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ABSTRACT
We present here a model for the prediction of helix twist angles in

B-DNA, a model composed of a collection of torsional springs. Statistically
averaged conformational energy calculations show that, for a specified base-
pair step, the basepair-basepair conformational energy is quadratically
dependent on the helix twist angle, so the calculations provide the spring
parameters for the basepair-basepair interactions. Torsional springs can
also be used to model the effects of the backbone on the helix twist, and the
parameters for those springs are derived by fitting the model to experimental
data. The model predicts a macroscopic torsional stiffness and a longitudi-
nal compressibility (Young's modulus) which are both in good agreement with
experiment. One biological consequence of the model is examined, the
sequence specificity of the Eco RI restriction endonuclease, and it is shown
that the discriminatory power of the enzyme receives a substantial contribu-
tion from the energetic cost of torsional deformations of the DNA when wrong
sequences are forced into the enzyme binding site.

INTRODUCTION

While it is not yet known how proteins recognize specific DNA sequences,

it is clear that the DNA double helix is not perfectly regular with a fixed

helix rotation from one step to the next. The single crystal x-ray analyses

of both B-DNA (1-3) and A-DNA (4-7) have revealed large variations in the

helix parameters. Furthermore, the twist angle of the helix has been shown

to depend on sequence when the molecule is in solution, both by the effects

on supercoiling parameters when short segments of known sequence are inserted

into closed circular DNA (8-10) and by the nuclease digestion patterns of DNA

adsorbed on surfaces (11,12). These variations in helix geometry may play an

important role in the recognition of specific sequences by proteins.

We have recently begun to examine the effects of sequence on the geometry

of the DNA double helix. Earlier models (13-16) had suggested that the helix

twist angle of each basepair step would depend on the sequence, and we hoped
that conformational energy calculations would provide a rigorous model, with

atomic resolution, that could correctly predict helix twist angles of spe-
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cified sequences. Here we describe our progress in developing that model.

Two earlier models had been put forward for predicting the helix twist

angles of a given DNA sequence. The model of Kabsch et al. (13) is entirely

empirical, and it is summarized ini a single table that gives the twist angle

of each of the possible basepair steps. The second model is a physical one,

based on a set of rules originally proposed by Calladine (14) after an

examination of the base stacking patterns and stereochemical clashes in the

DNA double helix. Calladine's rules are so simple and his arguments so

convincing that Dickerson abandoned an earlier model of his own (2,15) to

develop a quantitative model (3,16) based on those rules. It is important to

note that the patterns of base stacking and propeller twisting predicted by

Calladine's rules have been shown to occur both in crystals (3,16) and in

solution (17).

Our model, like the Calladine/Dickerson model (14,16), is a physical one,

but it is considerably more detailed than theirs, since we use conformational

energy calculations to determine the parameters of the model. As a conse-

quence, we can quantitatively predict twist angles, whereas the Calladine/
Dickerson model will only predict the relative amplitudes of helix twist

angles, not the absolute amplitudes. Furthermore, Calladine and Dickerson

make a distinction only between purines and pyrimidines, but not between

adenine and guanine (or between cytosine and thymine), while the atomic

resolution of conformational energy calculations allows us to examine those

subtle differences.

The remainder of this paper is divided into four parts. The first gives

a general description of our model of helix twisting, explaining how we have

separated the effects of interactions of successive basepairs from the contri-

butions due to the backbone. The second section treats basepair-basepair

interactions, while the third treats backbone contributions. The final sec-

tion is the Discussion, in which we describe the strengths and shortcomings

of our model in detail. We show that the model can account for the torsional

stiffness and the Young's modulus of B-DNA, and we argue that the model is

biologically relevant, because it provides a possible explanation for some of

the sequence specificity of DNA-binding proteins.

DESCRIPTION OF THE MODEL

We have chosen to explore a model for helix twisting that separates the

effects of basepair-basepair interactions from those arising from deforma-

tions of the backbone. For the former, we have treated individual bases as
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Fig. 1: Torsional spring model for helix twist angles of a trimer. Note
that distances in this figure correspond to angles, not to lengths. The
trimer's sequence is ABC, so that step 1 is the AB step and step 2 is the
step BC. tX and ty are the equilibrium twist angles for the two steps under
the influence of the five torsional springs. The steric interactions of
basepairs A and B produce a force field which is modeled by a single
torsional spring with an equilibrium angle of TX and a torsional constant kX,
and a similar situation between basepairs B and C gives Ty and ky. Backbone
deformations for the twisting of a single step are modeled by a spring
characterized by TB1 and kBl. Propagation effects from one step into the
other are produced by a spring connecting basepairs A and C, with an
equilibrium twist angle and torque constant TB2 and kB2, respectively.

rigid bodies and calculated the variation in conformational energy as we

varied interbasepair distances, helix twist angles, basepair roll angles, and

the propeller twist angles. Those calculations, described in more detail in

the next section, gave good qualitative agreement with Calladine's rules (14)

for the effects of sequence on all of the basepair orientational parameters.

Furthermore, when we plotted the dependence of energy on helix twist angle

for all ten possible dimers, the curves turned out to be nearly quadratic, so

it is plausible to model the torque between successive basepairs as they

twist relative to one another by a single torsional spring per basepair step.

To model the effect of backbone stiffness in modulating the twist angle

of the basepair step, we assume that over the small range of angles that is

typical of variations in twist angle, the backbone deformations within a

basepair step are also well modeled by a single torsional spring. While the

equilibrum twist angle and the torque constant for the basepair-basepair

interactions can be determined from the conformational energy calculations

described above, the same parameters for the backbone (TBL and k 1 in Fig. 1)
are treated as parameters which must be determined when the model is fitted

to data. If the model were left with only two springs per step (the upper

four springs in Fig. 1), successive steps would be independent of one
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Fig. 2: Stereoscopic view of one conformation of the trimer d(ATA)-d(TAT).
All of the hydrogens are shown except those of the thymine methyl groups (see
text for explanation). No atoms of the ribose-phosphate backbone are
included. Note the nonzero roll and propeller twist angles.

another, and our model would be comparable to that of Kabsch et al (13). It

has been shown, however, that a deviation from the average helix twist angle

in one step is compensated by propagating fractional deviations of the

opposite sign into neighboring steps (3,14). To guarantee such propagation,
a torsional spring spanning two basepair steps is introduced with an equili-

brium twist angle TB2 and a torsional constant of kB2 (Fig. 1). The

resulting trimer is the simplest unit in which these propagation effects can

be examined. We have left kB2 as a third backbone parameter to be determined

by fitting the model to data, but we have chosen to assume that this second

backbone spring attempts to maintain the total helical twist of two suc-

cessive steps at a value twice that of a single step, by setting TB2 = 2TBl.
This choice was made simply to reduce the number of free parameters.

INTERACTIONS BETWEEN SUCCESSIVE BASEPAIRS

In order to describe the local conformations of basepairs within the

double helix, we use a set of helix parameters similar to that of Dickerson

and coworkers (3,16). For simplicity, we have kept the basepair tilt angle
fixed at O0 and not allowed basepair sliding, so that the only parameters

which are varied are interbasepair separation, helix twist angle, basepair
roll angle, and propeller twist angle. The effects of this reduction in the

degrees of freedom are considered in the Discussion.

The detailed atomic model for the trimer, which permits the calculation

of the basepair-basepair parameters (Tx, kX, Ty and ky in Fig. 1), is shown

for the trimer d(ATA)-d(TAT) in Fig. 2. As the conformational parameters

described in the previous paragraph are varied, we can calculate the

nonbonded energies if we have a suitable set of parameters for the van der

Waals and electrostatic interactions. For the former, we have chosen those
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proposed by Levitt (18), with slight modification. We have included explicit

hydrogen atoms except on the thymine methyl group, where a single extended

atom eliminates the steric complications that would arise from having to

consider methyl rotations. These parameters have slightly larger van der

Walls radii then those used in our previous studies (19,20) and they are

particularly appropriate for static calculations like these (18). For

electrostatic energies, we have used the partial atomic charges proposed by

Miller (21) and a distance-dependent dielectric constant to mimic solvent

effects, D(r) = r, r being the interatomic distance measured in A (19,20,22).

As a first approximation for the examination of how helix parameters de-

pend on sequence, we began with trimers which were either alternating copoly-

mers, such as d(ATA)-d(TAT) or strict homopolymers, such as d(AAA).d(TTT).
We chose a standard geometry for the ends of the trimer (23,24), setting the

total helix twist angle between the first and third basepairs at 720, the

total base separation between these basepairs at 6.8A, the roll angles of

both end basepairs at 00, and the propeller twist of the end basepairs at

170. The total nonbonded energy was then calculated as the conformation of

the middle basepair was varied, and the expectation values for angles and

energies were calculated by averaging over all conformations, using the

appropriate Boltzmann factors for weighting (25).
The results of the trimer calculations were satisfying on two accounts:

they agreed qualitatively with Calladine's rules (14,16), and the conforma-

tional energies showed a nearly quadratic dependence on helix twist angle for

the middle basepair, suggesting that torsional forces within the double helix

might be simply modeled by torsional springs. Let us examine each of these

points in more detail.

Calladine's rules (14,16) predict that the steric clashes between neigh-

boring purines on opposite strands may be relieved by appropriate changes in

helix twist angle, basepair roll angle, and propeller twist angle. As for

helix twist, Calladine's rules predict that a pyrimidine-purine step will

have a smaller twist angle (tg) than will a purine-pyrimidine step, and our

trimer calculations showed that in the alternating copolymers the former

have an average tg of 130, while the latter have an average tg of 420,
exactly as predicted. (Note that the absence of any backbone modulating

effects at this stage of the calculations allows very large deviations in

helix twist.) Regarding roll angles, the trimer calculations showed changes

of roll angle in the alternating copolymers of 3°-5°, positive for pyrimidine-

purine steps (open to the minor groove) and negative for purine-pyrimidine
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Fig. 3: Conformational energy for d(CTC)-d(GAG) as a function of helix twist
angle, partitioned into the CT and TC steps. The dashed lines represent
values from the conformational energy calculations, while the solid lines are
the best fit quadratic curves, from which the equilibrium twist angles and
the torsional spring constants can be determined. The best fit curve for a
given basepair step was determined by finding the minimum energy and the
twist angle corresponding to that energy; those values were held fixed while
the value of the torsional spring constant, k, was varied to find the minimum
root mean square difference between the data and the fitted curve over a
range of 200 on either side of the minimum. Note that the equilibrium twist
angle of the CT step is smaller than that of the TC step, a subtlety observed
by Kabsch (13) but not predicted by Calladine's rules (14).

steps (open to the major groove), while for the homopolymers, the changes in

roll angle were less than 10, all in agreement with Calladine's predictions.

Finally, the propeller twists ranged from 9.4° to 18.50 (agreeing with values

from crystallography (16) and from solution studies (17,24)), with the pro-

peller twist of a given basepair always being larger when it was the central

basepair in a homopolymer than when it was in an alternating copolymer. This

difference, which averaged 4.0°, is also in agreement with Calladine's rules.

The agreement between the trimer calculations and the rules proposed by

Calladine is encouraging and suggests that conformational energy calculations

should prove useful in examining the interplay of the various mechanisms for

releasing steric stress.

The total conformational energy for the trimers was observed to vary

approximately quadratically with the helix twist angle of the mobile central

basepair. When the roll angle and propeller twist angle were held fixed at

their minimum energy values and the energy was partitioned into two parts

(interactions between the central basepair and the bottom basepair; inter-

actions between the central basepair and the upper basepair), a quadratic
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dependence was also observed for the dependence of energy on helix twist

angle of each step (Fig. 3). A series of plots (one for each basepair step)

was generated, and for each one the best fit quadratic curve provides the

equilibrium twist angle and the torsional constant for the basepair inter-

actions of that step. These parameters are summarized in Table 1A.

CONTRIBUTIONS FROM THE BACKBONE

The simplest model in which the torsional interactions of the basepairs

are modulated by backbone contributions would consist of two parallel tor-

sional springs per basepair step, with successive steps connected in series;

a trimer for that model would contain the upper four springs in Fig. 1.

Adding the fifth spring, spanning the two steps, gives the simplest trimer

model in which the backbone also plays a role in propagating torsional

stresses from one step into the other. The equilibrium backbone twist angles

and torsional constants can be determined by using the base-base parameters

(Table 1A) and fitting the model to experimental data.

A given set of spring parameters for the model in Fig. 1 will produce

equilibrium helix twist angles tX and ty, but it remains to be determined how

tX, for instance, depends on the intrinsic twist angle of the step AB and on

the propagation effect from the step BC. If there were no propagation, with

each step independent (13), we would have

tX =tAB (1)

In the case of full propagation (14,16), however, we would have

tX= tAB - 0.5(tBC (2)

where t is the mean helix twist angle of the ten different basepair steps.

We can treat the most general case by introducing the propagation parameter,

a (O < a 4 0.5), to represent the extent to which a deviation from the mean

helix twist angle in a given step is offset by compensating deviations of

opposite sign in the two neighboring steps. With this parameter, equations
(1) and (2) are just special subcases of the general case, namely

tt=(3x tAB (tBC -B(

Our model thus has five undetermined parameters, the four backbone spring
parameters (Fig. 1) and the propagation parameter. This number is reduced to

four by our assumption that TB2 = 2TBl *The model has been fitted to experi-
ment by a grid search in which the four parameters were varied over wide

ranges, finding those for which the root mean square deviation between the

calculated and observed helix twist angles is a minimum. tx and ty were
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calculated (Fig. 1) for each set of spring parameter values, and the ten

basepair step deviations Ati (i = 1,10) were then determined by noting that

if the basepair step AB in Fig. 1 corresponds to the index i and if step BC

corresponds to the index j, then equation 3 gives

tx t + Ati - aAtj
Similarly,

ty= t + Atj - aAti

where ti is the intrinsic twist angle of step i, and Ati = ti - t. The ten

deviations and the value of a allow the prediction of the helix twist angles

for a DNA of specified sequence: step n will have a twist angle given by

t(n) = t + At(n) - aAt(n-1) -aAt(n+l). (4)

Note that if a = 0, equation (4) reduces to Kabsch's model (13), for which

there is no propagation and the helix twist angle of each step is independent

of all others. When a = 0.5, equation (4) is identical to the Calladine/

Dickerson model (14,16).

We have fitted two sets of data, producing the two sets of backbone

parameters given in Table 1B and the two sets of basepair helix twist angle

deviations given in Table 2. The first set of data is the same set which

Kabsch et al. (13) used, while the crystal structure (3,16) of the Dickerson

dodecamer d(CGCGAATT(Br5C)GCG) provided the second set.

DISCUSSION

This remarkably simple physical model gives a surprisingly good fit to

the solution data. With only four parameters, we get a root mean square

deviation of 0.480 from the data of Table I of reference 13, while the Kabsch

model (13), with ten parameters, provides an r.m.s. deviation of 0.37° (we

have used the same weighting factors, 1/a2). The difference in these fits

is not statistically significant, so the fact that our model has fewer para-

meters and the fact that our parameters represent definite physical quan-

tities would support the utility of our model. The best fit value for a,

0.35, indicates that models with no propagation (13) and full propagation

(14) are both oversimplifications. Dickerson himself pointed this out (16),

although he confined his investigations to the case of full propagation.

When we plot the predicted twist angles for the Dickerson dodecanucleo-

tide using our best fit parameters for the solution data (row 1 of Table 2),
we come up with a fit which is qualitatively correct but which is quantita-
tively not very good (open circles of Fig. 4). If, however, we fit our model
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Fig. 4: Comparison of the observed helix twist angles for the dodecamer
CGCGAATTCGCG with those predicted by several models. The experimental data
are those labeled MPD7 of Table Ml of reference 3: the solid line connects
the end-for-end average values, while the error bars show the ranges. (For
example, the angles for the steps G4-A5 and T8-C9 are 37.10 and 41.9°,
respectively, giving an end-for-end average of 39.5° for those steps.) The
model values are the Calladine/Dickerson model (reference 3, indicated by
triangles); the Kabsch model (reference 13, indicated by squares); our model
optimized to fit the solution data of reference 13 (indicated by open
circles); and our model optimized to fit the middle nine steps of this
dodecamer (indicated by filled circles).

directly to the dodecanucleotide data (row 2 of Table 2), the predictions

provide a good fit (closed circles of Fig. 4). The principal deviations are

in the terminal CG steps (where none of the three models fits the data, pro-

bably because of end effects) and in the central AT step (where our homopoly-

mers and alternating copolymers are poor models for the AATT sequence). It

is interesting to note that the best value for the propagation factor in this

case is a = 0.5, the value which Dickerson used.

There are several advantages to this model. It combines the best feature

of the Kabsch model (both are quantitatively predictive, where the model of

Calladine and Dickerson predicts only relative step sizes) with that of the

Calladine/Dickerson model (both are physical models, where Kabsch's is an

empirical model). It goes somewhat beyond the latter model, however, because

it treats the basepairs in atomic detail, distinguishing between an adenine

and a guanine, for instance. (Calladine and Dickerson only recognize
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differences between purines and pyrimidines.) It would be a straightforward

extension of the model to treat modified bases, shedding light on the subtle

structural changes produced by such modifications. Also in contrast with the

previous models (13-16), the parameters which remain to be adjusted in

fitting the model to data represent simple physical quantities. Consequently

they provide other predictions for testing the model - such as a value for

the torsional elastic modulus, discussed below. One final advantage is that

the model treats the propagation effects of steric clashes along the helix in

detail, exploring the region between the model with no propagation (13) and

that with full propagation (14,16).

The model has one weakness. While it was to be hoped that a single set

of parameters would suffice for the prediction of helix twist angles, the

results of the dodecanucleotide calculations (Fig. 4) clearly show that this

is not the case. We can attribute the differences in the sets of predicted

twist angles and propagation factors (Table 2) to differences in environment

(solution vs crystal), but we cannot yet explain how helix twist parameters

depend on environmental factors. For a given environment, however, the model

makes unambiguous predictions of helix twist parameters.

The model provides two predictions about the gross physical properties of

B-DNA. First, the torsional elastic modulus can be calculated by applying

the parameters of Table 1 to the model in Fig. 1. With an average torsional

constant of about 0.02 kcal*molel*degree-2 for the basepair steps, and using

the backbone torsional constants for the solution data, we obtain a value of

5.7 x 10-19 erg-cm for the total torsional constant. (The corresponding

value if we use the backbone torsional constant for the x-ray data is 13 x

10-19 erg-cm.) This compares very favorably with the values of 0.4 - 4.0 x

10-19 erg-cm from fluorescence depolarization (26-29), 0.6 - 1.1 x 10-19

erg-cm from supercoiling studies (30-32) (which may be low by a factor of

four; ref. 33), 0.4 - 14.0 x 10-19 erg-cm from triplet anisotropy decay (34),

3.1 x 10-19 ergecm from electron paramagnetic resonance measurements (35),
and 2.4 x 10-19 erg-cm from studies on the cyclization probability (36). Note

that the relative stiffnesses of our torsional springs implies roughly equal
contributions to the torsional stiffness from the basepairs rotating relative

to one another and from backbone contributions.

Second, the longitudinal elastic modulus (Young's modulus) can be esti-

mated for the stack of basepairs, since we allowed interbasepair separation

to vary in the conformational energy calculations. Our model value, which

does not include the backbone effect, is 13 x 1010 dyne-cm72, a factor of
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4-200 times higher than the values obtained from the acoustic velocity (3.4 x

1010 dyne-cm72; ref. 37), from the persistence length (0.5 x 1010 dyne*cm-2;

ref. 38), and from triplet anisotropy decay (0.07 - 0.29 x 1010 dyne-cm72;

ref. 34). This difference and the high value of the torsional constant in

the previous paragraph probably arise because we have constrained the end

basepairs of the trimers to fixed geometries and because we have not allowed

the central basepair to tilt and slide to relieve the steric stresses; the

additional degrees of freedom should produce a softer trimer and a lower

value for both the Young's modulus and the torsional constant. Even at this

stage of the model, however, our results suggest that the core of the DNA

double helix is responsible for much of the longitudinal stiffness of the

molecule, in contrast with the belief that the stiffness arises primarily

from long-range electrostatic interactions in the backbone (39).

Our results indicate that conformational energy calculations can provide

information on the sequence dependence of helix parameters. Earlier calcu-

lations by Kollman et al. (40) examined the helix twist of dA12*dT12 and

d(CGCGAATTCGCG)2 using an all atom model and no adjustable parameters.

Although there was a hint of a smaller helix repeat for dA12-dT12, no defini-

tive difference in helix repeats was reported, presumably because of the

difficulties in accurately representing the phosphate repulsions. We believe

our approach circumvents this difficulty in a straightforward manner.

Kollman's observation (40,41) that there is only a weak coupling between the

displacements of the bases and the displacements of the backbone supports our

separation of base-base and backbone effects.

As a test of the biological relevance of the model, we have asked the

following question: if a protein were designed to bind to a specified DNA

sequence by recognizing the helix twist angles of that sequence, how much

energy would be required to deform the DNA helix if a different sequence were

forced into the binding site? While this approach ignores protein flexi-

bility, and while it does not consider the probable role of other forces

between the protein and the DNA, it should provide an indication of whether

or not the dependence of helix twist on sequence is important in the recogni-
tion process. As an example, we chose the Eco RI restriction endonuclease

(42,43). This enzyme recognizes the hexanucleotide sequence d(GAATTC), so we

used the parameters of Table 2 to determine the energetic cost of deforming a

helix of the wrong sequence, d(CAATTG), so that its twist angles match those

of the correct sequence. The resulting energy difference, 8.5 kcal-molV1, is

surprisingly large. Even if we reduce this number by a factor of two, to
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compensate for the fact that our calculated total torsional stiffness is

somewhat higher than the experimental value (see above), we still obtain an

energy difference that would reduce the binding constant of the wrong

sequence by over three orders of magnitude relative to the correct sequence.

The size of this effect suggests the importance of helix twist angle in the

recognition of specific DNA sequences by proteins.

The ability to fit the available data on the helix twist angles of B-DNA

with this simple model, the fact that it predicts macroscopic elasticity

parameters in reasonable agreement with experiment, and the possible expla-

nation for the sequence specificity of DNA-binding proteins are all very

encouraging. The present model can be used to predict the helix twist angles

for any sequence by using equation (4) and the parameters of Table 2. We

hope to refine it and use it to examine the subtle effects of sequence

differences and base modifications on helix parameters, thereby establishing

a method for helping to investigate how these factors influence protein-DNA

interactions.
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