#### SUPPLEMENTAL DATA

#### for

# Engineering the respiratory complex I to an energy-converting NADPH:ubiquinone oxidoreductase

#### by

Klaudia Morina, Marius T. Schulte, Florian Hubrich, Katerina Dörner, Stefan Steimle, Stefan Stolpe and Thorsten Friedrich

#### **Supplementary Tables:**

**Table S1**: Primers for site directed mutagenesis.

**Table S2**: Primers for the insertion of the *nptI-sacRB* cartridge and for amplification of the PCR fragment carrying the point mutation.

**Table S3**: Preparation of the variant Glu183Asp<sup>F</sup>.

**Table S4**: Preparation of the variant Glu183Gln<sup>F</sup>.

**Table S5**: Preparation of the variant Glu183Asn<sup>F</sup>.

**Table S6**: Preparation of the variant Glu183His<sup>F</sup>.

#### **Supplementary Figures:**

Figure S1: Sequence alignment of NuoF (numbering according to the *E. coli* subunit) around the nucleotide binding site. The position of Glu183 is marked in red.

**Figure S2: SDS-Gel of the preparations of complex I from the parental strain (A) and the Glu183His<sup>F</sup> variant (C).** Lane (B) shows the pattern of the marker (PageRuler Protein unstained Ladder, Fermentas). The molecular mass of the marker proteins is indicated. The SDS-Gel of the other preparations looked virtually identical to the ones shown in this figure.

**Figure S3: Detection of superoxide formation.** The spectrum was recorded with the Glu183Asp<sup>F</sup> variant reconstituted in phospholipids in the presence of 100 mM DEPMPO, 100  $\mu$ M decyl-ubiquinone, and 1 mM NADPH. EPR conditions were: microwave frequency: 9.65 GHz; modulation amplitude: 0.1 mT; time constant: 0.164 s; scan rate: 5.4 mT/min.

| Primer         | Sequence                                                     |
|----------------|--------------------------------------------------------------|
| nuoF E183D_fwd | 5´-CTGCGGGGAAGATACAGCATTAATCAACTCCCTGG-3´                    |
| nuoF E183D_rev | 5´-CCAGGGAGTTG <u>ATTAAT</u> GCTGTATCTTCCCCGCAG -3´          |
| nuoF E183H_fwd | 5'-CTGCGGGGAACACACAGCATTAATCAACTCCCTGG-3'                    |
| nuoF E183H_rev | 5'-CCAGGGAGTTG <u>ATTAAT</u> GCTGT <b>GTG</b> TTCCCCGCAG -3' |
| nuoF E183Q_fwd | 5´-CTGCGGGGAACAGCAGCATTAATCAACTCCCTGG-3´                     |
| nuoF E183Q_rev | 5'-CCAGGGAGTTG <u>ATTAAT</u> GCTGT <b>CTG</b> TTCCCCGCAG -3' |
| nuoF E183N_fwd | 5'-CTGCGGGGAAAACACAGCATTAATCAACTCCCTGG-3'                    |
| nuoF E183N_rev | 5´-CCAGGGAGTTG <u>ATTAAT</u> GCTGT <b>GTT</b> TTCCCCGCAG -3´ |

**Table S1:** Primers for site directed mutagenesis. The mutations introduced are marked in bold. The new restriction site for *VspI* is underlined.

**Table S2:** Primers for the insertion of the *nptI-sacRB* cartridge and for amplification of the PCR fragment carrying the point mutation. Regions homologous to *nuoF* are underlined. Regions homologous to the *nptI-sacRB* cartridge are marked bold.

| Primer               | Sequence                                                                                          |
|----------------------|---------------------------------------------------------------------------------------------------|
| nuoF::nptI-sacRB_fwd | 5′- <u>CCGCTGACCTGGCGTCTGCGCGATGACAAACAGCCAGTG</u><br><u>TGGCTGGACG</u> GTACCGGATCCGTCGACCTG-3′   |
| nuoF::nptI-sacRB_rev | 5'- <u>GCCAGGCTTTAAATTTCAGACCATCACGCATACCACCGGC</u><br><u>GTAATCTTC</u> GGAATTCCCCGGGGGGGATCCG-3' |
| nuoF2_fwd            | 5'-AACATTATCCGTACTCCCGAAACG-3'                                                                    |
| nuoF_rev             | 5´-CAGATCAAGGTGCGCTTC-3´                                                                          |

| preparation                   | NADH/ferricyanide-<br>oxidoreductase activity |      |                           |                                          |     |  |
|-------------------------------|-----------------------------------------------|------|---------------------------|------------------------------------------|-----|--|
|                               | volume protein total specific                 |      | specific                  | yield                                    |     |  |
|                               | [mL]                                          | [mg] | [µmol∙min <sup>-1</sup> ] | $[\mu mol \cdot min^{-1} \cdot mg^{-1}]$ | [%] |  |
| membranes                     | 17.8                                          | 1337 | 4146                      | 3.1                                      | 100 |  |
| extract                       | 59.5                                          | 1021 | 3469                      | 3.4                                      | 82  |  |
| Fractogel EMD                 | 70                                            | 154  | 2961                      | 19.2                                     | 71  |  |
| ProBond Ni <sup>2+</sup> -IDA | 1                                             | 2.4  | 185                       | 77                                       | 4   |  |

**Table S3:** Isolation of the complex I variant Glu183Asp<sup>F</sup> from 25 g cells (wet weight).

## **Table S4:** Isolation of the complex I variant Glu183Gln<sup>F</sup> from 22 g cells (wet weight).

| preparation                   | NADH/ferricyanide-<br>oxidoreductase activity |                               |              |                                             |       |  |  |
|-------------------------------|-----------------------------------------------|-------------------------------|--------------|---------------------------------------------|-------|--|--|
| I I                           | volume                                        | volume protein total specific |              | specific                                    | yield |  |  |
|                               | [mL]                                          | [mg]                          | [µmol∙min⁻¹] | [µmol·min <sup>-1</sup> ·mg <sup>-1</sup> ] | [%]   |  |  |
| membranes                     | 10,1                                          | 714                           | 3414         | 4.8                                         | 100   |  |  |
| extract                       | 60                                            | 409                           | 3150         | 7.7                                         | 92    |  |  |
| Fractogel EMD                 | 35                                            | 322                           | 3115         | 9.7                                         | 91    |  |  |
| ProBond Ni <sup>2+</sup> -IDA | 0.3                                           | 2.9                           | 237          | 81                                          | 7     |  |  |

### **Table S5:** Isolation of the complex I variant Glu183Asn<sup>F</sup> from 17 g cells (wet weight).

| preparation                   | NADH/ferricyanide-<br>oxidoreductase activity |      |              |                                             |     |  |
|-------------------------------|-----------------------------------------------|------|--------------|---------------------------------------------|-----|--|
| 1 1                           | volume protein total spe                      |      | specific     | yield                                       |     |  |
|                               | [mL]                                          | [mg] | [µmol∙min⁻¹] | [µmol·min <sup>-1</sup> ·mg <sup>-1</sup> ] | [%] |  |
| membranes                     | 6                                             | 398  | 2430         | 5.4                                         | 100 |  |
| extract                       | 31                                            | 548  | 1717         | 3.1                                         | 71  |  |
| Fractogel EMD                 | 2.5                                           | 121  | 1433         | 11.8                                        | 59  |  |
| ProBond Ni <sup>2+</sup> -IDA | 0.3                                           | 2.0  | 120          | 60                                          | 5   |  |

| preparation                   | NADH/ferricyanide-<br>oxidoreductase activity                                               |                               |                                             |          |       |  |
|-------------------------------|---------------------------------------------------------------------------------------------|-------------------------------|---------------------------------------------|----------|-------|--|
| I IIIIII                      | volume                                                                                      | volume protein total specific |                                             | specific | yield |  |
|                               | [mL] [mg] [ $\mu$ mol·min <sup>-1</sup> ] [ $\mu$ mol·min <sup>-1</sup> ·mg <sup>-1</sup> ] |                               | [µmol·min <sup>-1</sup> ·mg <sup>-1</sup> ] | [%]      |       |  |
| membranes                     | 8,2                                                                                         | 613                           | 1542                                        | 2.5      | 100   |  |
| extract                       | 30                                                                                          | 454                           | 1269                                        | 2.8      | 82    |  |
| Fractogel EMD                 | 21                                                                                          | 153                           | 1163                                        | 7.6      | 75    |  |
| ProBond Ni <sup>2+</sup> -IDA | 0.5                                                                                         | 4.4                           | 342                                         | 78       | 22    |  |

**Table S6:** Isolation of the complex I variant Glu183His<sup>F</sup> from 20 g cells (wet weight).

|    |               | 63         | 3 73       | 3 80       | ) 90       | ) 100      | ) 110      |
|----|---------------|------------|------------|------------|------------|------------|------------|
| E. | coli          | VKDAGLKGRG | GAGFSTGLKW | SLMPKDE    | SMNIRYLLCN | ADEMEPGTYK | DRLLMEQLPH |
| T. | thermophilus  | VKRSGLRGRG | GAGFPTGLKW | SFMPKDD    | GK-QHYLICN | ADESEPGSFK | DRYILEDVPH |
| А. | aeolicus      | VDKSTLRGRG | GAGFPTGKKW | KFAVQNP    | GPRYFICN   | ADESEPGTFK | DRIIIERDPH |
| P. | denitrificans | MKASGLRGRG | GAGFPTGMKW | SFMPKES    | DGRPSYLVIN | ADESEPATCK | DREIMRHDPH |
| N. | crassa        | VKASGLRGRG | GAGFPSGLKW | SFMNFKDWDK | DDKPRYLVVN | ADEGEPGTCK | DREIMRKDPH |
| Y. | lipolytica    | IKKSGLRGRG | GAGFPSGLKW | SFMNPPGWEK | NEGPRYLVVN | ADEGEPGTCK | DREIMRKDPH |
| в. | taurus        | VKTSGLRGRG | GAGFPTGLKW | SFMNKPS    | DGRPKYLVVN | ADEGEPGTCK | DREIIRHDPH |
| H. | sapiens       | IKTSGLRGRG | GAGFPTGLKW | SFMNKPS    | DGRPKYLVVN | ADEGEPGTCK | DREILRHDPH |
|    |               | :- : *:*** | ****-:* ** | -:         | - *:: *    | *** **-: * | ** ::- **  |
|    |               |            |            |            |            |            |            |
|    |               | 120        | ) 130      | ) 140      | 0 150      | ) 160      | ) 170      |
| E. | coli          | LLVEGMLISA | FALKAYRGYI | FLRGEYIEAA | VNLRRAIAEA | TEAGLLGKNI | MGTGFDFELF |
| T. | thermophilus  | LLIEGMILAG | YAIRATVGYI | YVRGEYRRAA | DRLEQAIKEA | RARGYLGKNL | FGTDFSFDLH |
| A. | aeolicus      | LLIEGIIISS | YAIGANEAYI | YIRGEYPAGY | YILRDAIEEA | KKKGFLGKNI | LGSGFDLEIY |
| Р. | denitrificans | TLIEGALIAS | FAMGAHAAYI | YIRGEFIRER | EALQAAIDEC | YDAGLLGRNA | AGSGWDFDLY |
| N. | crassa        | KLVEGCLVAG | RAMNATAAYI | YIRGEFIQEA | AILQNAINEA | YADGLIGKNA | CGSGYDFDVY |
| Y. | lipolytica    | KLVEGCLLAG | RAMNATAAYI | YIRGEFYNEA | AVLQTAINEA | YAAGLIGKDA | CGSGYDFDVY |
| в. | taurus        | KLVEGCLVGG | RAMGARAAYI | YIRGEFYNEA | SNLQVAIREA | YEAGLIGKNA | CGSGYDFDVF |
| H. | sapiens       | KLLEGCLVGG | RAMGARAAYI | YIRGEFYNEA | SNLQVAIREA | YEAGLIGKNA | CGSGYDFDVF |
|    |               | *:** ::    | *: * -**   | ::***:     | *_ ** *_   | * :*::     | *:-:-:::-  |
|    |               |            |            |            |            |            |            |
|    |               | 180        | ) 190      | ) 200      | ) 210      | 220        | ) 230      |
| E. | coli          | VHTGAGRYIC | GEETALINSL | EGRRANPRSK | PPFPATSGAW | GKPTCVNNVE | TLCNVPAILA |
| T. | thermophilus  | VHRGAGAVIC | GEETALMNSL | EGLRANPRLK | PPFPAQSGLW | GKPTTINNVE | TLASVVPIME |
| А. | aeolicus      | VARGAGAVIC | GEETALIESL | EGKRGHPRLK | PPYPVQKGLW | GKPTVVNNVE | TIANVPFIIS |
| Р. | denitrificans | LHHGAGAYIC | GEETALLESL | EGKKGMPRMK | PPFPAGAGLY | GCPTTVNNVE | SIAVVPTILR |
| N. | crassa        | LHRGAGAYVC | GEETSLIESL | EGKPGKPRLK | PPFPAAVGLF | GCPSTVANVE | TVAVAPTICR |
| Y. | lipolytica    | IHRGMGAYVC | GEETSLIESL | EGKAGKPRLK | PPFPAGVGLF | GRPSTVTNVE | TVAVAPTILR |
| В. | taurus        | VVRGAGAVIC | GEETALIESI | EGKQGKPRLK | PPFPADVGVF | GCPTTVANVE | TVAVSPTICR |
| H. | sapiens       | VVRGAGAVIC | GEETALIESI | EGKQGKPRLK | PPFPADVGVF | GCPTTVANVE | TVAVSPTICR |
|    |               | : * * *:*  | ****:*::*: | ** _ ** *  | **:*- * :  | * *: : *** | ::- *      |

Fig. S1; Morina et al.



Fig. S2; Morina et al.



Fig. S3; Morina et al.