Cytoplasmic N-glycosyltransferase of *Actinobacillus pleuropneumoniae* is an inverting enzyme and recognizes the N-X-S/T consensus sequence

Flavio Schwarz¹, Yao-Yun Fan¹, Mario Schubert², and Markus Aebi¹ From Institute of Microbiology¹, Institute of Molecular Biology and Biophysics² Department of Biology, ETH Zurich, 8093 Zurich, Switzerland

SUPPLEMENTARY MATERIAL

Supplementary Table 1

Experimentally measured chemical shifts of the two glucosylated tamra-DANYTK peptides in comparison to observed chemical shifts for model compounds and calculated values.

glycan unit	nucleus	experimental tamra- DANYTK-Glc ^a	Glc-β- Asn (1)	Glc-α- Asn (1)	experimental tamra- DANYTK- Glc ₃ ^a	methyl α- isomalto- trioside (2) ^c	β-isomalto- triose (3)	
Glc _A	C1 / H1	82.0 / 4.96	81.9	79.3	82.3 / 4.98	102.0 / 4.81	- / 4.66	82.3 / 5.03
	C2 / H2	74.5 / 3.42	74.6	72.1	74.4 / 3.44	74.0 / 3.56	- / 3.24	74.5 / 3.44
	C3 / H3	79.2 / 3.55	79.2	75.4	79.5 / 3.55	76.1 / 3.65	- / 3.46	79.4 / 3.57
	C4 / H4	72.0 / 3.43	72.0	72.1	71.9 / 3.55	72.2 / 3.50	- / 3.49	72.0 / 3.55
	C5 / H5	80.4 / 3.50	80.3	75.8	78.7 / 3.69	72.7 / 3.82	- / 3.63	79.0 / 3.70
	C6 / H6 & H6'	63.3 / 3.87 & 3.72	63.3	63.3	68.3 / 3.97 & 3.74	68.3 / 3.99 & 3.74	- / 3.95 & 3.75	68.5 / 4.08 & 3.64
Glc _B	C1 / H1				100.7 / 4.94	100.5 / 4.96	- / 4.95	100.6 / 4.97
	C2 / H2				74.2 /3.57	74.0 / 3.57	- / 3.56	74.1 / 3.59
	C3 / H3				76.1 / 3.71	76.0 / 3.71	- / 3.72	76.0 / 3.73
	C4 / H4				72.3 / 3.51	72.2 / 3.51	- / 3.50	72.3 / 3.54
	C5 / H5				73.0 / 3.90	73.0 / 3.90	- / 3.73 ^d	73.0 / 3.90
	C6 / H6 & H6'				68.3 / 3.95 & 3.73	68.3 / 3.96 & 3.74	- / 3.96 & 3.89 ^d	68.6 / 3.97 & 3.77
Glc _T	C1 / H1				100.5 / 4.95	100.5 / 4.95	- / 4.95	100.6 / 4.96
	C2 / H2				74.2 / 3.56	74.3 /3.54	- / 3.54	74.1 / 3.57
	C3 / H3				75.9 /3.72	75.8 / 3.71	- / 3.71	75.8 / 3.74
	C4 / H4				72.3 /3.43	72.2 / 3.42	- / 3.41	72.4 / 3.44
	C5 / H5				74.6 / 3.71	74.6 / 3.70	- / 3.73	74.5 / 3.73
	C6 / H6 & H6'				63.2 /3.84 & 3.76	63.2 / 3.83 & 3.75	- / 3.83 & 3.76	63.4 / 3.86 & 3.77

^a Chemical shifts are referenced to DSS according to Markley et al. (5).

 $^{\rm b}$ $^{\rm 13}{\rm C}$ chemical shifts are shifted by +1.9 ppm, original shifts were referenced to TMS via internal 1,4-dioxane.

 c ^{1}H chemical shifts are shifted by +0.05 ppm, ^{13}C chemical shifts by 2.72 ppm (difference between neat TMS and DSS in $\rm H_{2}O)$

^d ¹H chemical shifts of H5 and H6' are incorrectly assigned and need to be swapped

^e ¹³C chemical shifts are shifted by + 1.7 ppm, CASPER references to TMS

Supplementary Figure 1

Phylogenetic tree of representative homologs of the HMW1C protein of *H. influenzae* found among proteobacteria

Homologs were identified by BLAST search and the tree was constructed with Phylogeny.fr (6). Organisms indicated in black are gamma-proteobacteria, whereas *Burkholderia xenovorans* LB400 belongs to the group of beta-proteobacteria.

Supplementary Figure 2

X. campestris OGT does not modify tamra-labeled DANYTK peptide in presence of donor substrates Reaction products were separated by Tricine-SDS-PAGE analysis and fluorescent signals were acquired by an image analyzer.

Supplementary Figure 3

Genomic region of *A. pleuropneumoniae* AP76 encoding for *ngt* Arrows indicate open reading frames.

Supplementary Figure 4

NGT and α 6GlcT are metal ion-independent glycosyltransferases

Tamra-labeled peptides were incubated with NGT and α 6GlcT in presence or absence of EDTA. Reaction products were separated by Tricine-SDS-PAGE analysis and fluorescent signals were acquired by an image analyzer.

Supplementary Figure 5

MALDI-MS analysis of glucosylated products shows that the glucosyltransferase α 6GlcT elongates the N-linked glucose with up to six units of glucose in presence of a 1:1000 acceptor:donor ratio.

Supplementary Figure 6

¹H-¹³C HSQC spectra of tamra-DANYTK (A), tamra-DANYTK-glucose (B), and tamra-DANYTK-glucose₃ (C). In the last spectrum three different glucose species were identified: terminal glucose (Glc_T), bridging glucose (Glc_B) and the Asn-linked glucose (Glc_A). A star denotes an impurity from the initial peptide.

Supplementary Figure 7

MALDI-MS/MS spectrum of the precursor ion at m/z 1882.93 matches with fragmentation of SIVNPGGSN(Hex)LTYTIER glycopeptide

Supplementary Figure 8

MALDI-MS/MS spectra of precursor ions corresponding to glucosylated peptides indicated in Figure 4B

A) Fragmentation of ion at *m/z*=2610.20 matches with fragmentation of YN(Hex)YSNPGFSESTGHFTQVVWK. B) Fragmentation of ion at m/z=2579.20 matches with fragmentation of LN(Hex)STFEDAVIPLIFSEYGCNK. C) Fragmentation of ion at m/z=2229.10matches with fragmentation of LLN(Hex)SSQTATISLADGTEAFK. D) Fragmentation of ion at m/z=1702.78 matches with fragmentation of FHN(Hex)YTLDWAMDK. E) Fragmentation of ion at m/z=2966.57 matches with fragmentation of LSN(Hex)YTGQFSGALSFLNDDYEFFIR. F) Fragmentation *m/z*=2848.37 of ion at matches with fragmentation of FSSN(Hex)ETLAIVYSHNAPLNQVVNLR. G) Fragmentation of ion at m/z=2188.072666.15matches with fragmentation of SFAN(Hex)TTAFALSPPVDGFVGK. H) Fragmentation of ion at m/z=1999.07 matches with fragmentation of TLGYN(Hex)TSLTLLDNHFK. I) Fragmentation of ion

at m/z=1869.87 matches with fragmentation of IDADFN(Hex)ATFYSMANK. J) Fragmentation of ion at m/z=1813.85 matches with fragmentation of SDAGFN(Hex)ISLSDLWAR. K) Fragmentation of ion at m/z=2659.32 matches with fragmentation of ILGIDPN(Hex)VTQYTGYLDVEDEDK. L) *m/z*=2252.16 fragmentation Fragmentation of ion at matches with of LEYLDIN(Hex)STSTTVDLYDK. M) Fragmentation of ion at m/z=2024.86 matches with fragmentation of GGANFDSSSSN(Hex)FSCNALK. N) Fragmentation of ion at m/z=2630.37 matches with fragmentation of LAPTYOELADTYAN(Hex)ATSDVLIAK. O) Fragmentation of ion at m/z=2842.44 matches with fragmentation of FAWWAAEEEGLLGSNFYAYN(Hex)LTK.

Supplementary Figure 9

LC-ESI-MS/MS analysis of the tryptic products of glucosylated AcrA

A) Spectrum from fragmentation of the doubly charged precursor ion at m/z=700.31 corresponds to the peptide ATFENASKDFNR. B) Spectrum from fragmentation of the doubly charged ion at m/z=862.39 matches with the glycopeptide ATFEN(Hex)ASKDFN(Hex)R. C) Spectrum from fragmentation of the doubly charged precursor ion at m/z=1378.21 corresponds to the peptide AVFDNNNSTLLPGAFATITSEGFIQK. D) Spectrum from fragmentation of the doubly charged ion at m/z=1459.24 matches with the glycopeptide AVFDNNN(Hex)STLLPGAFATITSEGFIQK. The exact location of the hexose could not be identified.

Supplementary References

- 1. Takeda, T., Sugiura, Y., Ogihara, Y., and Shibata, S. (1980) *Canadian Journal of Chemistry-Revue Canadienne De Chimie* **58**, 2600-2603
- 2. Hansen, P. I., Larsen, F. H., Motawia, S. M., Blennow, A., Spraul, M., Dvortsak, P., and Engelsen, S. B. (2008) *Biopolymers* 89, 1179-1193
- 3. Williamson, M. P., Trevitt, C., and Noble, J. M. (1995) *Carbohydrate Research* 266, 229-235
- 4. Lundborg, M., and Widmalm, G. (2011) Anal Chem 83, 1514-1517
- 5. Markley, J. L., Bax, A., Arata, Y., Hilbers, C. W., Kaptein, R., Sykes, B. D., Wright, P. E., and Wuthrich, K. (1998) *J Biomol NMR* **12**, 1-23
- 6. Dereeper, A., Guignon, V., Blanc, G., Audic, S., Buffet, S., Chevenet, F., Dufayard, J. F., Guindon, S., Lefort, V., Lescot, M., Claverie, J. M., and Gascuel, O. (2008) *Nucleic Acids Res* **36**, W465-469

