regime
the cooperative search process corresponds to an independent monomer search and 〈τ〉 ≈ 〈τA,B〉.
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Given that pa ∼ ω−1/2, this form also explains the 〈τ〉 ∼
√
ω scaling of the search time at small

cooperativities.
We can further simplify Eq. S22 by noting that the average search time is virtually identical (in

the parameter regime considered here) when the search begins in state 1 instead of state 2. With
state 1 as the initial state, we find

〈τ〉 =

(
r−1 Pdimer +

1

〈τA,B〉
(1− Pdimer)

)−1

. (S25)

The first term corresponds to the dimer pathway, while the second term corresponds to the monomer
pathway. As expected, the contribution of either pathway depends on the dimerization probabil-
ity and on the search rate of the respective mode. It follows that the relative weight of the dimer
pathway can be written as

WD(ω) =
Pdimer(ω) r−1

Pdimer(ω) r−1 + (1− Pdimer(ω))〈τA,B〉−1
, (S26)

which was used to obtain the lines in Fig. 3D. It is straightforward to generalize these equations
also to the case of N > 1, where the dimerization probability Pdimer(ω,N) becomes a function
of both ω and N , and the search rate for each mode increases by a factor of N : r−1 → Nr−1 and
〈τA,B〉 → 〈τA,B〉/N . In this case we obtain Eq. 4 from the main text which is used to obtain
the analytical curves in Fig. S2C. Using the dimerization probability Pdimer(ω,N), we also extend
Eq. S26 to the case of N > 1, to obtain the curves in Fig. S2D.

S4 Additional notes
To obtain an estimate of the number of E. coli operons which are regulated by two or more tran-
scription factors, we perused the “RegulonDB” database (4). At the time of writing, this database
lists 370 E. coli operons as regulated by a single transcription factor, while 383 operons are listed
as regulated by two or more transcription factors (188 of these are believed to be regulated by
exactly two transcription factors).
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Figure S1: Simplified model used to calculate the mean cooperative search time analytically. In
this model only the different target occupation states and the dimeric vs. monomeric search modi
are distinguished. The rates r−1 and r+

3 correspond to the search rates of dimers or monomers
respectively, whereas r−2 and r+

1 are the total rates at which a dimerization or a dissociation occur
in the dimeric or monomeric state, respectively. The rate r−3 refers to the total rate at which a
monomer leaves its target, either by sliding away or by dissociating from it.
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Figure S2: Cooperative search times and steady state levels as a function of ω, given different
TF copy numers N = 1, 10, 100, and 1000 at a fixed pab = 0.5. (A) The dimerization threshold
decreases with increasing TF concentrations whereas the foldchange (B) is independent of the
TF number in the monomeric regime. The maximal foldchange is reached at the dimerization
threshold, which decreases with the TF concentration, such that the maximal foldchange in (B)
decreases as well. The search time (C) scales as 1/N in the purely monomeric and purely dimeric
regime. In the intermediate regime, the maximal search time decreases stronger than 1/N , as the
onset of the dimeric pathway (shown in D) moves to lower cooperativities.
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