Supplemental Material

DI/S5-SS1

 $DmNa_v1: \quad \textit{ISFPLCGNISGAGQCDDDYVCLQGFGPNPNYGYTSF} \text{DSF}$

 $rNa_v1.2a; \quad \textit{NDALLCGNSSDAGQCPEGYICVKA-GRNPNYGYTSFDTF}$

DI/SS2-S6

DmNa_v1: VLRAAGPWH rNa_v1.2a: TLRAAGKTY

DIV/S1-S2

DIV/S3-S4

 $\begin{array}{lllllllllllllllllrvvr} DmNa_v1: & \texttt{LGLVLSDIIEKYFVSPTL}\texttt{LRVVr} \\ rNa_v1.2a: & \texttt{VGMFLAELIEKYFVSPTL}\texttt{FRVIR} \end{array}$

SUPPLEMENTAL FIGURE 1: Sequence alignment of extracellular loops (in italics) of the Poremodule of DI and Gating-module of DIV of DmNa_v1 and Na_v1.2a. Sequences used in the swap experiments are underlined. <u>SUPPLEMENTAL TABLE 1</u>: Biophysical properties of channel chimeras. Voltage dependence of activation was measured by fitting the GV curve with one component Boltzmann distribution (see Methods), yielding half-maximal activation ($V_{1/2}$) and the slope factor ($k_{1/2}$). Steady-state inactivation was measured as depicted in the Methods, with V_h representing the membrane potential at which half-maximal inactivation was achieved; k_h is the slope factor. *n* for all experiments is at least 6.

Channel	Activation		Steady-state inactivation	
	V _{1/2} , mV	$k_{1/2}$	V _h , mV	$k_{ m h}$
DmNa _v 1 unmodified	-23.2±1.4	5.3±0.1	-48.9±1.1	5.2±0.1
$DmNa_v 1^{rNa_v 1.2a(DIV/S1-S2)}$	-20.7±1.1	5.0±0.3	-45.2±0.9	5.5±0.1
$DmNa_v 1^{rNa_v 1.2a(DIV/S1-S2+S3-S4)}$	-27.5±2	4.5±0.5	-43.8±1.2	5.4±0.1
$DmNa_v 1^{rNa_v 1.2a(DIV/S3\text{-}MFLA)}$	-24.5±3	4.8±0.4	-42.1±1	5.1±0.2
$DmNa_v 1^{rNa_v 1.2a(DI/SS2-S6)}$	-22.0±1.7	5.5±0.5	-46.0±1.2	5.4±0.1
$DmNa_v 1^{rNa_v 1.2a(D1/S5-SS1 + SS2-S6)}$	-21.1±1	4.6±0.4	-43.7±1.2	4.8±0.2
$DmNa_v 1^{rNa_v 1.2a(site-3face)}$	-25.8±2.2	4.5±0.2	-46.0±1.8	5.4±0.1
$DmNa_v 1^{rNa_v 1.2a(Site-3 face + E1613D)}$	-21.9±0.8	4.8±0.2	-40.7±1.3	5.4±0.1
rNav1.2a unmodified	-25±1.6	4.2±0.2	-43.9±0.8	6.4±0.1
$rNa_v 1.2a^{E1613D}$	-25.3±1.8	4.13±0.3	-43.6±0.7	6.8±0.2