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Simulating genetic data of disease outbreaks 

Individual-based simulations were used to assess the ability of SeqTrack to recover the transmission 

tree of a pathogen during a densely sampled outbreak. We implemented a new simulation system in 

the adegenet package (http://adegenet.r-forge.r-project.org/) for the R software, which creates 

genealogies of haplotypes using a forward-time process. The function haploGen simulates 

haplotypes which replicate, mutate, and possibly disperse following stochastic processes, resulting in 

temporally and spatially referenced genealogies.  

 

Each simulation begins with a randomly generated haplotype of determined length which forms the 

root of the genealogy. The number of descendents of this isolate is drawn from a (rounded) normal 

distribution with specified mean and standard deviation. Descendents are created by replicating the 

haplotype of their ancestor. During this process, the number of mutations from an ancestor to its 

descendent is drawn from a binomial distribution with the mutation rate and the length of the DNA 

sequence as parameters. The nature and positions of the mutations are then determined at random, 

with all positions and types of mutations having equal probabilities. The whole process of replication 

/ mutation is repeated over a determined number of generations. The simulation output consists of 

haplotypes and dates of creation of the isolates, as well as a list of ancestries describing the 

genealogy.  

 

One issue pertaining to the simulation of transmission trees of a disease outbreak is that the number 

of isolates grows exponentially, quickly leading to handling millions of genotypes and eventually 

saturating the memory. Practically, this means that only very short complete genealogies can be 

simulated. One convenient solution to overcome this issue lies in pruning the genealogy periodically 

during its expansion, as soon as the number of isolates simulated exceeds a given threshold. The 

resulting tree then becomes a sample of the complete genealogy, which is specifically the type of 

data that we aim to simulate.  

 

Two types of simulations were performed in this study. The first type aimed at illustrating 

differences between SeqTrack and classical phylogenetic reconstruction using two very simple 

genealogies (main text, Figures 2-3). These simulations were performed using a mutation rate of 

1x10-4, haplotypes of 10,000 nucleotides, a fixed generation time of one day, and a reproductive rate 

drawn from a rounded normal distribution N(1.5, 2). The second type of simulations was slightly 

more complex and computer-intensive, and aimed at quantifying the performances of SeqTrack for 

retrieving spatiotemporal dynamics of outbreaks using genetic data. Values of the parameters used 

in these simulations are provided in Table S1. Contrary to the previous simulations, these 

simulations were spatially explicit. The simulation system used is identical to the one described 

above, except that newly created isolates are assigned to a location on a spatial grid. The location of 

a new isolate is determined as a function of the location of its ancestor and a spatial model of 

dispersal. Currently, two spatial models are implemented. The first model uses a random diffusion 
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process, where deviations from the ancestral location in x and y coordinates are drawn from a 

Poisson distribution of fixed parameter. The second spatial model consists in a fully-parameterised 

dispersal process, in which the probabilities of migration between every pair of locations are 

specified explicitly. 

 

 

Table S1: values of the parameters used in simulated outbreaks 

Parameters (units)   Values 

Sequence length (number of nucleotides) 5,000 

Mutation rate (number of mutations per year and per site) 0.008 

Mean generation time (days) 5 

Standard deviation of generation time (days) 1 

Mean reproductive rate (number of descendents) 1.2 

Standard deviation of reproductive rate (number of descendents) 0.5 

Simulated time period (number of days after emergence) 100 

 

A square grid with 25 locations was used in all spatially-explicit simulations. Spatial dispersal was 

modelled using the two afore-mentioned spatial models. For the random diffusion process (referred 

to as ‘homogeneous dispersal’ in the main text), deviation from ancestral coordinates was drawn 

from a Poisson distribution with  =0.5 (Figure S1). Structured dispersal (referred to as 

‘heterogeneous dispersal’ in the main text) was obtained by explicitly defining the matrix of 

connectivity between locations, i.e. the probabilities for the pathogen to be transmitted from one 

location to another (Figure S2). This matrix was designed so that i) one location attracted moderate 

migration from its neighbours, but systematically dispersed toward distant locations (the ‘source’) ii) 

one location attracted immigration, but did not allow resident isolates to seed other locations (the 

‘sink’), and iii) all other locations dispersed moderately to neighbouring locations. 

 

Ten datasets were simulated for each spatial model, from which ten samples of 800 randomly 

chosen isolates were obtained. To recreate the possible uncertainty existing about collection dates 

observed during real outbreaks, we added random noise to dates of apparition of the isolates taken 

from a Poisson distribution ( =1). The resulting 200 datasets were then analysed. Inferred 

ancestries were compared to the true ancestries, in terms of the proportion of successfully inferred 

ancestral haplotype and location. Only perfect matches were considered as successes in these 
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computations: situations in which haplotypes or locations were close, but not strictly identical to the 

actual ancestors were counted as failures. 
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Figure S1: example of simulated outbreak data using random diffusion process. The figure maps 

ancestries of simulated data. Transmissions between locations are represented by arrows. 

Transmissions within a given location are represented by a sunflower (each segment represents one 

transmission event). 
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Figure S2: example of simulated outbreak data using structured dispersal process. The figure maps 

ancestries of simulated data. Transmissions between locations are represented by arrows. 

Transmissions within a given location are represented by a sunflower (each segment represents a 

single transmission event). The ‘source’ and the ‘sink’ are the populations with coordinates (2,2) and 

(4,4), respectively. 
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R Script used to simulate outbreak data 

#### SIM 1: RANDOM DIFFUSION #### 

 

## LIBRARY ## 

library(MASS) 

library(adegenet) # must be the devel version 

library(ape) 

 

## PARAMETERS FOR RANDOM DIFFUSION 

SEQLENGTH <- 5000 

TXMUT <- .008 

GENTIME <- 5 

GENTIME.SD <- 1 

REPRO <- 1.2 

REPRO.SD <- .5 

TMAX <- 100 

MAXNBSEQ <- 2000 

DISP <- 0.3 

GRID <- matrix(1:25,ncol=5) 

GRID 

 

NBSIM <- 10 

NBSAMP <- 10 

SAMPSIZE <- 800 

INI.N <- 10 

 

 

## SIMULATE DATA ## 

 

for(simIdx in 1:NBSIM){ 

    mySim <- list(ances=NA) # initialization 

    while(sum(!is.na(mySim$ances)) < 500){ 

        ## MAKE SIMULATION 

        mySim <- haploGen(seq.le=SEQLENGTH, Tmax=TMAX, mu=TXMUT, 

                          mean.gen=GENTIME, sd.gen=GENTIME.SD, 

                          mean.repr=REPRO, sd.repro=REPRO.SD, 

                    max.nb=MAXNBSEQ, lambda.xy=DISP, grid.size=5, 

   ini.n=INI.N) 

     } # end while 

 

    save(mySim, file=paste("sim.unif", simIdx, "RData", sep=".")) 

 

    ## GET SAMPLES 

    for(sampIdx in 1:NBSAMP){ 

        mySamp <- sample.haploGen(mySim, SAMPSIZE, rDate=rpois, 

arg.rDate=list(lambda=1)) 

        fileName <- paste("sim.unif", simIdx, sampIdx, "RData", sep=".") 

        save(mySamp, file=fileName) 

    } 

} 

 

#### SIM 2: STRUCTURED DISPERSAL #### 

 

## PARAMETERS, RANDOM DIFFUSION 

SEQLENGTH <- 5000 

TXMUT <- .008 

GENTIME <- 5 
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GENTIME.SD <- 1 

REPRO <- 1.2 

REPRO.SD <- .5 

TMAX <- 100 

MAXNBSEQ <- 2000 

DISP <- 0.3 

GRID <- matrix(1:25,ncol=5) 

GRID 

INI.N <- 10 

INI.XY <- c(2,2) 

 

DISPMAT <- matrix(0,ncol=25,nrow=25) 

diag(DISPMAT) <- 1 

## puits 

DISPMAT[c(13,14,15,18,20,23,24,25),-19] <- 0 

DISPMAT[c(13,14,15,18,20,23,24,25),19] <- 0.7 # apport puits 

DISPMAT[c(13,14,15,18,20,23,24,25) , c(13,14,15,18,20,23,24,25)] <- 0.3 

DISPMAT[19,] <- 0.01 

DISPMAT[19,19] <- 0.96 # diffusion puits = 0 

## source 

DISPMAT[c(1,6,11,2,12),-7] <- 0 # apport pour la source 

DISPMAT[c(1,6,11,2,12),7] <- 0.95 

DISPMAT[c(1,6,11,2,12),c(1,6,11,2,12)] <- 0.05 

DISPMAT[7, ] <- 0 # diffusion depuis la source 

DISPMAT[7, c(4,5,10,15,20,21,22,23,24)] <- 1/9 

## misc points with immediate neighbour connectivity 

DISPMAT[3, c(2,8,4)] <- DISP/3 # 3 

DISPMAT[3,3] <- 1-DISP 

DISPMAT[4, c(3,5,9)] <- DISP/3 # 4 

DISPMAT[4,4] <- 1-DISP 

DISPMAT[5, c(4,9,10)] <- DISP/3 # 5 

DISPMAT[5,5] <- 1-DISP 

DISPMAT[9, c(4,8,10,14)] <- DISP/4 # 9 

DISPMAT[9,9] <- 1-DISP 

DISPMAT[10, c(5,9,15)] <- DISP/3 # 10 

DISPMAT[10,10] <- 1-DISP 

DISPMAT[16, c(11,12,17,21,22)] <- DISP/5 # 16 

DISPMAT[16,16] <- 1-DISP 

DISPMAT[17, c(18,12)] <- DISP/2 # 17 

DISPMAT[17,17] <- 1-DISP 

DISPMAT[21, c(16,17,22)] <- DISP/3 # 21 

DISPMAT[21,21] <- 1-DISP 

DISPMAT[22, c(17,18,23)] <- DISP/3 # 

DISPMAT[22,22] <- 1-DISP 

## DISPMAT[, c(,,)] <- .2/3 # 

## DISPMAT[,] <- 0.8 

## DISPMAT[, c(,,)] <- .2/3 # 

## DISPMAT[,] <- 0.8 

## DISPMAT[, c(,,)] <- .2/3 # 

## DISPMAT[,] <- 0.8 

## DISPMAT[, c(,,)] <- .2/3 # 

## DISPMAT[,] <- 0.8 

 

 

DISPMAT <- prop.table(DISPMAT,1) 

 

NBSIM <- 10 
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NBSAMP <- 10 

SAMPSIZE <- 800 

 

 

 

## SIMULATE DATA ## 

 

for(simIdx in 1:NBSIM){ 

    mySim <- list(ances=NA) # initialization 

    while(sum(!is.na(mySim$ances)) < 500){ 

        ## MAKE SIMULATION 

        mySim <- haploGen(seq.le=SEQLENGTH, Tmax=TMAX, mu=TXMUT, 

                          mean.gen=GENTIME, sd.gen=GENTIME.SD, 

                          mean.repr=REPRO, sd.repro=REPRO.SD, 

                          max.nb=MAXNBSEQ, grid.size=5, matConnect=DISPMAT,  

  ini.n=INI.N, ini.xy=INI.XY) 

    } # end while 

 

    save(mySim, file=paste("sim.stru", simIdx, "RData", sep=".")) 

 

    ## GET SAMPLES 

    for(sampIdx in 1:NBSAMP){ 

        mySamp <- sample.haploGen(mySim, SAMPSIZE, rDate=rpois, 

arg.rDate=list(lambda=1)) 

        fileName <- paste("sim.stru", simIdx, sampIdx, "RData", sep=".") 

        save(mySamp, file=fileName) 

    } 

} 

 

 

## TO VISUALIZE THE LATEST DATASET  ## 

plotHaploGen(mySamp) 
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Genetic distances of inferred ancestries for the pdH1N1 data 

The number of mutations between a given isolate and its ancestor inferred by SeqTrack can be used 

to assess whether the correct ancestral haplotype has actually been sampled, and has been 

identified by the method. For instance, it is obvious that the correct ancestral haplotype has been 

sampled when the descendent differs from the inferred ancestor by a single mutation. Conversely, it 

is unlikely that the ancestral haplotype of a given isolate has been sampled whenever the closest 

haplotype to this isolate differs from it by several mutations. The analysis of swine-origin A/H1N1 

pandemic influenza data by SeqTrack suggests that the correct ancestral haplotype had actually 

been sampled in a large number of cases, as descendents often differ from their ancestors by no or a 

single mutation (Figure S3). 

 

 

Figure S3: genetic distances of ancestries inferred by the SeqTrack analysis of swine-origin A/H1N1 

pandemic influenza data. This figure shows the distribution of pairwise genetic distances (in number 

of mutations) between sampled isolates and their inferred ancestors. 

 


