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1 Limitations of differential correlation and numerical comparison

We demonstrate the limitations of differential correlation and numerical comparison in a linear model. Let
two random variables, X and Y , have a linear relationship Y = kX + c + ε, where slope k and intercept
c are constants, and ε a normal noise N(0, σ2). We first establish the mathematical relationship between
model coefficients and the correlation coefficient. Give n observations of X and Y , (x1, y1), ..., (xn, yn), the
Pearson correlation coefficient between X and Y is defined as

r =
1

n

n∑
i=1

[
xi − x̄
σx

yi − ȳ
σy

] (1)

where x̄ and ȳ are the sample means, σx and σy are the sample standard deviations, of X and Y , respectively.
Given the linear model, we derive

ȳ = kx̄+ c (2)

and
σy =

√
k2σ2

x + σ2 (3)

Then we have

r =
kσx√

k2σ2
x + σ2

(4)

Now we consider comparison of two unknown models Y = k1X + c1 + ε1 and Y = k2X + c2 + ε2, where
ε1 and ε2 are two noise terms following N(0, σ2

1) and N(0, σ2
2), respectively. Let r1 and r2 be correlation

coefficients of data collected from each model, respectively. The differential correlation score dc is defined
by

dc = r1 − r2 =
k1√

k2
1 + σ2

1/σ
2
x1

− k2√
k2

2 + σ2
2/σ

2
x2

(5)

In the differential correlation strategy for comparing interactions, one test the hypothesis k1 6= k2 for model
difference by inspecting dc 6= 0. However, using dc is not always statistically powerful. Without any
additional assumptions, dc 6= 0 is neither a necessary nor a sufficient condition for k1 6= k2. When the noise
variances σ2

1 and σ2
2 are negligible relatively to the data variance, dc will approach 0, -2, or 2. In this case,

differential correlation can indeed capture the sign difference, but fails to capture any numerical difference
between k1 and k2. In more general situations, there are two issues with differential correlation. The first
issue is that data variances σ2

x1
and σ2

x2
may be different across conditions, which can happen when the

systems under comparison have different strength of dynamic variation (not due to noise) across conditions,
likely to happen in biological experiments. The second issue is that the noise variances may also be different
across conditions, when it is difficult to maintain the same noise level in experimentation. These issues are
often addressed in part by proper normalization, but can be a challenge when comparing models using data
generated from different sources.

The above two issues are ignored by assumptions in testing k1 6= k2 by dc 6= 0. That is, the data variances
must be assumed to be equal across conditions σ2

x1
= σ2

x2
= σ2

x, and so do the noise variances σ2
1 = σ2

2 = σ2.
Under these assumptions, we have

dc =
k1√

k2
1 + σ2/σ2

x

− k2√
k2

2 + σ2/σ2
x

(6)

Only under these restrictive assumptions, dc 6= 0 is both a necessary and sufficient condition for k1 6= k2.
Under one more assumption of equality between data and noise variances, σ2

x = σ2, differential correlation
reduces to numerical comparison or reconstruct-then-compare. This is also a highly restrictive assumption.
Mathematically it leads to

dc =
k1√
k2

1 + 1
− k2√

k2
2 + 1

(7)
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It is unlikely that a real-world experiment can satisfy all these restrictive assumptions. Therefore, differential
correlation and numerical comparison can only partially address the model comparison problem, under strong
and often-unpractical assumptions.

2 The heterogeneity F -test generalizes differential correlation and
numerical comparison

The F -test used in regression analysis can assess how a linear model Y = kX + c explains the relationship
between two random variables X and Y better than a zero slope null model Y = c. Let (x1, y1), ..., (xn, yn)
be samples of size n from (X,Y ). Let RSSd be the residual sum of squares between observations, yi, and
model predictions, ŷi, made by an optimal estimator. Let RSSn be the total residual sum of squares over
yi, relative to the null model. Regardless of model linearity, the F -statistic is defined by

F =
RSSn −RSSd
RSSd/(n− 2)

(8)

where F asymptotically follows an F -distribution with 1-numerator and (n − 2)-denominator degrees of
freedom under the null hypothesis of Y = c.

When the linear model Y = kX + c+ ε, with ε being a random normal noise N(0, σ2), is used, we have

RSSn =

n∑
i=1

(yi − ȳ)2 = nσ2
y = n(k2σ2

x + σ2) (9)

and

RSSd =

n∑
i=1

(yi − ŷi)2 =

n∑
i=1

ε2i = nσ2 (10)

Plugging RSSn and RSSd into Eq. (8), we obtain

F = (n− 2)
k2σ2

x

σ2
=

n− 2
1
r2 − 1

where r is the sample correlation coefficient between X and Y . This equation suggests that F is equivalent
to r given the sample size, but F is insensitive to the sign of r or the polarity of the correlation.

Now we consider comparison of two unknown models, Y = k1X + c1 + ε1 and Y = k2X + c2 + ε2, using
two observed data sets from each model. Noise terms ε1 and ε2 are two random variable following N(0, σ2

1)
and N(0, σ2

1), respectively. One could compute F1 and F2 statistics for each data set and then determine
if they are equivalent by testing F1 − F2 = 0. Evidently, this would become even more restrictive than dc
which compares r1 and r2, not r2

1 and r2
2.

Instead, we adopt a different strategy to compare two unknown models using the heterogeneity F test.
To test any difference between the models k1 6= k2 or c1 6= c2, the idea is to examine whether using two
different models, one for each data set, achieves better fitting, than using a shared model for both data sets.

This is known as the heterogeneity test (Zar, 2009). Let (x
(1
2)
i , y

(1
2)
i ) indicate data point i in the pooled data

set. We call the two separate models the heterogeneous model defined by

y
(1
2)
i =

{
y

(1)
i = k1x

(1)
i + c1 + ε1i if (x

(1)
i , y

(1)
i ) ∈data set 1,

y
(2)
i = k2x

(2)
i + c2 + ε2i if (x

(2)
i , y

(2)
i ) ∈data set 2.

(11)

and we call the shared model the homogeneous model defined by

y
(1
2)
i = kx

(1
2)
i + c+ εi (12)
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for all data points regardless of the data set. Then we test the inequality of the two unknown linear models
by the heterogeneity F -statistic

Fd =
(RSShm −RSSht)/2
RSSht/(n1 + n2 − 4)

(13)

where RSShm and RSSht are the residual sum of squares between observations and predictions by the
homogeneous model and the heterogeneous model, respectively, and n1 and n2 are sample sizes of the two
data sets. Fd asymptotically follows an F distribution with 2-numerator and (n1 + n2 − 4)-denominator
degrees of freedom under the null hypothesis that the two models are identical (Zar, 2009).

We can further derive that

RSSht =

2∑
j=1

n∑
i=1

(y
(j)
i − ŷ

(j)he
i )2 = n1σ

2
1 + n2σ

2
2 (14)

RSShm =

2∑
j=1

n∑
i=1

(y
(j)
i − ŷ

(j)ho
i )2 (15)

= n1σ
2
1 + n2σ

2
2 +

n1n2(k1 − k2)2σ2
x1
σ2
x2

+
n2
1n2

n1+n2
[(k2 − k1)µx2

− C]2σ2
x1

+
n1n

2
2

n1+n2
[(k2 − k1)µx1

− C]2σ2
x2

n1σ2
x1

+ n2σ2
x2

+
n1n2(µx1

−µx2
)2

n1+n2

(16)

where ŷ
(j)ht
i and ŷ

(j)hm
i are predictions of heterogeneous and homogeneous models for the i-th data point,

respectively, and C = c1 − c2. Then we finally obtain

Fd =
n1 + n2 − 4

2(n1σ2
1 + n2σ2

2)

n1n2(k1 − k2)2σ2
x1
σ2
x2

+
n2
1n2

n1+n2
[(k2 − k1)µx2

− C]2σ2
x1

+
n1n

2
2

n1+n2
[(k2 − k1)µx1

− C]2σ2
x2

n1σ2
x1

+ n2σ2
x2

+
n1n2(µx1−µx2 )2

n1+n2

(17)
where Fd considers both data and noise variances and checks the equality of k1 and k2 as well as c1 and c2.
In this definition, Fd 6= 0 is a necessary and sufficient condition for the two models to be different, i.e., either
k1 6= k2 or c1 6= c2.

Now we establish the connection among the heterogeneity test, differential correlation and numerical
comparison. As the latter two are independent of sample size, we assume n1 = n2 = n. As differential
correlation ignores the intercept, we assume equal intercepts (C = 0) to focus on comparison of the slopes.
With these assumptions, we have

Fd =
n− 2

σ2
1 + σ2

2

(k1 − k2)2σ2
x1
σ2
x2

+ 1
2 (k1 − k2)2µ2

x2
σ2
x1

+ 1
2 (k1 − k2)2µ2

x1
σ2
x2

σ2
x1

+ σ2
x2

+ 1
2 (µx1

− µx2
)2

. (18)

And with an assumption of µx1
= µx2

= µx, we get

Fd =
(n− 2)(k1 − k2)2

2(σ2
1 + σ2

2)
(

2σ2
x1
σ2
x2

σ2
x1

+ σ2
x2

+ µ2
x) (19)

With three more assumptions of µx = 0, σ2
x1

= σ2
x2

= σ2
x and σ2

1 = σ2
2 = σ2, we finally obtained

Fd =
n− 2

4
(
k1σx
σ
− k2σx

σ
)2 =

n− 2

4
(

r1√
1− r2

1

− r2√
1− r2

2

)2 (20)

This last form suggests that Fd becomes equivalent to dc under all the above assumptions. As Fd and its
p-value is one-to-one mapping, its p-value also becomes equivalent to dc under assumptions of n1 = n2 = n,
c1 = c2, µx1 = µx2 = 0, σ2

x1
= σ2

x2
= σ2

x and σ2
1 = σ2

2 = σ2. Under one more restrictive assumption, σ2
x = σ2,

it follows that Fd reduces to numerical comparison. Therefore, Fd is the most general statistics for testing
inequality of two unknown linear models.
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3 Reconstruction of dynamical system models

A dynamical system model (DSM), consisting of a set of ordinary differential equations (ODE) and defined
in the main text, can be reconstructed from sufficient observations of a system. Given observed time course
data and the form of fi, the coefficient vector βi can be estimated for each variable. We formulate the
estimation problem as multiple linear regression and solve it by the least squares method. Let matrix
X = (x[1]>,x[2]>, ...,x[T ]>) contains time course data collected from the system vector x at T time points.
Let yi[t] denote the change rate of a variable xi at time t as

yi[t] =
dxi[t]

dt
. (21)

We estimate this derivative from time course observation by using a smoothing spline technique. Let a vector
yi = (yi[1], yi[2], ..., yi[T ])> represent the estimated derivatives of xi at the T time points. With a given

form of fi, the coefficient vector βi can be estimated by multiple linear regression. Let β̂i be the estimator.
One can test whether βi deviates from 0, by the F -statistic defined as

F =
(|yi − ȳi|2 − |ŷi − yi|2)/(dim(β̂i))

|ŷi − yi|2/(T − dim(β̂i)− 1)
(22)

where

ȳi =
1

T

T−1∑
t=0

yi[t] (23)

is the mean of the derivative over the time course, and also the model prediction under null hypothesis with
one free parameter. Under the alternative hypothesis, the predicted derivative is

ŷi = fi(X, β̂i) + βi0 (24)

using the estimated model with (dim(β̂i)+1) free parameters. Under a normal noise distribution, the F -

statistic asymptotically follows an F -distribution, with dim(β̂i) numerator degrees of freedom and (T −
dim(β̂i)− 1) denominator degrees of freedom, under the null hypothesis of βi = 0. The p-value, the upper-

tail probability of the F -statistic, indicates how significantly β̂i deviates from 0. Thus the p-value translates
to the goodness-of-fit of fi to the observed data.

In addition to indicating the goodness-of-fit to the observations for a given fi, the F -statistic provides
a criterion to select an appropriate fi. A choice of the form for fi must specify its mathematical formula
and identities of involved variables, but not the coefficient values. The complexity of fi is measured by its
number of free variables, related to the number of independent variable in fi. The goodness-of-fit is how
well fi, with an estimated coefficients β̂i and β̂i0, approximates observed xi, typically measured by a mean
square distance between prediction and observation. In the F -statistic defined in Eq. (22) and its p-value,
both the goodness-of-fit and the complexity of fi are accounted for. Thus, the F -statistic provides a criterion
to test a given fi with a specific form and its estimated coefficients.

4 Comparative DSM p-value correction by permutation tests

We use permutation tests to approximate the null distributions and adjust for multiple testing effects in the
comparative DSM (CDSM). The three test statistics follow F -distributions with three assumptions: First,
the sample size is sufficiently large; second, observations at different time points are independent; third, the
noise is normally distributed. These assumptions are not always met in biological experiments. The sample
size is often relatively small to the number of variables. Observations over sampling time points may not be
independent in a dynamical system. Moreover, noise due to biological variation does not necessarily follow
a normal distribution. Therefore, we use permutation tests to correct the null distribution of the three test
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statistics. First, to obtain the expression rate of change, we still use pspline (Heckman and Ramsay, 1996) to
obtain the derivatives for each conditions, y(1) and y(2). Second, to eliminate true differential interactions,
we pool data from different conditions x(1) and x(2), to form x(1,2). This merging happens for each variable
separately. Third, to eliminate true interactions, we permute the pooled time course data, x(1,2), variable by

variable to obtain x
(1,2)
p . Fourth, to eliminate any true conserved interactions, we split the permuted pool

data according to original data sizes under different conditions, X
(1)
perm and X

(2)
perm. Finally, we compute test

statistics Fc, Fd and Ft from X
(1)
perm and X

(2)
perm according to equations given in the main text. Empirical

distributions for each test statistic can be estimated by repeating above five steps a large number of times
depending on the required precision for p-value. When multiple parents are considered, the permutation
tests also adjust for family-wise false positive rate.

5 Numerical comparison or reconstruct-then-compare

Numerical comparison, also called reconstruct-then-compare, detects differential interactions by numerically
comparing estimated models after reconstructing them separately in each condition. If ODEs are used to
represent two systems, the distance between two coefficient vectors is used to detect interaction shifts by
comparing them with a predefined threshold. Considering different parameter scales in ODEs, we define the
distance between two coefficient vectors of an interaction across two conditions by

ScoreNC = max
i=1,...,k

(|β̂(1)
i − β̂

(2)
i |/(2 max(β̂

(1)
i , β̂

(2)
i )))

where k is the dimension of β̂. If ScoreNC is greater than a given threshold, a differential interaction is
detected. This strategy works well only when uncertainty in the estimated parameters can be ignored.

6 Differential correlation

Differential correlation is a strategy to detect a differential interaction between two variables by comparing
their correlation coefficients across conditions. It is the most widely used method for differential interaction
analysis so far. One method for differential gene-gene correlation detects changes in the whole correlation
vector associated with each gene (Hu et al., 2009). We use this method in our simulation studies and
compare its performance with our CDSM framework. The differential correlation measures change in gene-
gene interaction by

ScoreDC =
2

n2
s

ns∑
l1=1

ns∑
l2=1

√√√√ G∑
j=1

(w
(1,l1)
ij − w(2,l2)

ij )2

− 1

n2
s

ns∑
l1=1

ns∑
l2=1

√√√√ G∑
j=1

(w
(1,l1)
ij − w(1,l2)

ij )2

− 1

n2
s

ns∑
l1=1

ns∑
l2=1

√√√√ G∑
j=1

(w
(2,l1)
ij − w(2,l2)

ij )2 (25)

where ns is the number of independent experiments under each condition, and G is the number of genes in

the network. w
(1,k)
ij measures the correlation between gene i and j for k-th experiments under condition 1

and it is defined as

wij =
1

2
log

1 + ρij
1− ρij

(26)

where ρij is the Pearson correlation coefficient. We adopted the multivariate correlation (Zhu et al., 2007)
method to estimate the correlation coefficient between gene i and gene j considering the time and replicate
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d[C2]/dt = k6[M ]− k8[∼ P ][C2] + k9[CP ]
d[CP ]/dt = −k3[CP ][Y ] + k8[∼ P ][C2]− k9[CP ]
d[pM ]/dt = k3[CP ][Y ]− k′4[pM ]− k4[pM ]([M ]/[CT ])2

d[M ]/dt = k′4[pM ] + k4[pM ]([M ]/[CT ])2 − k5[∼ P ][M ]
−k6[M ]

d[Y ]/dt = k1[aa]− k2[Y ]− k3[CP ][Y ]
d[Y P ]/dt = k6[M ]− k7[Y P ]

Table S1: The dynamical system model governing the cdc-cyclin interaction in the cell division cycle in
Figure S1: t, time; ki, rate constant; aa, amino acids. The concentrations [aa] and [∼ P ] are assumed to
be constant. Variable [C2] is for cdc2, [CP ] for cdc2-P, [pM ] for preMPF=P-cyclin-cdc2-P, [M ] for active
MPF (P-cyclin-cdc2), [Y ] for cyclin and [Y P ] for cyclin-P, and [CT ] for total cdc2 including isolated cdc2
and the ones in all protein complex. The two differential interactions involved in biochemical reaction #4
are the ODEs for [pM ] and [M ], where both are influenced by the rate constant k4 of reaction #4.

factors to compensate the Pearson correlation coefficient for its inadequacy in such experiments. A differential
interaction is detected if and only if ScoreDC is greater than a predefined threshold.

7 Simulation study of a cdc2-cyclin cell division cycle model with
known network architecture

In this simulation study, we compare the performance of CDSM (statistical comparison) and numerical
comparison, on a biological system with known network architecture without values of kinetic parameters.
The result was briefly summarized in a previous conference paper (Ouyang and Song, 2009), but here we
give a complete description. The purpose of using known network architecture is to test the effectiveness of
the F -statistics in our comparative modeling. We examine the heterogeneity of interactions for each node
in a cell division cycle model across two conditions.

The cell division cycle model, involving six proteins or protein complexes, captures cdc2 -cyclin interaction
in the cell division cycle (Tyson, 1991). In the system (Figure S1), cdc2 and cyclin form a protein complex
called MPF playing a central role. Six kinetic equations (Table S1) approximate dynamical interactions
among the six proteins in the system. Following recommendations for coefficient values in (Tyson, 1991), we
set k1[aa]/[CT ] = 0.015min−1, k2 = 0, k3[CT ] = 200min−1, k′4 = 0.018min−1, k5[∼ P ] = 0, k6 = 1min−1,
k7 = 0.6min−1, k8[∼ P ] = 1000000min−1 and k9 = 1000min−1, where [CT ] was assumed to be a constant of
1. Coefficient k4 is a rate constant associated with the autocatalytic activation of MPF by dephosphorylation
of the cdc2 subunit (reaction #4 in Figure S1). When k4 < 100min−1, MPF, being maintained in inactive
forms, enters the excitable domain (as in the resting phase of non-proliferating somatic cells). As cells
grow, k4 increases (activator accumulates) and drives the system into the oscillation domain. After cell
division becomes growth controlled at k4 > 150min−1, MPF enters the oscillation domain in which it
alternates between active and inactive forms with a period of 35 min, roughly the cell cycle length in early
frog embryos (Tyson, 1991). The subsequent burst of MPF activity triggers mitosis, causes k4 to decrease
(activator degrades), and brings the system back into the excitable domain (steady-state behavior).

We set up two groundtruth DSMs for comparative modeling, by varying the rate constant k4 of dephos-
phorylation of the cdc2 unit on the active MPF, as indicated in Figure S1. In the first system, k4 was set to
180 min−1 representing the oscillation domain in the cell cycle model. In the second system, k4 was randomly
chosen between 70 and 80 min−1 representing the excitable domain in the cell cycle model. From Table S1,
a change in k4 implicates two differential interactions: one for preMPF (pM) and one for active MPF (M);
all remaining interactions for the other four proteins are exactly the same or conserved. These conserved and
differential interactions serve as the groundtruth for performance evaluation of our comparative modeling
methods.
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Figure S1: The cdc2 -cyclin interaction network involved in the cell division cycle. The variable names
used in the dynamical system model (Table S1) are marked next to the proteins or protein complexes they
represent. Depending on the rate of the biochemical reaction marked by #4, the dynamics switches between
two systems: excitable and oscillation domains. Therefore the biochemical reaction marked in red and
associated with #4 contributes to differential interactions between the two systems or domains. This figure
is adapted from (Tyson, 1991).
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Figure S2: The advantage of CDSM modeling versus numerical comparison in detecting two differential
interactions in the cdc2 -cyclin cell division cycle model. Performance of CDSM is marked by ‘S’ in solid
lines, and numerical comparison is marked by ‘N’ in dash-dotted lines. Left: the ROC curves under four
noise levels. CDSM has substantial advantage over numerical comparison under the noise levels tested.
Right: the statistical power of both methods as a function of the noise level. CDSM degrades much slower
in performance than numerical comparison, as noise increases.

We simulated dynamic trajectories from the two groundtruth DSMs. We first simulated time courses with
20 observations over 40-min long trajectories for each domain/DSM. Then we added independent normally
distributed noise three times to generate three replicates. The noise level in this study is represented by
signal-to-noise ratio (SNR), defined as ten times log10 of the sum of squares of the signal, divided by the
sum of squares of the noise. When replicates are available, the SNR can be estimated by

10 log10

∑K
i=1 Ō

2
i·∑K

i=1(
∑Mi

j=1(Oij − Ōi·)2)/Mi

where Oij is the value of replicate j of observation i, among a total of K observations, observation i contains

Mi replicates, and Ōi· = 1
Mi

∑Mi

j=1Oij . We added four different levels of noise at the SNRs of 45, 35, 25, and
20.

We applied the CDSM modeling and the numerical comparison methods to detect differential interactions
in the two DSMs corresponding to the two cell cycle domains. Both methods were applied to compare the
interactions at each protein in the network from data generated under the four noise levels. The assumption
here is that the form of and the terms in each kinetic equation are known but not the coefficients. According
to ScoreNC of numerical comparison and Fd of CDSM, differential interactions can be detected. Then we
compared the detection results with the two groundtruth differential interactions at [pM ] and [M ] and four
ground truth conserved interactions at [C2], [CP ], [Y ] and [Y P ] to compute the overall true positive rate
(TPR) and false positive rate (FPR) at each noise level.

The ROC curves generated by varying thresholds on type I error rate are plotted in F Figure S2 for
each method. CDSM achieved consistently better performance than numerical comparison on differential
interaction detection at all noise levels. When the noise was low (SNR=45dB), both methods achieved
good performance. However, as the noise level increases (SNR=35, 25, 20dB), the performance of numerical
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comparison drops quickly, but CDSM still maintains its power at above 80% with type I error rate of 0.05.
As the difference between the two approaches is in the statistics used to compare interactions, the results
support the effectiveness of our proposed F -statistics for comparative modeling.

8 Testing given genetic interactions for conserved and differential
interactions during mouse cerebellar development

The CDSM was applied to analyze given interactions for their conserved or differential involvement during
cerebellar developments. A total of 104 known genetic interactions were extracted from the BioGrid (Stark
et al., 2006, 2010) - a database summarizing genetic and physical interactions between genes in a variety of
organisms. We are interested in knowing if these genetic interactions are conserved or differential between
pre-EGL stage and EGL expansion by the proposed CDSM based on time course microarray data collected
from the developing mouse cerebellum as described in the main text. Each gene interaction is represented
by the following sigmoidal model:

dxi(t)

dt
= βi0 + βij

x
nij

j (t)

k
nij

ij + x
nij

j (t)
+ βii

xnii
i (t)

knii
ii + xnii

j (t)
− βixi(t) (27)

where xi(t) is the expression level of child transcript i at time t, j is the index to the parent transcript for
transcript i, βij is a constant for the influence of transcript j on transcript i, βii = 0 means no self-regulation,
and βixi represents mRNA degradation with rate constant βi > 0. The mathematical form of interaction
used is based on (Prill et al., 2010). kij is the dissociation constant between TF j and the promoter of
gene i and nij the hill coefficient. We also consider self influence (the third term) with βii 6= 0. But we
set kij = kii and nij = nii for computational simplification and automatically choose from {5,6,7,8,9,10,11}
and {2,3,4,5}, respectively. Across the pre-EGL and EGL expansion, we performed comparative modeling
to compute all F -statistics for each interaction, and determined if it is conserved, differential, or inactive.
We applied the comparative modeling separately for each of the two mouse strains.

We identified 58 and 52 active interactions for DBA and BL6 mouse strains, respectively. All active
interactions are listed in Table S2 (DBA) and Table S3 (BL6). There are 36 differential and 21 conserved
interactions in the DBA strain, and 21 conserved and 30 differential interactions in the BL6 strain, at a
significant p-value of less (or equal) than 0.05. Examples of differential and conserved interactions are shown
by the phase diagrams in Figure S3. A strong differential interaction pattern of the pair Meis1.1400575 -
Scx.130066 in the DBA strain can be observed by the diverging trajectories, while the interaction between
another pair Six3.3830402 -Pax6.101660253 in the BL6 strain is consistent in transition direction and location
in the two stages, demonstrating a conserved nature of the interaction. Although these detected gene
interactions have been biologically determined in other organisms for various biological functions, their roles
in cerebellar development are yet to be confirmed and they give rise to new hypotheses for further biological
experiments. Since we have divided the microarray expression data into pre-EGL and EGL expansion time
periods, which is effectively before and after granule cells are present, respectively; and granule neurons are
the most abundant population of neurons in the cerebellum, our analyses might be biased towards granule
cell events. Furthermore, it is believed that granule cells progenitors ramp up the rate of cell division
during EGL expansion phase to produce the billions of cells that constitute this population in the mature
cerebellum. Therefore it seems reasonable that genes involved in cell cycle regulation, morphogenesis and
apoptosis should be regulated differentially between the two periods.

Some of the hypothetical gene interactions, computed by CDSM, have indeed been exposed by various
studies of the cerebellum. The following is a summary of biological literature support for gene interactions
we identified:

E2f1 -E2f2 . During proliferation of cerebellar granule neurons, E2f1 and E2f2 are activated by sonic
hedgehog (Shh) signaling via n-myc and cyclin D1 (cycD) (Oliver et al., 2003). Together, these three proteins
- E2f1, E2f2, cycD) - promote proliferation when n-myc is over-expressed in granule cell precursors. Thus
it suggests that the formation and expansion (proliferation) of the EGL could be directly linked to the
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Figure S3: The phase diagrams of a differential interaction Scx -Meis1 in the DBA strain and a conserved
interaction Pax6 -Six3 in the BL6 strain, across pre-EGL stage and EGL expansion. The text in each light
colored label in the plot represents the day of observation and its coordinates indicate the expression levels
of corresponding genes. Arrowed lines represent trajectories computed from the homogeneous and heteroge-
neous models generated during CDSM fitting to the observations. Each arrowed line shows a transition in
expression level over time indicated by the direction of the arrow. A blue dashed arrowed line represents a
trajectory in pre-EGL stage. A red solid arrowed line represents a trajectory during EGL expansion. Left:
The trajectories of Scx -Meis1 show diverging trends between the two stages, demonstrating a differential
interaction. Right: The trajectories of Pax6 -Six3 show a converging trend, demonstrating a conserved
interaction between the two stages.
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Child Parent Total interaction strength Homogeneity Heterogeneity Biological Brian/Neuron
transcript name transcript name pt pc pd process development
Brca1.104150463 Creb1.2230358 <0.001 <0.001 <0.001 AC
Brca1.104150463 Creb1.1500717 0.001 <0.001 0.007 AC
Brca1.4780669 Creb1.2230358 0.022 0.002 0.087 AC
Creb1.1500717 Brca1.4780669 0.03 0.144 0.015 AC
Creb1.2190471 Brca1.104150463 0.035 0.029 0.087 AC
Creb1.6550601 Brca1.104150463 0.035 0.02 0.15 AC
E2f1.5360093 E2f2.5270609 <0.001 <0.001 <0.001 AC ⇐
E2f1.5360093 E2f2.5570377 <0.001 0.003 <0.001 AC ⇐
E2f1.5360093 E2f2.7000465 <0.001 <0.001 <0.001 AC ⇐
E2f2.5270609 E2f1.5360093 <0.001 <0.001 <0.001 AC
E2f2.5570377 E2f1.5360093 0.001 0.185 <0.001 AC
E2f2.7000465 E2f1.5360093 <0.001 <0.001 0.004 AC
Fos.1850315 Jun.840170 <0.001 <0.001 0.128 C

Mef2c.106180288 Myc.380541 <0.001 0.042 <0.001 ACD ⇐
Mef2c.106180288 Myc.4670170 0.03 0.106 0.022 ACD ⇐
Mef2c.106980372 Myc.380541 <0.001 <0.001 0.115 ACD ⇐

Mef2c.780338 Myc.4670170 0.042 0.001 0.183 ACD ⇐
Meis1.100110440 Scx.130066 0.01 0.009 0.081 CDM ⇐
Meis1.1400575 Scx.130066 <0.001 0.012 0.008 CDM ⇐

Msx2.102190592 Pitx2.2690139 0.009 0.084 0.007 ACDM
Msx2.102190592 Pitx2.106400039 0.012 0.148 0.008 ACDM
Msx2.102190592 Pitx2.870537 0.012 0.045 0.019 ACDM
Msx2.1570022 Pitx2.106400039 0.002 0.045 0.003 ACDM
Msx2.1570022 Pitx2.870537 <0.001 0.004 0.01 ACDM
Msx2.1570022 Pitx2.2690139 0.002 0.031 0.01 ACDM
Myc.380541 Mef2c.670025 0.023 0.033 0.042 ACM
Myc.380541 Pax2.7000133 0.05 0.018 0.074 ACM
Myc.380541 Pax2.6040270 0.043 0.029 0.078 ACM
Myc.380541 Mef2c.780338 0.012 <0.001 0.16 ACM
Myc.380541 Mef2c.106980372 <0.001 <0.001 0.179 ACM
Myc.4670170 Mef2c.670025 0.022 0.134 0.013 ACM
Myc.4670170 Mef2c.106180288 0.025 0.088 0.016 ACM
Myc.4670170 Pax2.6040270 0.047 0.069 0.056 ACM
Pax2.7000133 Myc.380541 0.011 0.001 0.033 ACDM
Pax3.50551 Sox10.6200538 0.035 <0.001 0.158 CD ⇐

Pax6.101660253 Six3.105130390 0.002 <0.001 0.176 CD ⇐
Pax6.101660253 Scx.130066 <0.001 <0.001 0.189 CD ⇐
Pax6.101660253 Six3.3830402 0.004 <0.001 0.198 CD ⇐
Pax6.102340114 Scx.130066 <0.001 <0.001 0.01 CD ⇐
Pax6.102340114 Six3.105130390 0.003 <0.001 0.105 CD ⇐
Pax6.102340114 Six3.3830402 0.004 <0.001 0.136 CD ⇐
Pax6.105720411 Scx.130066 <0.001 <0.001 0.173 CD ⇐
Pax6.1190025 Scx.130066 <0.001 0.003 0.002 CD ⇐
Pitx2.870537 Msx2.102190592 0.022 0.067 0.023 CDM ⇐
Scx.130066 Pax6.1190025 <0.001 0.025 <0.001
Scx.130066 Meis1.104590215 0.001 0.067 <0.001
Scx.130066 Meis1.1400575 <0.001 0.026 0.001
Scx.130066 Meis1.101690520 0.002 0.172 0.001
Scx.130066 Meis1.102190563 0.008 0.151 0.001
Scx.130066 Pax6.102340114 <0.001 0.001 0.008
Scx.130066 Meis1.100110440 0.007 0.009 0.016
Scx.130066 Pax6.101660253 0.002 <0.001 0.19
Scx.130066 Pax6.105720411 <0.001 <0.001 0.203

Six3.105130390 Pax6.101660253 0.005 <0.001 0.193 C ⇐
Six3.3830402 Pax6.101660253 0.05 0.112 0.023 C ⇐

Sox10.6200538 Pax3.50551 <0.001 0.002 0.023 CDM ⇐
Sp3.104210341 Sp4.3850176 0.002 0.003 0.028 CDM
Sp4.3850176 Sp3.104570037 0.01 0.003 0.092

Table S2: A total of 58 genetic interactions are significant for the DBA strain, reported by CDSM. These
were detected from 104 genetic interaction candidates experimentally verified in various organisms from
BioGRID. Each transcript name is defined as <gene name>.<prob ID>, where prob ID differentiates probe
locations on a microarray. We set the test size α = 0.05. And p-values were obtained by a permutation
test. An interaction is active if pt ≤ 0.05. All 58 interactions are active. An interaction is differential if
pd ≤ 0.05, marked in light blue shading, and 36 interactions are so. An interaction is conserved if pc ≤ 0.05
and pd > 0.05, marked in light yellow shading, and 21 interactions are so. According to the gene ontology
of each child gene, an interaction implicated in Apoptosis, Cell cycle or proliferation, Differentiation and
Morphogenesis, is marked by A, C, D, or M in the biological process column. And each interaction known
to be involved in brain/neuron development is marked by ⇐.
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Child Parent Total interaction strength Homogeneity Heterogeneity Biological Brian/Neuron
transcript name transcript name pt pc pd process development
Brca1.104150463 Creb1.2190471 0.011 0.01 0.095 AC
Brca1.4780669 Creb1.1500717 0.037 0.016 0.065 AC
Brca1.4780669 Creb1.2190471 0.033 0.008 0.068 AC
Brca1.4780669 Creb1.2230358 <0.001 <0.001 0.021 AC
Brca1.4780669 Creb1.3610600 0.001 0.004 0.009 AC
Brca1.4780669 Creb1.6550601 0.007 0.015 0.015 AC
Creb1.1500717 Brca1.4780669 0.016 0.072 0.018 AC
Creb1.2230358 Brca1.104150463 <0.001 <0.001 0.008 AC
Creb1.2230358 Brca1.4780669 <0.001 <0.001 0.15 AC
Creb1.3610600 Brca1.104150463 <0.001 0.033 0.001 AC
Creb1.3610600 Brca1.4780669 <0.001 0.021 0.007 AC
E2f1.5360093 E2f2.5570377 <0.001 0.008 0.009 AC ⇐
E2f2.5570377 E2f1.5360093 <0.001 0.079 <0.001 AC
Fos.1850315 Jun.840170 0.011 0.001 0.229 C
Jun.840170 Fos.1850315 0.002 <0.001 0.23 ACDM ⇐

Mef2c.106180288 Myc.380541 0.03 0.055 0.034 ACD ⇐
Mef2c.106180288 Myc.4670170 0.044 0.063 0.051 ACD ⇐

Mef2c.670025 Myc.380541 <0.001 0.152 <0.001 ACD ⇐
Mef2c.670025 Myc.4670170 <0.001 0.132 <0.001 ACD ⇐
Mef2c.780338 Myc.380541 0.009 <0.001 0.188 ACD ⇐

Meis1.100110440 Mef2c.106180288 <0.001 0.139 <0.001 CDM ⇐
Meis1.100110440 Msx2.1570022 <0.001 0.037 <0.001 CDM ⇐
Meis1.100110440 Scx.130066 <0.001 0.036 <0.001 CDM ⇐
Msx2.102190592 Pitx2.870537 0.014 0.008 0.09 ACDM
Msx2.1570022 Pitx2.870537 0.049 0.047 0.054 ACDM
Myc.380541 Mef2c.106980372 <0.001 0.183 <0.001 ACM
Myc.380541 Mef2c.670025 0.001 0.208 0.001 ACM
Myc.380541 Mef2c.780338 0.003 <0.001 0.196 ACM
Myc.380541 Pax2.6040270 0.001 0.121 0.002 ACM
Myc.380541 Pax2.7000133 <0.001 0.115 <0.001 ACM
Myc.4670170 Pax2.7000133 0.023 0.037 0.037 ACM
Pax2.6040270 Myc.380541 <0.001 0.087 <0.001 ACDM
Pax2.7000133 Myc.380541 0.019 0.005 0.114 ACDM
Pax2.7000133 Myc.4670170 0.029 0.042 0.04 ACDM

Pax6.101660253 Scx.130066 <0.001 <0.001 0.215 CD ⇐
Pax6.101660253 Six3.105130390 <0.001 <0.001 0.216 CD ⇐
Pax6.101660253 Six3.3830402 <0.001 <0.001 0.191 CD ⇐
Pax6.105720411 Scx.130066 <0.001 <0.001 0.162 CD ⇐
Pax6.105720411 Six3.105130390 <0.001 <0.001 0.166 CD ⇐
Pax6.105720411 Six3.3830402 <0.001 <0.001 0.169 CD ⇐
Pax6.1190025 Scx.130066 <0.001 0.007 0.008 CD ⇐
Pax6.1190025 Six3.105130390 <0.001 0.004 0.003 CD ⇐

Pitx2.106400039 Msx2.102190592 0.049 0.117 0.029 CDM ⇐
Pitx2.2690139 Msx2.102190592 0.019 0.064 0.012 CDM ⇐

Scx.130066 Meis1.104590215 0.036 <0.001 0.188
Scx.130066 Pax6.101660253 <0.001 <0.001 0.194
Scx.130066 Pax6.1190025 0.004 0.063 0.005

Six3.3830402 Pax6.101660253 <0.001 <0.001 0.184 C ⇐
Sox10.6200538 Pax3.50551 <0.001 <0.001 0.182 CDM ⇐
Sp4.3850176 Sp3.104210341 <0.001 0.004 0.004
Sp4.3850176 Sp3.104570037 <0.001 0.008 0.007
Sp4.3850176 Sp3.3840338 <0.001 0.009 <0.001

Table S3: A total of 52 significant genetic interactions for the BL6 strain reported by CDSM. These were
detected from 104 genetic interaction candidates experimentally verified in various organisms from BioGRID.
Each transcript name is defined as <gene name>.<prob ID>, where prob ID differentiates probe locations
on a microarray. We set the test size α = 0.05. And p-values were obtained by a permutation test. All 52
interactions are active (pt ≤ 0.05). We found 30 differential interactions (pd ≤ 0.05), marked in light blue
shading, and 21 conserved interactions (pc ≤ 0.05 and pd > 0.05), marked in light yellow shading. According
to the gene ontology of each child gene, an interaction implicated in Apoptosis, Cell cycle or proliferation,
Differentiation and Morphogenesis, is marked by A, C, D, or M in the biological process column. And each
interaction known to be involved in brain/neuron development is marked by ⇐.
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activation of E2f1 and E2f2. Although the functions of many E2f proteins (E2f1-3 ) seem highly similar, it
has been reported that the ability to robustly induce apoptosis is limited to E2f1 (DeGregori et al., 1997;
Kowalik et al., 1998). Since EGL expansion is characterized by heavy proliferation of granule cell precursors,
it may be that the interaction between E2f1 and E2f2 is altered to effectively silence or down-regulate E2f1
activity.

Creb-Brca1 . It is known that Creb directly regulates Brca1 (Atlas et al., 2001). Ghosh et al. (2008)
used ChIP methods to demonstrate that Creb directly interacts with the Brca1 promotor in cell lines (Ghosh
et al., 2008). Creb has been demonstrated to enhance neuronal survival and regulate apoptosis in cerebellar
granule cells (Bonni et al., 1999; Mantamadiotis et al., 2002). In contrast, the tumor suppressor gene, Brca1
is robustly expressed by proliferating granule cell precursors in the EGL (Korhonen et al., 2003). Thus, it
is plausible that Brca1 and Creb1 interact to regulate cell proliferation in the EGL expansion phase. This
putative interaction could produce a differential interaction between these two genes, when compared to the
pre-EGL stage.

Pax6 -Six3 . They have been shown to interact during eye development, and this interaction is necessary
for the proper development of the structure. Experiments indicate the presence of mutual binding sequences
upstream for each of the transcription factors (Goudreau et al., 2002). In the cerebellum, nothing is known
about the relationship between Pax6 and Six3, however expression between Pax6 and Six3 is coincident in
the EGL at P0 (Engelkamp et al., 1999; Conte et al., 2005).

Pax6 . Pax6 is involved in regulating neuronal migration, morphology and proliferation in cerebellar
granule cells (Swanson et al., 2005; Duparc et al., 2006). The pre-EGL stage is characterized by neuronal
migration of granule cell precursors into the EGL, and the post-EGL stage is characterized by proliferation
of granule cells, followed by differentiation and inward migration. Pax6 is robustly expressed in granule
neurons throughout both temporal periods (Engelkamp et al., 1999) and could therefore regulate migration
or proliferation.

Msx2 . Msx2 has been reported to be important in the formation of the cerebellum since msx2-/- mice
show abnormalities in cerebellar formation (Satokata et al., 2000).

Pitx2 . Pitx2 has recognized roles in ocular (eye), tooth, and pituitary gland development. However,
in at least one case, mutation of this gene has been associated with cerebellar malformations (Idrees et al.,
2006). In another study in mice, partial loss of Pitx2 (Pitx2 -/- is embryonic lethal) initially leads to no
obvious defects in brain development up to stage E10.5, whereas midbrain defects are visible during later
stages (E14.5) (Martin et al., 2004). Msx2 and Pitx2 have been noted to interact during the formation
of tooth anlage in mammals in a mutually repressive manner. Specifically, these two factors compete for
binding to promoter regions in genes essential for tooth development (Green et al., 2001).

Scx . Scx is associated with several nervous system diseases in humans, and has been implicated in
neurodegeneration (Yeghiazaryan et al., 1999). It is possible that Scx interacts with other transcription
factors such as Pax6, as predicted by our comparative modeling, during cerebellar development.

9 Exploring novel gene interactions during cerebellar develop-
ment

The CDSM was also applied to discover novel genetic interactions during cerebellar development by genome-
wide exploration. The genome-wide time course expression data contained more than 40,000 transcripts, on
which we performed gene selecting, gene clustering, and CDSM. First, we merged time course observations of
two mouse strains by a gene selection process. The transcripts with consistent expression between DBA and
BL6 mouse strains were selected in order to find comparative gene interactions that are conserved between
the two strains. For the selection, we used a linear statistical model

EXPijk = Timei + Strainj + σijk (28)

where Expijk represent the expression value of the kth transcript replicate in strain j at time i, Time and
Strain are two independent factors in this statistical model, σ is a normally distributed noise. If Strain
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Cluster name a cluster member pt (total strength) pc (homogeneity) pd (heterogeneity)
C9 Ppard 1.94e-35 2.48e-18 5.05e-20

C326 Lef1 1.63e-54 2.14e-32 6.83e-26
C879 Crebbp 2.28e-28 8.78e-20 1.18e-11
C1715 Map2k7 5.96e-28 3.34e-17 8.14e-14
C164 Nfatc2 2.33e-35 7.28e-30 3.87e-09
C656 Ccnd2 5.00e-42 1.92e-31 5.54e-14
C1308 Nfatc1 4.59e-47 2.27e-28 3.11e-22
C185 Ruvbl1 2.55e-37 1.18e-15 1.54e-24
C1264 Mapk8 1.97e-30 2.55e-17 5.56e-16
C169 Mapk8 6.18e-46 2.13e-39 9.09e-11
C39 Ctbp2 6.60e-44 1.15e-28 8.09e-19

Table S4: Statistical significance of comparative modeling for clusters containing genes involved with the
WNT pathway. These gene clusters were all significantly differentially influenced by their parent clusters.

factor is insignificant (α = 0.5 means highly conserved between strains) of a transcript, it will be selected.
A total of 16,239 transcripts were thus selected. Second, gene clustering was used to group those transcripts
into clusters, because linearly correlated transcripts are mathematically equivalent in DSM. The Pearson
correlation coefficient was utilized to measure the linearity between any two transcripts by analyzing their
time course expression levels. For each of the resulting 1,823 clusters, one representative that is most linearly
correlated to other members within a cluster was chosen. A DSM is used to represent expression rates of
1,823 cluster representatives, and each of them is modeled by

dxi
dt

= βi0 +
∑

j∈Pari

βij
x2
j

82 + x2
j

− βixi

where xi represents the expression level of gene i, Pari the influence genes of gene i, βs the model coefficients.
The CDSM with a maximum parent number (dim(Pari)) of 2 was used, and self influence is allowed.

Putative interactions were generated by the CDSM for 1,823 cluster representatives across two devel-
opment events. The two temporal periods compared were the presence of rhombic lip (E12-E17) v.s. the
presence of distinct inner EGL (E18-P9). In this example, we illustrate a subset of interactions involving
TFs and their target genes in the WNT signaling pathway. The statistical significance of each node is given
by p-values in Table S4. A TF named Lef1 involved in the WNT pathway was significantly influenced dif-
ferently between the two temporal events. And genes in a cluster (C851) were very active in influencing four
genes involved in the WNT pathway. Genes in cluster C851 are: Rsc1a1, Zfp367, Rnf26, Gli2, Impa2, Rfc1,
Polb, Fen1, B830045N13Rik, BC062185, Uros, Prr14, Bik, Zkscan17, Pmf1, Mybl2, Tk1, Tbl2, and Plec1.
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Kapfhammer, J., Otto, C., Schmid, W., and Schütz, G. (2002). Disruption of CREB function in brain leads to neurodegeneration.

Nature Genetics, 31(1), 47–54.

Martin, D. M., Skidmore, J. M., Philips, S. T., Vieira, C., Gage, P. J., Condie, B. G., Raphael, Y., Martinez, S., and Camper, S. A.

(2004). PITX2 is required for normal development of neurons in the mouse subthalamic nucleus and midbrain. Developmental

Biology, 267(1), 93–108.

Oliver, T. G., Grasfeder, L. L., Carroll, A. L., Kaiser, C., Gillingham, C. L., Lin, S. M., Wickramasinghe, R., Scott, M. P., and

Wechsler-Reya, R. J. (2003). Transcriptional profiling of the Sonic hedgehog response: a critical role for N-myc in proliferation of

neuronal precursors. PNAS , 100(12), 7331–7336.

Ouyang, Z. and Song, M. (2009). Comparative Identification of Differential Interactions from Trajectories of Dynamic Biological

Networks. In Proceedings of German Conference on Bioinformatics Halle Germany, pages 163–172.

Prill, R. J., Marbach, D., Saez-Rodriguez, J., Sorger, P. K., Alexopoulos, L. G., Xue, X., Clarke, N. D., Altan-Bonnet, G., and

Stolovitzky, G. (2010). Towards a rigorous assessment of systems biology models: the DREAM3 challenges. PLoS ONE , 5(2),

e9202.

Satokata, I., Ma, L., Ohshima, H., Bei, M., Woo, I., Nishizawa, K., Maeda, T., Takano, Y., Uchiyama, M., Heaney, S., Peters, H.,

Tang, Z., Maxson, R., and Maas, R. (2000). Msx2 deficiency in mice causes pleiotropic defects in bone growth and ectodermal organ

formation. Nature Genetics, 24(4), 391–395.

Stark, C., Breitkreutz, B.-J., Reguly, T., Boucher, L., Breitkreutz, A., and Tyers, M. (2006). BioGRID: a general repository for

interaction datasets. Nucleic Acids Research, 34(Database issue), D535–D539.

Stark, C., Breitkreutz, B.-J., Chatr-Aryamontri, A., Boucher, L., Oughtred, R., Livstone, M. S., Nixon, J., Van Auken, K., Wang, X.,

Shi, X., Reguly, T., Rust, J. M., Winter, A., Dolinski, K., and Tyers, M. (2010). The BioGRID Interaction Database: 2011 update.

Nucleic Acids Research, pages D698–D704.

Swanson, D. J., Tong, Y., and Goldowitz, D. (2005). Disruption of cerebellar granule cell development in the Pax6 mutant, Sey mouse.

Developmental Brain Research, 160(2), 176–193.

Tyson, J. J. (1991). Modeling the cell division cycle: cdc2 and cyclin interactions. PNAS , 88(16), 7328–7332.

Yeghiazaryan, K., Turhani-Schatzmann, D., Labudova, O., Schuller, E., Olson, E. N., Cairns, N., and Lubec, G. (1999). Downregulation

of the transcription factor scleraxis in brain of patients with Down syndrome. Journal of Neural Transmission. Supplementum,

57, 305–314.

Zar, J. H. (2009). Biostatistical Analysis. Prentice Hall, 5th edition.

Zhu, D., Li, Y., and Li, H. (2007). Multivariate correlation estimator for inferring functional relationships from replicated genome-wide

data. Bioinformatics, 23(17), 2298–2305.

16


