Supplemental Materials

Contents

Experimental details	2
Fig. 5C.	2
Supplemental Figure legends, Busso et al.	2
Fig. S1. Expression and purification of recombinant muAPE1	2
Fig. S2. Expression vectors with a single FRT integration site	3
Fig. S3. Effect of ubiquitination on APE1's repair function	3
(A-E) Effect of ubiquitination on APE1's affinity for DNA	3
Fig. S4. Construction of KallR APE1 cDNA	4
Fig. S5. Role of MDM2 and CDK5 for APE1 ubiquitination in cells.	5
Fig. S6. Evaluation of gene expression array results	5

Experimental details Fig. 5C.

For formaldehyde (FA) cross-linking assay, the procedure in Current Protocols in Molecular Biology (basic protocol 2 in Chapter 21.3) was used. Cells were treated with FA (final 1%) for 8 min at room temperature and then quenched with 0.4 M glycine. Cells were then centrifuged, washed in ice-cold TBS buffer (100 mM Tris 7.5, 150 mM NaCl), resuspended in MC buffer (10 mM Tris pH 7.5, 10 mM NaCl, 3 mM MgCl₂, 0.5% NP-40), and then equal volume of x2 MNase buffer (10 mM Tris pH7.5, 10 mM NaCl, 3 mM MgCl₂, 1 mM CaCl₂, 4% NP-40) was added to the cell suspension. The cells were sonicated for 10 seconds to lyse the cellular membranes. This short sonication procedure was to ensure the genomic DNA was not sheered to short fragments. Soluble proteins were separated from the total fraction by centrifugation (30 min at maximum speed in a microcentrifuge) at 4°C. The total and soluble fractions were analyzed for the presence of uAPE1 and iAPE1.

Supplemental Figure legends, Busso et al.

Fig. S1. Expression and purification of recombinant muAPE1

(A) Expression and purification of recombinant muAPE1. (Left panel) *E. coli* BLR(DE3) (Novagen) was transformed with 3 expression vectors to express human uba1 in pACYC-Duet1, ubch5b and MDM2 in pRSF-Duet1, ubiquitin with (right) or without (left) APE1 in pET-Duet1. S: total soluble fractions of IPTG-induced cells, F: flow-through of column chromatography of Ni-NTA resin, W: 20 mM imidazole wash, E: eluted with 200 mM. Filled arrow: muAPE1. Samples were analyzed in IB using an APE1 antibody. Unmodified, intact APE1 in fraction E (open arrow, right most lane) was most likely due to intrinsic affinity of APE1 for the nickel resin. (**Right panel**) Recombinant muAPE1 fraction prepared as in the right panel (lane 1) was compared to uAPE1 generated by T233E APE1 transfection in HCT116 sh-

Ctl (Fig. 1). The size of recombinant muAPE1 matches with one of uAPE1 band (single arrow), with a slight upper shift due to the His-tag portion in the recombinant muAPE1 (about 1kDa difference). Arrow: position of muAPE1, double arrow: position of di-ubiquitinated APE1, filled circle: recombinant muAPE1, and open circle: intact (unmodified) recombinant APE1. (**B**) Interaction between APE1 and MDM2. BLR(DE3) expressing MDM2 (1-6) and wtAPE1 (1&4), wtAPE1-FLAG (2&5), T233E APE1-FLAG (3&6). 1-3: total fraction; 4-6: FLAG-immunoprecipitates. Top, MDM2; Bot, APE1.

Fig. S2. Expression vectors with a single FRT integration site

(**A**) pcDNA5.1/FRT/TO vector (Invitrogen). (**B**) the wtAPE1 cDNA inserted into *Hin*dIII-*Xho*I. (**C**) the G76A Ub fused to Lys24 of APE1. A strong nuclear localization signal (NLS) from SV40 large T antigen was placed at the N-terminus. (**D**) nuclear localization of the NLSUbAPE1 (c) stained with FITC (F) in mouse NIH3T3 cells. DAPI (D) and MitoTracker (M) were co-stained and merged (X).

Fig. S3. Effect of ubiquitination on APE1's repair function

(A-E) Effect of ubiquitination on APE1's affinity for DNA

(A) SDS/PAGE-Coomassie staining showing purified intact APE1 and Ub-APE1 fusion proteins. The pET15b derivatives expression corresponding APE1 proteins were induced with 0.5 mM IPTG and purified with Ni-NTA columns as previously (1). (B) Fluorescence anisotropy assays carried out with variable concentrations (0 - 2000 nM) of APE1 as indicated in x-axis and 10 nM 21-mer duplex DNA labeled with fluorescein at its 5'-end. The sequence of oligonucleotide (top) was: CGCTTGATGAGTCAGCCGGAA. The proteins and DNA were incubated in 50 mM HEPES 7.5, 1 mM EDTA, 6 mM CaCl₂ with variable NaCl concentration as

indicated for 3 min and fluorescence anisotropy was measured in Varian Eclipse with excitation/emission = 480 nm/520 nm (slit size = 10 nm) at 900V. (**C**) Kd of both proteins at corresponding salt concentrations were calculated by non-linear regression analysis (Mathematica) using the equation (2) for 1:1 DNA:APE1 binding. (**D**) SDS/PAGE-Coomassie staining showing purified ubiquitin protein purchased from Sigma. (**E**) Fluorescence anisotropy of 10 nM duplex oligonucleotide with variable concentration of ubiquitin, resulting in no response, indicating that ubiquitin has any detectable affinity for DNA.

(F) Effect of ubiquitination on APE1's repair reaction in *E. coli* cells.

To examine the effect of APE1 ubiquitination on AP-endonuclease activity, *E. coli* BW535, a double APE-negative mutant (*xthA nfo nth*) that were harboring an empty vector (vec, triangle), the wtAPE1 gene (wtAPE1, circle), or the Ub-APE1 fusion gene (Ub-APE1, square), was grown in LB broth at 28°C to logarithmic growth phase (until optical density reached about 0.3) with 12.5 μ g/ml kanamycin and 50 μ g/ml ampicillin. Resuspended in PBS, cells were treated with indicated concentration of methyl methanesulfonate (MMS, an alkylating reagent that facilitates DNA depurination) at 37°C for 1 h with vigorous shaking to generate AP sites in cells. Cells were then plated on LB agar plates after appropriate dilutions in PBS, and surviving colonies were counted. Average and standard deviation were calculated based on three or more independent platings. The plasmid vector, plZ42, is a derivative of pBluescript SK(-) (Stratagene) used in a previous study (3).

Fig. S4. Construction of KallR APE1 cDNA

(**A**) KallR APE1 is a full-length APE1 with T233E missense, and all 27 Lys residues in the wt-APE1 is converted to Arg. The clone was created by a PCR buildup method, using 50 short nucleotides shown in this figure. All oligonucleotides (50 pmol) were mixed in a 50 μ l PCR reaction mixture, and then PCR was carried out using Phusion Taq polymerase (NEB).

Resulting DNA was cloned into pCDNA3.1Zeo, and its sequence was confirmed by direct sequencing. (**B**) KallR APE1 analyzed in immunoblot. HCT116 transfected with vector (lane 1), KallR (lane 2), KallR with N-terminal x6 His fusion (lane 3), and KallR with C-terminal x6 His fusion (lane 4). The Lys-less APE1 migrates faster than the wild-type APE1 (lane 2, arrow). Slower migrations of the N-terminally or C-terminally tagged proteins (3&4, arrows) than KallR (2) indicate that both ends of KallR protein are intact.

Fig. S5. Role of MDM2 and CDK5 for APE1 ubiquitination in cells.

(A) MDM2-/- MEF cells were transfected with the vector (1) or the wtAPE1, MDM2, and ubiquitin genes (2-5). After 24 h, cells were treated with MG132 for 3 h (4) or 5 h (5), and then analyzed for ubiquitinated as well as intact APE1. (B) HCT116 cells were transfected with the wtAPE1, MDM2, and G76A ubiquitin. After 24 h, cells were treated with 10 μ M roscovitine (Sigma) for 3 h, and then cell lysates were processed for His-tag purification and analyzed with anti-APE1 antibody.

Fig. S6. Evaluation of gene expression array results

(**A**) The genes resulting p-value of less than 0.05 based on Welch ANOVA (about 15,000 total) were pooled and fold increase/decrease was calculated for each gene and plotted in the histograms. The values are given in logarithmic, i.e., the intensity change is given as:

Fold change =
$$Log\left\{\frac{(Intensity of a gene with dox)}{(Intensity of a gene without dox)}\right\}$$

Based on the histogram plots, skewness and kurtosis values were calculated for each cell line by calculating the third and fourth moment of the mean values. (**B**) RT-PCR was carried out for three genes: ferritin, YBX1 (Y box binding protein 1), and TUB1a (tubulin alpha 1a). Results of Affymetrix gene expression array indicated that these three genes were suppressed when ub-APE1 fusion protein was expressed. The 293 T-Rex Flp cells with the wt-APE1 or ub-APE1 under the doxycycline (dox) control were plated one day before the treatment with 2 μ g/ml dox for 16 h. Total RNA was extracted from the cells with or without dox, and subjected to RT-PCR using ABI TaqMan RTPCR probes in triplicates using in Bio-Rad CFX96/C-1000 Thermocycler. Probes used are Hs01000478_g1, Hs00898625_g1, Hs00897656_g1 for ferritin, YBX1, TUB1a, respectively. Results were normalized with beta-actin probe (4333762F), and induction (or suppression) by dox were calculated in the plot.

(**C**) Genes previously described (4) and were found in this study to be activated by the induction of wtAPE1, but suppressed by the induction of ub-APE1. The genes are categorized based on the previous study (4). Five categories are:

Category 1: Cell cycle, growth and maintenance and apoptosis;

Category 2: Cell adhesion, signal transduction, cell-cell signaling and chaperones;

Category 3: Transcription factors, chromatin factors and DNA-repair enzymes;

Category 4: Protein synthesis and metabolism related;

Category 5: Ion channels and redox associated proteins.

References

- 1. Mol,C.D., Izumi,T., Mitra,S. and Tainer,J.A. (2000) DNA-bound structures and mutants reveal abasic DNA binding by APE1 and DNA repair coordination [corrected] *Nature* **403**, 451-456.
- 2. Heyduk, T. and Lee, J.C. (1990) Application of fluorescence energy transfer and polarization to monitor Escherichia coli cAMP receptor protein and lac promoter interaction. *Proc Natl Acad Sci U S A* **87**, 1744-1748.
- 3. Izumi, T. and Mitra, S. (1998) Deletion analysis of human AP-endonuclease: minimum sequence required for the endonuclease activity. *Carcinogenesis* **19**, 525-527.
- 4. Vascotto,C., Fantini,D., Romanello,M., Cesaratto,L., Deganuto,M., Leonardi,A., Radicella,J.P., Kelley,M.R., D'Ambrosio,C., Scaloni,A., Quadrifoglio,F. and Tell,G. (2009) APE1/Ref-1 interacts with NPM1 within nucleoli and plays a role in the rRNA quality control process. *Mol Cell Biol* **29**, 1834-1854.

2 3 4 MMS (mM)

Fig. S3. Busso, et al.

В

Name	Sem	ience	- (5	-3'	`									
Top 1	тта		2 (3	CAC	י ראד	GCC	GCG	ccc	TCC	GAG	GAG	CCC	ACC	G
	GTG	CCC	CNA	CAC	CCC	CAT	CNC	CTTC	ACC	ACA	CAC	CCA	CNC	c
TOP_2 TOP_3	CCC	CCC	CCA	CTTA	CCA	CCC	CCC	CNA	CCC	CCA	ATC	ACA	CCC	7
TOP_5	CCC	2000	ACC	ACA	CCC	CGG	200	CAA	Cma	UCA TCA	CCN	CCC	000	7
TOP_4	CMM	AGC	AGG	AGA	GGG mC a	CCC	AGC	CCC	ACC	CCM	GGA	202	CTC	A C
TOP_5	GAI		CGC	CUL	CCA		MGI	A DC	AGG	mmc	GUU	CCT	CCA	C m
TOP_0	GGA	1CI	GCI		3 mm	AIG	TGG	CCT	BGC	CCA	GAG	NCC	GGA	7
Top_/	CAU	ACG	CCG	CGG	ATT	AGA	TTG	GGT	AAG	GGA	AGA	AGC		A
TOP_8	GAT	ATA	CTG	TGC	CTT NAC		GAG	ACC	CGA	TGT	TCA	GAG	AAC	A
10p_9	GGC	TAC	CAG	CTG	AAC	TTC	AGG	AGC	TGC	CTG	GAC	TUT	CTC	A
Top_10	TCA	ATA	CTG	GTC	AGC	TCC	TTC	GGA	CCG	GGA	AGG	GTA	CAG	T
Top_11	GGC	GTG	GGC	CTG	CTT	TCC	CGC	CAG	TGC	CCA	CTC	CGC	GTT	Т
Top_12	CTT	ACG	GCA	TAG	GCG	ATG	AGG	AGC	ATG	ATC	AGG	AAG	GCC	G
Top_13	GGT	GAT	TGT	GGC	'I'GA	A'I''I'	'I'GA	CTC	G'I''I'	TGT	GCT	GGT	AAC	A
Top_14	GCA	TAT	GTA	CCT	AAT	GCA	GGC	CGA	GGT	CTG	GTA	CGA	CTG	G
Top_15	AGT	ACC	GGC	AGC	GCT	GGG	ATG	AAG	ССТ	TTC	GCA	GGT	TCC	т
Top_16	GAG	AGG	CCT	GGC	TTC	CCG	ACG	GCC	CCT	TGT	GCT	GTG	TGG	А
Top_17	GAC	CTC	AAT	GTG	GCA	CAT	GAA	GAA	ATT	GAC	CTT	CGC	AAC	С
Top_18	CCA	GGG	GGA	ACC	GAC	GGA	ATG	CCG	GCT	TCG	AGC	CAC	AAG	А
Тор_19	GCG	CCA	AGG	CTT	CGG	GGA	ATT	ACT	GCA	GGC	TGT	GCC	ACT	G
Тор_20	GCT	GAC	AGC	TTT	AGG	CAC	CTC	TAC	CCC	AAC	ACA	CCC	TAT	G
Тор_21	ССТ	ACA	ССТ	TTT	GGA	CTT	ATA	TGA	TGA	ATG	CTC	GAT	CCA	G
Тор_22	AAA	TGT	TGG	TTG	GCG	ССТ	TGA	TTA	CTT	$\mathbf{T}\mathbf{T}\mathbf{T}$	GTT	GTC	CCA	С
Тор_23	TCT	CTG	TTA	CCT	GCA	TTG	TGT	GAC	AGC	CGG	ATC	CGT	TCC	А
Top_24	GGG	CCC	TCG	GCA	GTG	ATC	ACT	GTC	СТА	TCA	CCC	TAT	ACC	т
Top_25	AGC	ACT	GTG	ACT	CGA	\mathbf{GTT}	AT							
Bot_1	GCG	GCA	TGG	TGG	ATC	CAT	AA							
Bot_2	TCA	TCC	CCG	TCT	TCC	GCC	ACC	GCT	CCC	CTC	CTC	CCA	CGC	С
Bot_3	GGC	CGT	CCT	ACT	GCG	CCG	GGC	CTC	TGG	CTC	$\mathbf{T}\mathbf{G}\mathbf{T}$	CCT	GAG	С
Bot_4	CTG	GGC	CCT	CTC	CTG	CTG	CCT	CCC	TGT	CAT	TGC	GCC	TTG	С
Bot_5	CTG	GGT	GAG	GTG	CGC	TGA	TCT	GGG	GGG	TCC	TCA	TAC	AGG	G
Bot_6	CAC	ATT	CCA	AGA	GCA	GAT	CCG	GAG	TGT	GGC	AGG	CCT	GCC	А
Bot_7	AAT	CTA	ATC	CGC	GGC	GTC	TAA	TCC	AGG	CTC	GAA	GCC	CAT	С
Bot_8	TCT	TGA	AGG	CAC	AGT	ATA	TCT	GGG	GCT	TCT	TCC	CTT	ACC	С
Bot_9	CTG	AAG	TTC	AGC	TGG	TAG	CCT	\mathbf{GTT}	CTC	TGA	ACA	TCG	GGT	С
Bot_10	AAG	GAG	CTG	ACC	AGT	ATT	GAT	GAG	AGA	GTC	CAG	GCA	GCT	С
Bot_11	CGG	GAA	AGC	AGG	CCC	ACG	CCA	CTG	TAC	CCT	TCC	CGG	TCC	G
Bot 12	CTC	ATC	GCC	TAT	GCC	GTA	AGA	AAC	GCG	GAG	TGG	GCA	CTG	G
Bot 13	CAA	ATT	CAG	CCA	CAA	TCA	CCC	GGC	CTT	CCT	GAT	CAT	GCT	С
Bot 14	CCT	GCA	TTA	GGT	ACA	TAT	GCT	GTT	ACC	AGC	ACA	AAC	GAG	т
Bot 15	ATC	CCA	GCG	CTG	CCG	GTA	CTC	CAG	TCG	TAC	CAG	ACC	TCG	G
Bot 16	GTC	GGG	AAG	CCA	GGC	CTC	TCA	GGA	ACC	TGC	GAA	AGG	CTT	С
Bot 17	TCA	TGT	GCC	ACA	TTG	AGG	TCT	CCA	CAC	AGC	ACA	AGG	GGC	С
Bot 18	ATT	CCG	TCG	GTT	CCC	CCT	GGG	GTT	GCG	AAG	GTC	AAT	TTC	т
Bot 19	ATT	CCC	CGA	AGC	CTT	GGC	GCT	CTT	GTG	GCT	CGA	AGC	CGG	С
Bot 20	AGG	TGC	СТА	AAG	CTG	TCA	GCC	AGT	GGC	ACA	GCC	TGC	AGT	А
Bot 21	ATA	AGT	CCA	AAA	GGT	GTA	GGC	ATA	GGG	TGT	GTT	GGG	GTA	G
Bot 22	CAA	GGC	GCC	AAC	CAA	CAT	TTC	TGG	ATC	GAG	CAT	TCA	TCA	т
Bot 23	CAC	AAT	GCA	GGT	AAC	AGA	GAG	TGG	GAC	AAC	AAA	AAG	TAA	т
Bot 24	GTG	ATC	ACT	GCC	GAG	GGC	ССТ	GGA	ACG	GAT	CCG	GCT	GTC	А
Bot_25	ATA	ACT	CGA	GTC	ACA	GTG	CTA	GGT	ATA	GGG	TGA	TAG	GAC	А

Α

a 1 2 3 4 5 6

Fig. S5. Busso, et al.

Fig. S6. Busso, et al.

ъ			4			ω					г	ა				-	.		Category		
1.66	1.61	1.85	1.34	1.77	1.52	1.62	1.14	1.45	1.13	1.65	1.11	1.20	1.39	1.30	1.29	1.36	1.24	1.21	wtAPE1	fold incr induction wtAPE1 or	
0.88	1.35	1.24	1.05	1.21	0.96	1.15	0.71	0.87	0.65	1.37	0.61	0.95	1.00	1.05	0.67	1.05	0.78	0.78	ub-APE1	ease by of either ub-APE1	
PRDX3	transaldolase 1, TALDO1	HERPUD1	glutamic-oxaloacetic transaminase 1, soluble (aspartate aminotransferase 1)	eukaryotic translation initiation factor 2, subunit 3 gamma, main	methylenetetrahydrofolate dehydrogenase (NADP+ dependent) 1, methenyltetrahydrofolate cyclohydrolase, main	polymerase (DNA-directed), delta 3, main	polymerase (DNA directed), alpha 1 small Cajal body-specific RNA 23	NFAT5	calcium binding protein 39, CAB39	heat-responsive protein 12, HRSP12	IL6ST	SUMO1 activating enzyme subunit 1, SAE1	PRKAG1	adaptor-related protein complex 1, sigma 2 subunit	cyclin E2, CCNE2	CDC45 cell division cycle 45-like (S. cerevisiae), CDC45L	cell division cycle associated 7, CDCA7	apoptosis inhibitor 5, API5		Gene	
NM_006793 // GO:0005739 //	NM_006755 // GO:0005737 //	NM_014685 // GO:0005783 //	DQ372724	NM_001415 // GO:0005850 //	NM_005956 // GO:0005737 //	NM_006591 // GO:0005634 //	AF085825 BX648513	NM_138714 // GO:0005634 //	NM_016289 // GO:0005737 //	NM_005836 // GO:0005634 //	NM_002184 // GO:0005576 //	NM_005500 // GO:0005634 //	NM_212461 // GO:0005634 //	AF087876 BX537780	NM_057749 // GO:0005634 //	NM_003504 // GO:0005634 //	NM_031942 // GO:0005634 //	NM_006595 // GO:0005634 //		Gene ID	