

Figure S1: Effect of nucleotide analogs, pH, and nanobodies on the stability of the β₂AR-Gs complex.

a) Analytical gel filtration showing that nucleotides GDP and GTPγS (0.1 mM) cause dissociation of the β_2 AR-Gs complex. b) The phosphates pyrophosphate and foscarnet (used at 5 mM) resemble the nucleotide phosphate groups, but do not cause disruption of the complex. When used as additives they improved crystal growth of both the T4L-β2AR-Gs complex (without nanobodies), T4L-β2AR-Gs-Nb37, and T4L-β2AR-Gs-Nb35. c) The pH limit was determined to guide the preparation of crystallization screens. For the same purpose the effect of ionic strength (data not shown) was determined using NaCl at various concentrations. The complex is stable in 20, 100, and 500 mM but dissociates at 2.5 M NaCl. d) Nanobody 35 (Nb35, red dashed line) binds to the β_2 AR-Gs complex (blue solid line) to form the β_2 AR-Gs-Nb35 complex (red solid line) which is insensitive to GTPyS treatment (green solid line) in contrast to the treated β₂AR-Gs complex alone (green dashed line). Nb35 and Nb37 binds separate epitopes on the Gs heterotrimer to form a β_2 AR-Gs-Nb35-Nb37 complex (purple solid line). Nb37 binding also prevents GTPyS from dissociating the β_2 AR-Gs complex (data not shown).

Figure S2: Crystals of the T4L-β**2AR-Gs-Nb35 complex in sponge-like mesophase**

Figure S3: Views of electron density for residues in the β**2AR-Gs interface.**

a) The D/ERY motif at the cytoplasmic end of TM3. b) Packing interaction between Arg131 of the E/DRY motif and Tyr391 of C-terminal Gαs. c) The NPxxY in the cytoplasmic end of TM7. d) Interactions of Thr68 and Tyr141 with Asp130 of the E/DRY motif. Phe139 of IL2 is buried in a hydrophobic pocket in Gαs. e) The β1-α1 loop (P-loop) of Gαs involved in nucleotide binding.

Figure S4: Rigid body motion of the alpha helical domain

The GαsAH domain of the GTPγS bound structure (1AZT, Sunahara et al.) was aligned with GαsAH domain of the nucleotide-free β_2 AR-Gs structure to show that the displacement of G α sAH is a rigid body movement without significant intradomain conformational changes.

Figure S5: Packing interactions of Gα**sAH domain**

Shown in blue are residues in the GαsAH domain that are within 5Å of neighboring lattice contacts on Nb35, the GαsRas domain, and the β_2 AR.

Figure S6: Displacement of Gα**sAH domain is not caused by a steric clash with Nb35**

The G α sRas domain of the β_2 AR-G_S structure was aligned with the G α sRas domain of the GTP γ S bound structure (1AZT, Sunahara et al.) in (a) and with GαiRas domain of GDP bound G_i structure (1GP2, Wall et al.) in (b). c) The Gβ of the β₂AR-G_S structure was aligned with Gβ of the GDP bound G_i structure. In all three alignments, Nb35 (in red) does not overlap with the space occupied by the nucleotide bound state of the alpha helical domain in the Gαs-GTPγS and Gi-GDP structures.

Figure S7: Flow-chart of the purification procedures for preparing β**2AR-Gs complex with Nb35**

a) Analytical SDS-PAGE/Coomassie blue stain of samples obtained at various stages of β_2 AR-Gs purification. BI-167107 agonist bound, dephosphorylated, and deglycosylated receptor is used in excess of Gs heterotrimer for optimal coupling efficiency with the functional fraction of the G protein. Functional purification of Gs is achieved through its interaction with the immobilized receptor on M1 resin while non-functional/non-binding Gs is not retained. b) A representative elution profile of one of four consecutive preparative size exclusion chromatography (SEC) runs with fractionation indicated in red. SEC fractions containing the β_2 AR-Gs complex (within the indicated dashed lines) were pooled, spin concentrated, and analyzed for purity and homogeneity by SDS-PAGE/Coomassie blue (a, lane 6), gel filtration (c), and by anion exchange chromotography (d). d) Upper panel shows elution profile from an analytical ion exchange chromatography (IEC) run of β_2 AR-365-Gs complex that was treated with λ phosphatase prior to complex formation. Lower panel shows IEC of complex which was not dephosphorylated resulting in a heterogeneous preparation. Off-peak fractions from the preparative SEC (b) were used for analytical gel filtration experiments shown in figures S1 and S12.

Figure S9: Purication of Nb35 and determination of β**2AR:Gs:Nb mixing ratio**

a) Preparative ion exchange chromotography following nickel affinity chromotography purification of Nb35. The nanobody eluted in two populations (shown in red) as a minor peak and a major homogeneous peak which was collected, spin concentrated, and used for crystallography following determination of proper mixing ratio with the β₂AR-Gs complex as shown in (b). b) The β₂AR-Gs complex was mixed with slight excess of Nb35 (1 to 1.2 molar ratio of β_2 AR-Gs complex to Nb35) on the basis of their protein concentrations and verified by analytical gel filtration.

Figure S10: Formation of a stable β**2AR-Gs complex.**

A stable complex was achieved by the combined effects of: 1) binding a high affinity agonist to the receptor with an extremely slow dissociation rate (as described in Rasmussen et al., 2011); 2) formation of a nucleotide free complex in the presence of apyrase, which hydrolyses released GDP preventing it from rebinding and causing dissociation of the β_2 AR-Gs complex; and 3) detergent exchange of DDM for MNG-3 which stabilizes the complex.

a) Analytical gel filtration of β₂AR-Gs complexes purified in DDM (in black), MNG-3 (in blue), or two MNG-3 analogs (in red and green) following incubation for 48 hrs at 4°C . In contrast to DDM, the β_2 AR-Gs complexes are stable in the MNG detergents. b) Effect of diluting unliganded purified β₂AR in either DDM or MNG-3 below the critical micelle concentration (CMC) of the detergent. Functional activity of the receptor was determined by [³H]-dihydro alprenolol ([³H]-DHA) saturation binding. Diluting β₂AR maintained in DDM by 1000-fold below the CMC causes loss of [³H]-DHA binding (black data points) after 20 sec. In contrast, β₂AR in MNG-3 diluted 1000-fold below the CMC maintained full ability to bind [³H]-DHA after 24 hrs.

Figure S12: Effect of alkylating and reducing agents on the stability and aggregation of the β₂AR-Gs complex.

a) Disulfide-mediated aggregation of the β₂AR-Gs complex was observed by size exclusion chromatography (SEC) following incubation at 0° C for 7 days in buffer containing 0.1 mM tris(2-carboxyethyl)phosphine (TCEP). b) Treatment of the complex with iodoacetamide (5 mM for 20 hrs at 20º C) led to dissociation of the complex. Alkylating free cysteines with iodoacetic acid and cadmium chloride also led to dissociation. c) Disulfide-mediated aggregation of the complex could be prevented by higher concentrations of reducing agents. Treatment of the β₂AR-Gs complex with 0.1, 1, and 10 mM TCEP for 1 hr at 20° C, or 10 mM betamercaptoethanol (β-ME, 1 hr at 20° C) did not lead to dissociation or aggregation. Crystallization setups were performed using 1 to 5 mM TCEP, which was essential for optimal crystal growth.

Supplementary Table 2: Data collection and refinement statistics

* Highest shell statistics are in parentheses. a These regions were omitted from the model due to poorly resolved electron density. Unmodeled purification tags are not

included in these residue ranges. b Residues 1-28 of the β_2 AR were omitted from the construct and T4L was fused to the amino terminus of transmembrane helix 1 to facilitate crystallization. Residue 1 of T4L was omitted from the construct ^dAs defined by MolProbity³⁸.

Supplementary Table 3: Data collection statistics by resolution shell