Supporting Information:

3,5-Dimethylisoxazoles act as acetyl-lysine mimetic bromodomain ligands

David S. Hewings,^{†,‡} Minghua Wang,[†] Martin Philpott,[†] Oleg Fedorov,[†] Sagar Uttarkar,[†] Panagis Filippakopoulos,[†] Sarah Picaud,[†] Chaitanya Vuppusetty,[†] Brian Marsden,[†] Stefan Knapp,[†] Stuart J. Conway^{‡,}* and Tom D. Heightman^{†,§,}*

[†]Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK; [‡]Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK; [§]Current address: Astex Therapeutics, 436 Cambridge Science Park, Cambridge, CB4 0QA, UK.

*To whom correspondence should be addressed: stuart.conway@chem.ox.ac.uk, telephone: +44 (0)1865 285 109, fax: +44 (0)1865 285 002; t.heightman@astex-therapeutics.com, telephone: +44 (0)1223 226270.

Table of Contents

Supporting Figure S1. Mass spectra of 1	S2
Supporting Figure S2. Cytotoxicity assay	S3
Supporting Figure S3. Overlays of crystal structure of 2, 4d, JQ1 and comparison	
with predicted binding mode of 4d	S4
Supporting Figure S4. Selected dose-response curves	S5
Supporting Figure S5. Calculation of minimum energy torsion angle	S6
Supporting Scheme S1. Synthesis of 4-aryl-3,5-dimethylisoxazoles 3a,b and 4a by	
direct arylation of 3,5-dimethylisoxazole	S7
Supporting Scheme S2. Synthesis of 3-bromoethoxybenzene 7	S 7
Supporting Scheme S3. Synthesis of 6-(3,5-dimethylisoxazol-4-yl)-3-methyl-3,4-	
dihydroquinazolin-2(1 <i>H</i>)-one 1.	S 7
Supporting Table S1. Ligand efficiency calculation	S 8
Supporting Table S2. Data collection and refinement statistics	S9
Protein Crystallization	S9
Data Collection and Structure Solution	S10
Further General Experimental	S11
Synthesis and Characterization of Compounds 1, 7, 8, 10-13	S12
Further Characterization of Compounds 3a-d, 4a-d	S17
References	S19
¹ H and ¹³ C spectra	S21

Abbreviations used in Supporting Information:

BRD(1): First bromodomain of bromodomain-containing protein 4; CREBBP: c-AMP response element binding protein binding protein; DMAc: *N*,*N*-dimethylacetamide; DMEM: Dulbecco's modified Eagle's medium; LE: Ligand efficiency; MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenylltetrazolium bromide; RuPhos: 2-dicyclohexylphosphino-2',6'-diisopropoxybiphenyl

Supporting Figure S1. Mass spectra of 1

1 is liable to oxidation under laboratory conditions. A: Mass spectrum of purchased 1 after storage in DMSO for one month; [M-H]⁺ is likely to arise from oxidation at the benzylic position; B: Mass spectrum of freshly-prepared MeCN suspension of purchased 1; [M+H]⁺ is observed, but [M-H]⁺ is not; C: High-resolution LCMS of resynthesized 1 after stirring in DMSO for 5 days; [M-H]⁺ present. For 1, calculated [M+H]⁺: 258.1237, [M-H]⁺: 256.1081. Details of MS experiments are given below (S11).

Supporting Figure S2. Cytotoxicity assay.

Cytotoxicity of lead compound **1**, **4d** and (+)-JQ1 in HeLa cells, as determined by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenylltetrazolium bromide) assay, indicating mitochondrial reductase activity. A reduction in viability indicates cytotoxicity in this cell line. Experiments were performed in triplicate. Error bars indicate standard deviation.

Supporting Figure S3. Overlays of crystal structure of **2**, JQ1, and comparison with predicted binding mode of **4d**.

A: Overlay of the crystal structure of lead **2** (yellow, PDB ID: 3SVF) and predicted binding mode of compound **4d** (magenta) bound to BRD4(1); **B**: Comparison of the crystal structure of compound **4d** (green, PDB ID: 3SVG) and its predicted binding mode; **C**: Comparison of the crystal structure of lead compound **2** (yellow) and the crystal structure of final compound **4d** (green); **D**: Overlay of the crystal structures of compound **4d** and JQ1 bound to BRD4(1) (PDB ID: 3MXF).

Supporting Figure S4. Selected dose-response curves

Dose-response curves for A: **4b** and B: **4d** in three bromodomains. Curves were constrained to 0% and 100% inhibition. Experiments were carried out in duplicate on the same plate; intra-experimental variation was too small to be visualized with error bars. Curves plotted in GraphPad Prism (GraphPad Software).

Supporting Figure S5. Calculation of minimum energy torsion angle.

Calculated energy as a function of torsion angle around C–C bond (indicated). 0° corresponds to planarity. Energy is in kcal/mol relative to the energy minimum. Calculations were performed in Macromodel (Schrödinger) using OPLS2005 force field.

Supporting Scheme S1. Synthesis of 4-aryl-3,5-dimethylisoxazoles 3a-b, 4a by direct

arylation of 3,5-dimethylisoxazole.^a

^{*a*}Conditions: (a) $R_1 = H$, $R_2 = H$: PdCl₂, KOAc, DMAc, 130 °C, 27 h, 69%; $R_1 = Ac$, $R_2 = H$: PdCl₂, KOAc, DMAc, 130 °C, 20 h, 51%; $R_1 = CO_2Et$, $R_2 = OEt$: PdCl₂, KOAc, DMAc, 130 °C, 44 h, 44%.¹

Supporting Scheme S2. Synthesis of 3-bromoethoxybenzene 7.^a

^aConditions: (a) EtBr, K₂CO₃ MeOH, 120 °C (microwave), 20 min, 95%.²

Supporting Scheme S3. Synthesis of 6-(3,5-dimethylisoxazol-4-yl)-3-methyl-3,4-

dihydroquinazolin-2(1*H*)-one 1.^{*a*}

^{*a*}Conditions: (a) *N*-Bromosuccinimide, DMF, rt, 2 h, 12%; (b) **8**, Na₂CO₃, Pd(OAc)₂, RuPhos, EtOH, 110 °C (microwave), 3 h, 70%.

	1		4	d	(+) - JQ1	NI	MP
	BRD4(1) CREBBP		BRD4(1)	BRD2(1)	BRD4(1)	BAZ2B	CREBBP
$IC_{50}(M)$	4.8×10^{-6}	3.4×10^{-6}	4.8×10^{-6}	1.6×10^{-6}	77×10^{-9}	34×10^{-3}	2.4×10^{-3}
pIC ₅₀	5.32	5.47	5.32	5.8	7.11	1.47	2.64
Heavy atom count	19 19		19	19	31	7	7
LE	0.39 0.40		0.39	0.43	0.32	0.30	0.53

Supporting Table S1. Ligand efficiency.^a

 $LE = \frac{pIC_{50} = -\log_{10} IC_{50}}{Heavy \text{ atom count}}$

PDB ID	3SVF	3SVG	3SVH
Protein/Ligand	BRD4(1)/ 2	BRD4(1)/ 4d	CREBBP/4b
Space group	$P2_{1}2_{1}2_{1}$	$P2_{1}2_{1}2_{1}$	P2 ₁
Cell dimensions: a, b, c (Å) α , β , γ (deg)	43.56 48.98 60.28 90.00 90.00 90.00	37.66 44.19 77.85 90.00 90.00 90.00	42.36 61.92 58.42 90.00 111.38 90.00
Resolution (Å)	1.98 (2.08-1.98)	1.68 (1.77-1.68)	1.80 (1.90-1.80)
Unique observations	9376 (1302)	15429 (2207)	24992 (3517)
Completeness (%)	98.8 (96.4)	99.8 (99.0)	95.4 (92.4)
Redundancy	6.5 (5.2)	4.4 (3.8)	2.7 (2.7)
Rmerge	0.185 (0.745)	0.067 (0.580)	0.095 (0.265)
Ι/ σΙ	7.5 (2.0)	13.5 (2.0)	8.1 (3.4)
Refinement			
Resolution (Å)	1.98	1.68	1.80
R_{work} / R_{free} (%)	17.7/22.6	17.6/21.5	18.8/22.9
Number of atoms (protein/other/water)	1054/23/86	1082/31/125	1986/80/232
B-factors (Å ²) (protein/other/water)	23.46/24.36/26.29	18.77/22.88/26.26	12.49/15.21/17.80
r.m.s.d bonds (Å) r.m.s.d angles (°)	0.016 1.526	0.015 1.552	0.015 1.611
Ramachadran Favoured (%) Allowed (%) Disallowed (%)	98.40 1.60 0.00	98.33 1.67 0.00	100.00 0.00 0.00

Supporting Table S2. Data collection and refinement statistics.^a

Data Collection

^{*a*} Values in parentheses correspond to the highest resolution shell.

Protein crystallization: Aliquots of the purified proteins were set up for crystallization using a mosquito® crystallization robot (TTP Labtech, Royston UK). Coarse screens were typically setup onto Greiner 3-well plates using three different drop ratios of precipitant to protein per condition (100+50 nL, 75+75 nL and 50+100 nL). Initial hits were optimized further scaling up the drop sizes. All crystallizations were carried out using the sitting drop vapor diffusion method at 4 °C. CREBBP crystals with **4b** were grown by mixing 150 nL of the protein (10.6 mg/mL and 10 mM final ligand concentration) with an equal volume of reservoir solution containing 0.25 M potassium thiocyanate, 10% PEG3350 and 5% ethylene glycol. BRD4(1) crystals with **2** were grown by mixing 50 nL of protein (10.3 mg/mL and 5 mM final ligand concentration) with 100 nL of reservoir solution containing 0.2 M sodium acetate, 0.1 M Bis-Tris pH 8.5, 20% PEG3350 and 10% ethylene glycol. BRD4(1) crystals with **4d** were grown by mixing 75 nL of protein (9.9 mg/mL and 5 mM final ligand concentration) with an equal volume of reservoir solution containing 0.2 M sodium sulfate, 0.1 M BT-propane pH 8.5, 20% PEG3350 and 10% ethylene glycol. In all cases diffraction quality crystals grew within a few days.

Data Collection and Structure Solution: All crystals were cryo-protected using the well solution supplemented with additional ethylene glycol and were flash frozen in liquid nitrogen. Data were collected in-house on a Rigaku FRE rotating anode system equipped with a RAXIS-IV detector at 1.52 Å. Indexing and integration was carried out using MOSFLM³ and scaling was performed with SCALA.⁴ Initial phases were calculated by molecular replacement with PHASER⁵ using the known models of BRD4(1) (PDB ID: 2OSS) and CREBBP (PDB ID: 3DWY). Initial models were built by ARP/wARP⁶ followed by manual building in COOT.⁷ Refinement was carried out in REFMAC5.⁸ In all cases thermal motions were analyzed using TLSMD⁹ and hydrogen atoms were included in late refinement cycles. Data collection and refinement statistics can be found in Supporting Table S2. The models and structure factors have been deposited with PDB accession codes: 3SVF (BRD4(1)/2), 3SVG (BRD4(1)/4d), 3SVH (CREBBP/4b).

Further General Experimental

Mass spectra of purchased **1** (Supporting Figure S1A, B) were obtained using an Agilent MSD-ToF electrospray ionisation orthogonal time-of-flight mass spectrometer. The sample was diluted 1:100 (v/v) in LC-MS grade acetonitrile and infused directly into the ion source at a flow rate of 3 μ L per minute using a syringe pump. The instrument was configured with the standard ESI source and operated in positive ion mode. Data analysis was performed using Quantitative Analysis software (Agilent Technologies Inc). LCMS of resynthesized **1** (Supporting Figure S1C) was obtained using a Waters Nano Acquity nano-LC system interfaced to a Waters Synapt mass spectrometer *via* an electrospray source. LC conditions were: Waters 1.7 μ M BEH C18 75 μ M × 150 mm column with a binary solvent system using water + 0.1% formic acid and MeCN. Data analysis was performed with using Synapt software (Waters Corporation).

Analytical thin layer chromatography (TLC) was carried out on Merck silica gel 60 F_{254} aluminum-supported thin layer chromatography sheets. Visualisation was by absorption of UV light (λ_{max} 254 nm), or thermal development after dipping in an aqueous solution of potassium permanganate, potassium carbonate and sodium hydroxide.

Flash column chromatography was performed on a Biotage SP1 or SP4 system using KP-SilTM cartridges.

Anhydrous solvents were obtained under the following conditions: dry DMF and dry MeOH were purchased from Sigma-Aldrich UK in SureSeal[™] bottles and used without further purification; anhydrous THF was distilled from sodium and benzophenone in a recycling still and stored over activated 3 Å molecular sieves under an argon atmosphere;

Dry DMAc (Sigma) was degassed by repeated freeze-thaw cycles and stored over activated 3 Å molecular sieves under an argon atmosphere. EtOH was degassed by repeated freeze-thaw cycles and stored under an argon atmosphere, but was not dried.

Chemicals were purchased from Acros UK, Sigma-Aldrich UK, Alfa Aesar UK, Fisher UK or Fluka UK. Where appropriate and if not stated otherwise, all non-aqueous reactions were performed in a flame-dried flask under an inert atmosphere of nitrogen or argon, using a double vacuum manifold with the inert gas passing through a bed of activated 4 Å molecular sieves and self-indicating silica gel. K₂CO₃ and Na₂CO₃ were dried in an oven prior to use. *N*,*O*-Dimethylhydroxylamine hydrochloride was dried in a vacuum desiccator prior to use.

In vacuo refers to the use of a rotary evaporator attached to a diaphragm pump. Brine refers to a saturated aqueous solution of sodium chloride. Petroleum ether refers to the fraction boiling between 30–40 °C unless otherwise stated.

Synthesis and characterization of compounds 1, 7, 8, 10-13

6-(3,5-Dimethylisoxazol-4-yl)-3-methyl-3,4-dihydroquinazolin-2(1*H*)-one 1

To a solution of 3-methyl-3,4-dihydroquinazolin-2(1*H*)-one (5.00 g, 31.0 mmol) in DMF (120 mL) was added *N*-bromosuccinimide (6.61 g, 37.1 mmol). The reaction was stirred at rt for 2 h then concentrated *in vacuo*. The resulting residue was resuspended in EtOAc, washed with H₂O (3×100 mL), dried and concentrated *in vacuo*. Purification by silica gel column chromatography (5:1 CH₂Cl₂:EtOAc) gave 6-bromo-3-methyl-3,4-dihydroquinazolin-2(1*H*)-one as a colorless solid (916 mg, 12%); mp 195–197 °C (EtOH); ¹H NMR (500 MHz, DMSO-*D*₆) 2.85 (s, 3H) 4.39 (s, 2H), 6.70-6.74 (m, 1H), 7.28–7.32 (m, 2H), 9.33 (s, 1H); ¹³C NMR (125 MHz, DMSO-*D*₆) 33.8, 49.2, 112.0,

115.2, 120.3, 128.1, 130.4, 137.3, 153.3; HRMS *m/z* (ES⁺) found [M+H]⁺ 240.9969, C₉H₁₀⁷⁹BrN₂O⁺ requires 240.9971; *m/z* (ES⁺) 263 ([⁷⁹M+Na]⁺, 56), 265 ([⁸¹M+Na]⁺, 55), 295 ([⁷⁹M+MeOH+Na]⁺, 12), 297 ([⁸¹M+MeOH+Na]⁺, 12), 503 ([2⁷⁹M+Na]⁺, 53), 505 ([⁷⁹M+⁸¹M+Na]⁺, 100), 507 ([2⁸¹M+Na]⁺, 52). Anal. Calcd for C₉H₉BrN₂O: C, 44.8; H, 3.8; N, 11.6. Found: C, 44.8; H, 3.7; N, 11.6.

To a dry 2-5 mL microwave vial were added **8** (93 mg, 456 µmol), 6-bromo-3-methyl-3,4-dihydroquinazolin-2(1*H*)-one (100 mg, 415 µmol), Pd(OAc)₂ (1 mg, 4 µmol), RuPhos (6 mg, 13 µmol) and anhydrous Na₂CO₃ (88 mg, 830 µmmol). The vial was sealed and purged with argon (3 × evacuate/fill). Degassed EtOH (2.3 mL) was added by syringe, and the mixture was heated at 110 °C for 3 h with microwave irradiation. Purification of the crude reaction mixture by silica gel column chromatography (gradient elution, gradient 60 \rightarrow 100% EtOAc/petroleum ether) gave **1** as a colorless solid (68 mg, 64%); mp 224-226 °C (MeOH); ¹H NMR (CDCl₃) 2.24 (s, 3H), 2.38 (s, 3H), 3.07 (s, 3H), 4.50 (s, 2H), 6.83 (d, *J* = 8.1 Hz, 1H), 6.91 (s, 1H), 7.05 (dd, *J* = 8.1, 1.8 Hz, 1H), 8.15 (s, 1H); ¹³C NMR (CDCl₃) 10.8, 11.5, 34.6, 50.8, 114.2, 116.1, 117.8, 123.8, 126.0, 129.1, 136.6, 154.5, 158.7, 165.0; HRMS *m/z* (ES⁺) found 280.1055; C₁₄H₁₅N₃NaO₂ requires M⁺ 280.1056. *m/z* (ES⁺) 258 ([M+H]⁺, 28), 280 ([M+Na]⁺, 86), 312 ([M+Na+MeOH]⁺, 85), 537 ([2M+Na]⁺, 100). Anal. Calcd for C₁₄H₁₅N₃O₂: C, 65.4; H, 5.9; N, 16.3. Found: C, 65.2; H, 5.9; N, 16.2.

1-Bromo-3-ethoxybenzene 7

To a dry 2-5 mL microwave vial were added anhydrous K_2CO_3 (829 mg, 6.00 mmol), 3-bromophenol (1.04 g, 637 µL, 6.00 mmol), EtBr (981 mg 672 µL, 9.00 mmol) and anhydrous MeOH (1.8 mL) under a nitrogen atmosphere. The vial was sealed, and the mixture stirred at 120 °C for 20 min with microwave irradiation, then concentrated *in vacuo*. The residues were extracted with 40-60 °C petroleum ether (3 × 15 mL) and concentrated *in vacuo* to give 7 as a pale yellow oil (1.14 g, 95%); ¹H NMR (500 MHz, CDCl₃) 1.42 (t, J = 7.0 Hz, 3H), 4.02 (q, J = 7.0 Hz, 2H), 6.83 (ddd, J = 8.1, 2.3, 1.0 Hz, 1H), 7.05-7.08 (m, 2H), 7.14 (dd, J = 8.1, 8.1 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) 14.7, 63.7, 113.6, 117.7, 122.8, 123.6, 130.5, 159.7; HRMS *m/z* (FI⁺) found M⁺ 199.9838, 201.9817; C₈H₉⁷⁹BrO requires M⁺ 199.9837, C₈H₉⁸¹BrO requires M⁺ 201.9811. Anal. Calcd for C₈H₉BrO: C, 47.8; H, 4.5. Found: C, 47.7; H, 4.4.

Potassium (3,5-dimethylisoxazol-4-yl)trifluoroborate **8**¹⁰

To a suspension of 3,5-dimethylisoxazol-4-ylboronic acid (254 mg, 1.80 mmol) in MeOH (1.0 mL) at 0 °C was added KHF₂ (420 mg, 5.38 mmol). H₂O (1.20 mL) was then added dropwise. The solution was warmed to rt and stirred for 10 min, then concentrated and dried overnight *in vacuo*. The crude solid was purified by Soxhlet extraction (16 h) with acetone (15 mL). The collected solvent was concentrated *in vacuo*, and the residues redissolved the minimum amount of acetone (40 mL). The product was precipitated by the addition of Et₂O (60 mL) and collected by filtration. The filtrate was concentrated *in vacuo* to give **8** as a powdery colorless solid (312 mg, 85%); mp >275 °C (lit. >200 °C)¹⁰; ¹H NMR (400 MHz, DMSO-*D*₆) 2.05 (s, 3H), 2.20 (s, 3H); ¹¹B NMR (160 MHz, DMSO-*D*₆) 2.33 (q, *J* = 49 Hz); ¹⁹F NMR (470 MHz, DMSO-*D*₆) –134.8–134.2; *m/z* (ES[¬]) 164 ([M-K][¬], 100), 351 ([2M–2K+Na][¬], 43), 367 ([2M–K][¬], 22). Anal. Calcd for C₅H₆BF₃KNO: C,

29.6; H, 3.0; N, 6.9. Found: C, 29.7; H, 2.9; N, 6.8. These data are in good agreement with the literature values.¹⁰

Ethyl 3-bromo-5-ethoxybenzoate 10

To a dry 10-20 mL microwave vial were added 3-bromo-5-hydroxybenzoic acid 9 (1.30 g, 5.99 mmol), anhydrous K₂CO₃, anhydrous DMF (5 mL) and EtBr (1.96 g, 1.34 mL, 18.0 mmol) under a nitrogen atmosphere. The vial was sealed, and the mixture stirred at 100 °C for 15 min, then concentrated in vacuo. The mixture was diluted with H_2O (40 mL) and extracted with EtOAc (3 × 40 mL). The combined organic layers were washed with H_2O (2 × 120 mL) and brine (120 mL), dried (MgSO₄), filtered, and concentrated *in vacuo* to give **10** as an orange solid (1.57 g, 96%); mp 43-44 °C (EtOAc); ¹H NMR (500 MHz, CDCl₃) 1.39 (t, J = 7.2 Hz, 3H), 1.42 (t, J = 7.0 Hz, 3H), 4.06 (q, J =7.0 Hz, 2H), 4.37 (q, J = 7.2 Hz, 2H), 7.22 (dd, J = 2.4, 1.8 Hz, 1H), 7.49 (dd, J = 2.4, 1.5 Hz, 1H), 7.73 (dd, J = 1.8, 1.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) 14.3, 14.6, 61.4, 64.1, 114.1, 122.4, 122.6, 124.7, 133.0, 159.6, 165.3; HRMS m/z (ES⁺) found [M+Na]⁺ 294.9931, 296.9925, C₁₁H₁₃⁷⁹BrNaNO₃ requires M⁺ 294.9940, $C_{11}H_{13}^{81}BrNaNO_3$ requires M⁺ 296.9920; m/z (ES⁺) 295 ($[^{79}M+Na]^+$, 100), 297 ([⁸¹M+Na]⁺, 97), 567 ([2⁷⁹M+Na]⁺, 42), 569 ([⁷⁹M+⁸¹M+Na]⁺, 78), 571 ([2⁸¹M+Na]⁺, 37). Anal. Calcd for C₁₁H₁₃BrNO₃: C, 48.4; H, 4.8. Found: C, 48.3; H, 4.8.

<u>3-Bromo-5-ethoxybenzoic acid 11</u>

To a solution of **10** (500 mg, 1.83 mmol) in THF (2 mL) were added H_2O (1 mL) and LiOH (66 mg, 2.75 mmol), and the mixture was stirred for 23 h at rt. Aqueous HCl (1 M, 10 mL) was then added, and the mixture extracted with EtOAc (3 × 10 mL). The combined organic layers were washed with brine (30 mL), dried (MgSO₄), filtered, and concentrated *in vacuo* to give **11** as a pale yellow solid (425 mg, 95%); mp 139-143 °C (EtOAc); ¹H NMR (400 MHz, CDCl₃) 1.44 (t, *J* = 7.0 Hz, 3H), 4.09 (q, *J* = 7.0 Hz, 2H), 7.30 (dd, *J* = 2.5, 1.8 Hz, 1H), 7.55 (dd, *J* = 2.5, 1.4 Hz, 1H), 7.83 (dd, *J* = 1.8, 1.4 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) 14.6, 64.2, 114.5, 122.8, 123.5, 125.3, 131.6, 159.7, 170.3; HRMS *m*/*z* (ES⁻) found [M–H]⁻ 242.9962, 244.9642; C₉H₉⁷⁹BrO₃ requires M⁻ 242.9962, C₉H₉⁸¹BrO₃ requires M⁻ 244.9642; *m*/*z* (ES⁻) 243 ([⁷⁹M]⁻, 96), 245 ([⁸¹M]⁻, 100), 487 ([2⁷⁹M]⁻, 6) 489 ([⁷⁹M+⁸¹M]⁻, 13), 491 ([2⁸¹M]⁻, 6), 509 ([2⁷⁹M–2H+Na]⁻, 45), 511 ([⁷⁹M+⁸¹M–2H+Na]⁻, 80), 513 ([2⁸¹M–2H+Na]⁻, 37). Anal. Calcd for C₉H₉BrO₃: C, 44.1; H, 3.7. Found: C, 44.0; H, 3.6.

3-Bromo-5-ethoxy-N-methoxy-N-methylbenzamide 12

To a dry flask containing **11** (353 mg, 1.44 mmol), *N*,*O*-dimethylhydroxylamine hydrochloride (285 mg, 2.92 mmol) and HBTU (576 mg, 1.52 mmol) were added anhydrous DMF (3.5 mL) and diisopropylethylamine (1.0 g, 1.3 mL, 7.46 mmol) at 0 °C under a nitrogen atmosphere. The mixture was warmed to rt and stirred for 14 h, then concentrated *in vacuo*. The residues were redissolved in EtOAc (50 mL), washed with citric acid (10% w/v, 2 × 50 mL), saturated aqueous NaHCO₃ (2 × 50 mL), H₂O (2 × 50 mL) and brine (50 mL), dried (MgSO₄), filtered, and concentrated *in vacuo*. Purification by silica gel column chromatography (gradient elution, gradient 6 \rightarrow 40% EtOAc/petroleum ether) gave **12** as a colorless oil (331 mg, 80%); ¹H NMR (400 MHz, CDCl₃) 1.41 (t, *J* = 7.0 Hz, 3H), 3.34 (s, 3H), 3.57 (s, 3H), 4.03 (q, *J* = 7.0 Hz, 2H), 7.10-7.14 (m, 2H), 7.35-7.38 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) 14.6, 33.7, 61.2, 64.0, 113.2, 119.9, 122.3, 123.1, 136.6, 159.3, 168.1; HRMS *m/z* (ES⁺) found [M+Na]⁺ 310.0055, 312.0034; C₁₁H₁₄⁷⁹BrNNaO₃ requires M⁺ 310.0049, C₁₁H₁₄⁸¹BrNNaO₃ requires M⁺ 312.0029; *m/z* (ES⁺) 288 ([⁷⁹M+H]⁺, 25), 290 ([⁸¹M+H]⁺, 24), 310 ([⁷⁹M+Na]⁺, 57), 312 ([⁸¹M+Na]⁺, 55), 597 ([2⁷⁹M+Na]⁺, 96), 599 ([⁷⁹M+⁸¹M+Na]⁺, 100), 601 ([2⁸¹M+Na]⁺, 95). Anal. Calcd for C₁₁H₁₄BrNO₃: C, 45.9; H, 4.9; N, 4.9. Found: C, 46.0; H, 4.8; N, 4.7.

1-(3-Bromo-5-ethoxyphenyl)ethanone 13

To a solution of **12** (250 mg, 868 µmol) in anhydrous THF (8 mL) under an argon atmosphere was added MeMgBr solution (1.0 M in dibutyl ether, 2.6 mL, 2.6 mmol) dropwise at 0 °C. The solution was warmed to rt and stirred for 15 h, then quenched with aqueous HCl (1 M, 15 mL). The mixture was extracted with EtOAc (3 × 15 mL), and the combined organic layers were washed with brine (50 mL), dried (MgSO₄), filtered, and concentrated *in vacuo*. Purification by silica gel column chromatography (gradient elution, gradient 3 \rightarrow 30% Et₂O/petroleum ether) gave **13** as a colorless solid (181 mg, 86%); mp 40-41 °C (15% Et₂O:petroleum ether); ¹H NMR (400 MHz, CDCl₃) 1.43 (t, *J* = 7.0 Hz, 3H), 2.57 (s, 3H), 4.07 (q, *J* = 7.0 Hz, 2H), 7.23-7.25 (m, 1H), 7.38-7.41 (m, 1H), 7.63-7.65 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) 14.6, 26.7, 64.2, 112.7, 122.5, 123.0, 123.8, 139.4, 159.8, 196.5; HRMS *m/z* (ES⁺) found [M+Na]⁺ 264.9833, 266.9814; C₁₀H₁₁⁷⁹BrNaO₂ requires M⁺ 264.9835, C₁₀H₁₁⁸¹BrNaO₂ requires M⁺ 266.9814; *m/z* (ES⁺) 265 ([⁷⁹M+Na]⁺, 100), 267 ([⁸¹M+Na]⁺, 97). Anal. Calcd for C₁₀H₁₁BrO₂: C, 49.4; H, 4.6. Found: C, 49.6; H, 4.4.

Further characterization for compounds 3a-d, 4a-d

3,5-Dimethyl-4-phenylisoxazole 3a

Anal. Calcd for C₁₁H₁₁NO: C, 76.3; H, 6.4; N; 8.1. Found: C, 76.4; H, 6.5; N, 8.0.

1-3-(3,5-Dimethylisoxazol-4-yl)phenyl)ethanone 3b

Anal. Calcd for C₁₃H₁₃NO₂: C, 72.5; H, 6.1; N, 6.5. Found: C, 72.6; H, 6.2; N, 6.4.

4-(3-Ethoxyphenyl)-3,5-dimethylisoxazole 3c

¹³C NMR (100 MHz, CDCl₃) 10.8, 11.6, 14.8, 63.5, 113.2, 115.6, 116.6, 121.3, 129.8,

- 131.7, 158.6, 159.2, 165.2. Anal. Calcd for C₁₃H₁₅NO₂: C, 71.9; H, 7.0; N, 6.5. Found:
- C, 72.0; H, 7.1; N, 6.4.
- (RS)-1-(3-(3,5-Dimethylisoxazol-4-yl)phenyl)ethanol 3d
 - ¹³C NMR (100 MHz, CDCl₃) 10.8, 11.6, 25.4, 70.1, 116.6, 124.6, 126.1, 128.0, 128.9,
- 130.6, 146.6, 158.7, 165.2. Anal. Calcd for C13H15NO2: C, 71.9; H, 7.0; N, 6.5. Found: C,

72.0; H, 7.0; N; 6.3.

Ethyl 3-(3,5-dimethylisoxazol-4-yl)-5-ethoxybenzoate 4a

¹³C NMR (100 MHz, CDCl₃) 10.8, 11.6, 14.3, 14.7, 61.3, 63.9, 113.5, 115.9, 120.5,

- 122.5, 131.9, 132.3, 158.5, 159.2, 165.6, 166.1. Anal. Calcd for C₁₆H₁₉NO₄: C, 66.4;
- H, 6.6; N, 4.8. Found: C, 66.6; H, 66.5; N, 4.7.
- 3-(3,5-Dimethylisoxazol-4-yl)-5-ethoxybenzoic acid 4b
- ¹³C NMR (126 MHz, CDCl₃) 10.8, 11.6, 14.7, 64.0, 113.8, 115.7, 121.6, 123.1, 131.0,
- 132.1, 158.5, 159.3, 165.7, 171.1. Anal. Calcd for C₁₄H₁₅NO₄: C, 64.4; H, 5.8; N, 5.4.
- Found: C, 64.2; H, 5.9; N, 5.3.
- 1-(3-(3,5-Dimethylisoxazol-4-yl)-5-ethoxyphenyl)ethanone 4c

¹³C NMR (126 MHz, CDCl₃) 10.8, 11.6, 14.7, 26.7, 63.9, 112.3, 115.9, 120.5, 121.5, 132.2, 138.9, 158.5, 159.5, 165.6, 197.5. Anal. Calcd for C₁₅H₁₇NO₃: C, 69.5; H, 6.6; N, 5.4. Found: C, 69.6; H, 6.7; N, 5.3.

(RS)-1-(3-(3,5-Dimethylisoxazol-4-yl)-5-ethoxyphenyl)ethanol 4d

¹³C NMR (100 MHz, CDCl₃) 10.8, 11.6, 14.8, 25.4, 63.6, 70.1, 110.3, 114.4, 116.6, 118.3, 131.8, 148.1, 158.6, 159.4, 165.2. Anal. Calcd for C₁₅H₁₉NO₃: C, 68.9; H, 7.3; N, 5.3. Found: C, 69.1; H, 71; N, 5.5.

References

 Fall, Y.; Reynaud, C.; Doucet, H.; Santelli, M., Ligand-Free-Palladium-Catalyzed Direct 4-Arylation of Isoxazoles Using Aryl Bromides. *Eur. J. Org. Chem.* 2009, 2009, 4041-4050.

 Sarju, J.; Danks, T. N.; Wagner, G., Rapid microwave-assisted synthesis of phenyl ethers under mildly basic and nonaqueous conditions. *Tetrahedron Lett.* 2004, *45*, 7675-7677.

3. Leslie, A. G. W.; Powell, H. *MOSFLM*, 7.01; MRC Laboratory of Molecular Biology: Cambridge, 2007.

Evans, P. SCALA - scale together multiple observations of reflections, 3.3.0;
 MRC Laboratory of Molecular Biology: Cambridge, 2007.

5. McCoy, A. J.; Grosse-Kunstleve, R. W.; Storoni, L. C.; Read, R. J., Likelihoodenhanced fast translation functions. *Acta Crystallogr. Sect. D. Biol. Crystallogr.* **2005**, *61*, 458-464.

6. Perrakis, A.; Morris, R.; Lamzin, V. S., Automated protein model building combined with iterative structure refinement. *Nat. Struct. Biol.* **1999**, *6*, 458-463.

7. Emsley, P.; Cowtan, K., Coot: model-building tools for molecular graphics. *Acta Crystallogr. Sect. D. Biol. Crystallogr.* **2004**, *60*, 2126-2132.

8. Murshudov, G. N.; Vagin, A. A.; Dodson, E. J., Refinement of macromolecular structures by the maximum-likelihood method. *Acta Crystallogr. Sect. D. Biol. Crystallogr.* **1997**, *53*, 240-255.

 Painter, J.; Merritt, E. A., Optimal description of a protein structure in terms of multiple groups undergoing TLS motion. *Acta Crystallogr. Sect. D. Biol. Crystallogr.* 2006, 62, 439-450.

Molander, G. A.; Canturk, B.; Kennedy, L. E., Scope of the Suzuki-Miyaura
 Cross-Coupling Reactions of Potassium Heteroaryltrifluoroborates. *J. Org. Chem.* 2008, 74, 973-980.

6-bromo-3-methyl-3,4-dihydroquinazolin-2(1H)-one Br Current Data Parameters NAME bromodihydroquinazolinone EXPNO 1 PROCNO 1 F2 - Acquisition Parameters Date_ 20110721 Time 22.04 INSTRUM avc500 PROBHD 5 mm CPDUL 13C PULPROG zg30 65536 TD SOLVENT NS DMSO 16 DS 2 10330.578 Hz 0.157632 Hz 3.1719923 sec SWH FIDRES AQ RG 4 48.400 usec DW DE 6.00 usec ΤE 298.0 K 1.00000000 sec D1 TD0 1 ====== CHANNEL fl ======= NUC1 1H 9.60 usec -6.00 dB Ρ1 PL1 PL1W 15.19999981 W SF01 500.3030896 MHz F2 - Processing parameters SI 32768 SF 500.3000000 MHz WDW EM SSB LB 0 0.30 Hz GB PC 0 1.00 ----2 9 8 7 6 5 4 3 1 0 ppm

6-bromo-3-methyl-3,4-dihydroquinazolin-2(1H)-one

6-(3,5-dimethylisoxazol-4-yl)-3-methyl-3,4-dihydroquinazolin-2(1H)-one 1

NAME	039	4-(3-Ethoxypl	henyl)-3,5-din	nethylisoxa	zole 3c		Í		
EXPNO PROCNO Date_ Time INSTRUM PROBHD PULPROG TD SOLVENT NS SSWH FIDRES AQ RG DW DE TE TE D1	1 1 20101206 22.09 av400 5 mm QNP 1H/13 zg60 65536 CDC13 16 2 8278.146 Hz 0.126314 Hz 3.9584243 sec 32 60.400 usec 7.50 usec 300.0 K 1.0000000 sec						EtO	O N	
NUC1 P1 SF01 SF WDW SSB LB GB PC	CHANNEL f1 1H 9.00 usec 0.00 dB 400.2024714 MHz 32768 400.2000028 MHz EM 0 0.30 Hz 0 1.00								
[, , , , , , , ,	9 8	7	 б	5	4	3 2	2 1	0	ppm

Ethyl 3-(3,5-dimethylisoxazol-4-yl)-5-ethoxybenzoate 4a

S30

1-(3-(3,5-Dimethylisoxazol-4-yl)-5-ethoxyphenyl)ethanone 4c

(RS)-1-(3-(3,5-Dimethylisoxazol-4-yl)-5-ethoxyphenyl)ethanol 4d

NAME EXPNO PROCNO Date_ Time	005 H and HMBC 1 20101208 3.54			EtOBr		
PROBHD PULPROG TD SOLVENT NS DS SWH FIDRES	5 mm CPDUL 13C zg30 65536 CDCL3 16 2 10330.578 Hz 0.157632 Hz 3.1719033 sec					
RG DW DE TE D1 TD0	4 4 48.400 usec 6.00 usec 298.0 K 1.00000000 sec					
NUC1 P1 PL1 SF01 SI SF WDW SSB LB GB PC	CHANNEL f1 H 9.60 usec -6.00 dB 15.19999981 W 500.3030896 MHz 32768 500.3000240 MHz EM 0 0.30 Hz 0 1.00					
[9 8	7 6	5 4	4 3 2	1 0	ppm

NAME EXPNO PROCNO Date_ Time INSTRUM PROBHD PULPROG TD SOLVENT NS SOLVENT NS SWH FIDRES AQ RG DW DE TE D1 D1 D1 D11	014 2010110 17.3 avc50 5 mm CPDUL 13 c553 CDC1 51 31250.00 0.47683 1.048625 91 16.00 20.0 298. 2.0000000	C 1 1 6 6 0 C C 0 6 3 2 2 2 2 0 Hz 7 Hz 9 sec 2 0 usec 0 usec 0 usec 1 K 0 sec 1 sec							EtO	Br		
TD0 NUC1 P1 PL1 PL1W SF01 CPDPRG2 NUC2 PL2 PL12 PL12W PL12W PL12W PL12W PL12W SF02 SI SF WDW SSB LB GB PC	<pre>= CHANNEL f1 == 13 9.5 -4.4 28.1575202 125.813115 = CHANNEL f2 == waltz1 80.0 -6.0 12.4 15.199998 0.2186973 0.0549343 500.302001 3276 125.800543 E 1.0 1.4</pre>	1 C O USEC O dB 9 W 1 MHz 6 H O USEC O dB 2 dB 2 dB 2 dB 1 W 8 W 0 2 MHz 8 8 MHz M 0 0 Hz 0 0 0 0 0					Applications					
220	200	180	160	140	120	100	80	60	40	20	0	ppm

3-Bromo-5-ethoxy-N-methoxy-N-methylbenzamide 12

