Partitioned Bayesian Phylogenetic Analysis

We tested six different partitioning schemes based on a) known biological properties (e.g grouping 1st and 2nd codon positions); b) previously published results (Brandley *et al*, 2005) and; c) concatenating regions showing similar evolutionary properties (e.g rates and models) as shown in the table below.

Partitioning Scheme	N. Partitions	N. Estimated Parameters	Regions	N. Characters	% Variable	Model
а	1	6	all data combined	3014	24.62%	GTR+I+G
	5	18	ND2	557	25.49%	GTR+G
			ATPase 6	912	28.51%	GTR+G
b			ND4	732	24.18%	GTR+G
			Cytb	334	23.95%	HKY+I+G
			dLoop	481	17.26%	HKY+G
	9	27	ATPase 6 1st	222	15.32%	GTR+G
			ND2 1st	151	14.57%	HKY+G
			Cytb + ND4 1st 2nd (ND2, ATPase 6, ND4,	326	7.98%	K80+I+G
			Cytb)	699	1.57%	GTR+I
С			ND2 + ND4 3rd	365	61.64%	GTR+I+G
			ATPase 6 3rd	222	72.52%	GTR+G
			Cytb 3rd Non-coding (ND2, ATPase	112	64.29%	GTR
			6, ND4)	438	24.66%	GTR+G
			dloop	481	17.26%	HKY+G
	10	28	ND2 1st + 2nd	302	8.28%	HKY+G
			ATPase 6 1st + 2nd	444	8.56%	HKY+G
			ND4 1st + 2nd	430	5.12%	HKY+G
			Cytb 1st + 2nd	222	3.60%	GTR
d			ND2 3rd	151	62.91%	GTR+I
ŭ			ATPase 6 3rd	222	72.52%	GTR+G
			ND4 3rd	214	60.75%	GTR+I
			Cytb 3rd Non-coding (ND2, ATPase	112	64.29%	GTR
			6, ND4)	438	24.66%	GTR+G
			dloop	481	17.26%	HKY+G
e	12	30	ND2 1st + 2nd	302	8.28%	HKY+G
			ATPase 6 1st + 2nd	444	8.56%	HKY+G
			ND4 1st + 2nd	430	5.12%	HKY+G
			Cytb 1st + 2nd	222	3.60%	GTR
			ND2 3rd	151	62.91%	GTR+I
			ATPase 6 3rd	222	72.52%	GTR+G
			ND4 3rd	214	60.75%	GTR+I

Table S1.1 Partitioning strategies tested for the Bayesian analysis.

			Cytb 3rd	112	64.29%	GTR
			ND2 Non-coding	104	21.15%	HKY+G
			ATPase 6 Non-coding	246	24.80%	HKY+G
			ND4 Non-coding	88	28.41%	HKY
			dLoop	481	17.26%	HKY+G
			ND2 1st	151	14.57%	HKY+G
	16	36	ATPase 6 1st	222	15.32%	GTR+G
			ND4 1st	215	8.37%	HKY+I
			Cytb 1st	111	7.21%	K80
			ND2 2nd	151	1.99%	HKY+I
			ATPase 6 2nd	222	1.80%	HKY+I
			ND4 2nd	215	1.86%	HKY
f			Cytb 2nd	111	0.00%	-
I			ND2 3rd	151	62.91%	GTR+I
			ATPase 6 3rd	222	72.52%	GTR+G
			ND4 3rd	214	60.75%	GTR+I
			Cytb 3rd	112	64.29%	GTR
			ND2 Non-coding	104	21.15%	HKY+G
			ATPase 6 Non-coding	246	24.80%	HKY+G
			ND4 Non-coding	88	28.41%	HKY
	=		dLoop	481	17.26%	HKY+G

Each partitioning strategy was analyzed in MrBayes using the following MCMC parameters: 10⁶ generations using four runs and with sampling every 100th generation. 25% of the samples were discarded as burnin and the remaining log file of each run was combined.

Comparison between the different partitioning schemes was performed by comparing Bayes Factors (BF) calculated using Tracer v1.4.1. We followed previous suggestions of interpretation of BF's (Brandley *et al*, 2005) but also took into account the total number of parameters estimated, since overpartitioning can lead to sampling error (Li *et al*, 2008). Therefore, if two partitioning schemes could not be distinguished based on InBF, the simplest one (with least estimated parameters) was chosen. The results of this selection are shown below.

Figure S1.1 Distribution of the In likelihoods of the trees obtained using the six partitioning strategies, labeled in order of complexity (i.e number of estimated parameters) from a-f (see Table S1.1). Bars represent 95% confidence intervals of the estimates.

Estimation of divergence times

The dataset containing coding regions from three mitochondrial genes from two *Eigenmannia* species pairs and 9 teleosts (described in the Materials and Methods section) was tested for two different partitioning schemes. Partitioning strategies were compared using Bayes Factors and are described in the table below.

times.

Partitioning Scheme	Mean Likelihood	In P(model data)	S.E	In BF	Partitions	Model
			+/-	-345.08	ND2	HKY+G
By Gene	-11154.9847	-11163.93	0.108		ATPase 6	HKY+I+G
					Cytb	GTR+I+G
		-10818.851		345.079	ND2 1st	GTR+G
			+/- 0.132		ND2 2nd	GTR+I
					ND2 3rd	HKY+I+G
					ATPase 6	SVM C
					ATRaca 6	STMFG
By Codon	-10805.2921				2nd	GTR+G
					ATPase 6	
					3rd	HKY+I+G
					Cytb 1st	HKY+I
					Cytb 2nd	GTR+I+G
					Cytb 3rd	SYM+G

The tree obtained using the abovementioned data set and is shown below (Figure S1.2). The analysis parameters are given in the Materials and Methods section.

Figure S1.2 Estimation of divergence times of the *Eigenmannia* sisterspecies. Times from present are given in million years and bars represent the estimated dates and confidence intervals.

Cited References

Brandley MC. Schmitz A. Reeder TW (2005). Partitioned Bayesian analyses. partition choice. and the phylogenetic relationships of scincid lizards. *Syst Biol* **54**(3): 373-390.

Li CH. Lu GQ. Orti G (2008). Optimal data partitioning and a test case for rayfinned fishes (Actinopterygii) based on ten nuclear loci. *Syst Biol* **57**(4): 519-539.