
	  
Supplementary Methods: 
 
A model of paAPC-T cell paracrine IL-2 delivery: 
 
Fickʼs first law of diffusion relates concentration gradients and molecular fluxes.  The 
concentration c0 of released molecules at the surface of the particle of radius, a, is 
therefore related to the flux j0 of molecules from the surface and their diffusion coefficient 
D (For an isolated single particle):  

C = J0
a
D

             (Eqn.1) 

This relationship is valid whether the release rate is limited by the diffusion of molecules 
away from the surface or by the release of molecules from the particle. From figure 3A 
we estimated the flux J0 of IL-2 molecules from a single particle. Since particles are on 
the average 8 um in diameter, their surface area is 200 um2.  They release about 500 pg 
of IL-2 per mg of particles during the first hour.  Given that 1 mg of particles is about 1 
million particles (measured by a particle counter), this corresponds to 0.033 
pmol).  Thus, the amount of IL-2 per particle is 3.3 x 10-20 mol and J0 is 4.6 x 10-18 
mol/(cm2*s) which leads to a C0 of 1.8 pM. 
 
The IL-2 concentration field (C) is assumed to quasi-steady (QS), meaning it can vary 
only slowly with time. The paAPC and T cell are assumed to be spherical with radii of 
RP=4 m and RT=5 m, respectively. Under these conditions, the C-field is governed by the 
Laplace equation: 
 

!2C* = 0           (Eqn. 2) 
 
  
where C* is the dimensionless concentration: 
 

C*  = (C - C!)
(CPiso- C!)

        (Eqn. 3) 

CPiso is defined as the surface concentration of IL-2 on the paAPC if it were isolated (far 
away) from the T cell.  C∞ is the concentration of IL-2 in culture, which is taken as zero. 
 
It is convenient to use dimensionless quantities which are designated with an asterisk ( * 
).  For example, distances will be measured in units of RP.   Thus, the initial relative cell 
size (RT

*) is RT/RP (=1.25) and the dimensionless separation (S*) is S/R.  The Laplacian 
operator in Eqn. (2) is normalized by RP

2.  The use of dimensionless quantities allows 
one calculation to be applied to many situations. For example, RT

* =1.25 and S* = 0.005 
results can be applied to an 8m  diameter paAPC interacting with a 10 m T cell 
separated by 20nm or a 4 m diameter paAPC interacting with a 5m T cell separated by 
10nm, and so on.  
 
 
 
 



The IL-2 molar flux is: 
 

J =Dext!C =
Dext

Rp

CPiso "C#( )!* =
Dext
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CPiso "C#( )J*    (Eqn. 4) 

 

where !*  is the dimensionless gradient  !
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J * = !*C * =
JRP

Dext CPiso "C#( )
        (Eqn. 5) 

The problem is not properly posed until the boundary conditions on the cell surfaces are 
specified.  If the cells were perfect absorbers and emitters then these boundary 
conditions would simply be: 
 
C*= 1 on the paAPC and C*= 0 on the T cell     (Eqn. 6) 
 
With these boundary conditions, the problem would be analogous to finding the 
electrostatic potential between two conducting spheres, one of unit size (RP

* =1) raised 
to unit potential, and the other of relative size RT

* =1.25 at ground and could be solved 
using, for example, the classical Method of Images (MOI) [44-47].  A perfect/perfect pair 
is of little interest because the IL-2 surface concentrations are known a priori. The 
dimensionless gradient between the surfaces at the synaptic point is nearly the same 
(1/S*) as that between two parallel plates separated by a distance S*.  When S*= 0.005, 
corresponding to 20nm, the dimensionless gradient would be some 200 times greater 
than the gradient near an isolated paAPC.  In light of the low internal diffusion 
coefficients typical of paAPCs, a paAPC is far from a “perfect source” and is incapable of 
supply IL-2 at such an elevated rate.  Further, during the initial phase of paracrine 
delivery, when there are few if any receptors of high affinity on the T cell surface, the T 
cell is incapable of absorbing the IL-2 flux from a perfect source.  Indeed, it is this initial 
phase of paracrine delivery that is the most interesting and will be the focus of what 
follows.  
 
Instead of Eqn.(6), more realistic boundary conditions will be applied to the cells in this 
work. Suppose the local normal flux of IL-2 from the paAPC is dependent on the local 
surface concentration (CP) according to: 
 
Jp = !(C0 !CP )         (Eqn. 7)  
  
b plays the role of a first order kinetic rate constant for emission.  Alternatively, b may be 
interpreted as a measure of the internal diffusive resistance in the paAPC.  This may be 
modeled as an inner core with a uniform internal concentration of Co and the IL-2 has to 
diffuse through a “membrane,” of thickness L mem and diffusion coefficient Dmem, to reach 
the paAPC surface.  In this case, b = Dmem/L mem.  As opposed to diffusion through a true 
cell membrane, internal diffusion for paAPC may be modeled as diffusion through an 



effective “membrane” that increases in thickness ( Lmem, eff
*) with time. C0 for a paAPC will 

decrease with time as the cell is depleted of IL-2.  C0 may be interpreted as the 
equilibrium or “saturation” surface concentration, at or above which the rate of emission 
is zero. CP, in general, is a function of position along the paAPC surface.  Clearly JP will 
be greatest where CP is smallest and have a maximum rate of b Co when the surface is 
free of IL-2 (CP = 0).  When the surface is saturated, CP = Co , the local flux is zero.    
 
Equation (7) may be written in dimensionless form as: 
 
JP
* = ! *(C0

* !CP
* )         (Eqn. 8) 

 
where  
 

! * =
DmemRP

D ext Lmem
=

Dmem

DextL*mem,eff
       (Eqn. 9) 

 
In this case, when the paAPC is far from the Tcell, it follows from the definitions of the 
dimensionless quantities that  JP

* = 1 and  
 

C0
* =1+ 1

! *

!

"
#

$

%
&          (Eqn. 10) 

 
 
A small b* then means significant diffusional resistance and a large C0

*. A large b* 
implies little internal resistance and CP

* ~ C0
*~ 1. Significant internal resistance, however, 

is expected.  Dint in a paAPC is typically several orders of magnitude lower than Dext 
resulting in extremely small b* values during most of the paAPCʼs release lifetime.  
Fortunately, the dimensionless calculations are not sensitive to the precise value of b* 
provided b* << 1.  For illustrative purposes, a b* of 10-4 will be used here. C0

*, therefore, 
will be orders of magnitude higher than CP

*.  A large C0
* does not imply an absurdly high 

internal concentration, but rather an extremely low value of CPiso.   
 
Substituting Eqn.(10)  into Eqn.(8) yields an alternative form for the dimensionless 
normal flux that does not explicitly depend on C0

*: 
 
JP
* =1+!*(1"CP

* )         (Eqn. 11) 
  
From this alternative form, it is clear from the above that as b*  0,  CP

*  0 and  JP
*   

1, the same value as for an isolated particle.  This small b* limit, will be referred to as the 
“constant flux limit.”  In this limit, the rate-determining step is internal diffusion and the 
rate of emission becomes remarkably insensitive to interactions. With Dint  << Dext , 
paAPCs, except when they are “fresh,” will fall into this constant source limit over most of 
their release lifetimes. The reason for this is the driving force for internal diffusion is Co

*-
CP

*, and since   Co
* >> 1 (CPiso

*), any slight changes in CP
*
 due to interactions does not 

appreciable change the internal diffusion rate. While JP
* may be nearly constant and the 

same as an isolated cell, CP
* will tend to vary over the surface and will not necessarily 



have the isolated particle CPiso
* value of unity.  In the constant source flux limit, 

interactions affect the surface concentrations but not the rate of emission.   
 
Eqn. (8), therefore, is the boundary condition on the surface of the paAPC.  The Tcell, on 
the other hand, is assumed to be non-absorbing, so the normal surface flux of IL-2 on 
the T cell surface is zero:  
 
JT

* = 0          (Eqn. 12) 
 
 
The problem now is to solve the Laplace equation, (Eqn. 2), subject to the boundary 
conditions represented by Eqn. (8) on the paAPC and (Eqn.12) on the T cell.  While b* 

can be estimated apriori, the local surface concentrations (CP
* and CT

*) cannot. Further, 
these concentrations will not be uniform and will vary from point to point along the cell 
surfaces.  
 
As in Refs (19,20), boundary collocation method is used to solve this problem.  The field 
near a point or ring singularity satisfies the Laplace equation. Since the Laplace equation 
is linear, a solution can be crafted by superimposing the fields of a series of singularities 
of suitable strength so as to satisfy the boundary conditions. In a boundary collocation 
method, the boundary conditions are satisfied at N discrete points.  While with using this 
method the boundary conditions are not satisfied everywhere, by choosing N to be 
sufficiently large, a reasonable solution may be obtained.    
 
The concentration at any point (x) between the cells can then be expressed as series: 
 
C*(x) = qifi(x)!         (Eqn. 13) 
where qi is the strength of the ith source and fi is the contribution to the field from that 
source when qi were equal to unity.   
 
Since the problem is axially symmetric, it is convenient to use ring singularities.  The field 
near a ring singularity of unit strength is: 
 

fi(x) =
2K(z)
pw

1
2

         (Eqn. 14) 
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Where K(z) is the complete elliptical integral of the first kind, Rc is the radius of the ring,  
and a and r are the axial and radial distances from the center of the ring to the x point.   
 
The N equations for the N unknown values of qi are found by satisfying the boundary 
conditions at N discrete points.   
 
The jth collocation point is on the paAPC: 



qi
i=1
i!j

N

" (gij # fij ) = #$
*C0

*         (Eqn. 15) 

where fij is contribution of the ith source to the field at the jth collocation point.  gij is the 
contribution of the gradient of fij normal to the surface at the jth collocation point.   
 
If the jth collocation point is on the T cell then: 
 

qi
i=1
i!j

N

" (gij) = 0          (Eqn. 16) 

 
Eqns.(15) and (16) represent N linear equations which can be solved for the N unknown 
qi.  Knowing the qi, the surface concentrations at the N points can be calculated from 
Eqn.(13).   Once the qi are known, the field anywhere on the surface of or between the 
cells can be found from Eqn.(13). Knowing the surface concentrations, the local normal 
fluxes follow from Eqns.(8) and (12). 
 
The ring singularities were arranged on a “singularity sphere” that is roughly 95% of the 
radius inside a given cell. The radius of the singularity sphere is an important 
computational variable and is found by trial and error. If the radius is too large, then large 
variations between the collocation points may occur. If the radius is too small, then 
round-off errors become troublesome.   Using a 4 degree (dqs) singularity separation, the 
maximum error in C* at the midpoint between two collocation points was found to be less 
than 0.1% in most cases.  
 
References: 
 
44.  Labowsky,M. (1976) Chemical Engineering Science  31,803-813. 
45.  Labowsky,M. (1978) Combustion Science and Technology 18, 145-151. 
46.  Labowsky,M. (1980a) Combustion Science and Technology 22, 217-226.  
47.  Labowsky,M. (1980b)Chemical Engineering Science 35,1041-1048.  
 
	  
	  
	  


