## Supplemental Material

# Hidden in Plain Sight: Subtle Effects of the 8-oxoguanine Lesion on the Structure, Dynamics, and Thermodynamics of a 15-Base-Pair Oligodeoxynucleotide Duplex

Crenshaw, Wade, Arthanari, Frueh, Lane, and Núñez

#### Page 3:

**Supplementary Figure 1**: Canonical Watson-Crick A-T and G-C base pairs are shown along with the putative *anti* 80xoG-C base pair. Standard base numbering is included for convenience when viewing annotated 2D NMR spectra. Guanine N1 and thymine N3 imino protons are indicated in red.

#### Page 4:

**Supplementary Table 1**: Mixing times used for measurement of  $R_{1w}$  according to Eqn. 3. Numbers in the first column indicate the experiment number; note that samples were measured out of order with respect to their mixing times.

Supplementary Table 2: Mixing times used for determination of kex according to Eqn. 4.

#### Page 5:

**Supplementary Figure 2**: Representative UV melting curves for parent duplex 1-2 and lesion duplex 10x0-2 at 10.5  $\mu$ M duplex.

**Supplementary Table 3**: Change in enthalpy, entropy, and free energy of DNA duplex formation for the parent and 80xoG lesion duplexes.

#### Page 6:

**Supplementary Figure 3**: 2D NOESY spectrum of parent duplex **1-2** measured in D<sub>2</sub>O. This region includes H8, H6, and H2 aromatic proton ( $\omega$ 2) crosspeaks with sugar H1' and cytosine base H5 protons ( $\omega$ 1). The spectrum is annotated with assignments and full NOE walks along each strand, with each strand shown in a different color (black or yellow) for clarity.

#### Page 7:

**Supplementary Figure 4**: 2D NOESY spectrum of lesion duplex **10x0-2** measured in 100% D<sub>2</sub>O. This region includes H8, H6, and H2 aromatic proton ( $\omega$ 2) crosspeaks with sugar H1' and cytosine base H5 protons ( $\omega$ 1). The spectrum is annotated with assignments and full NOE walks along each strand.

#### Page 8:

**Supplementary Figure 5**: 2D NOESY spectra of parent (red) and lesion (blue) duplexes overlayed. The spectrum is annotated with assignments and full NOE walks along each strand;

indicated assignments correspond directly to the parent strand. Note the disappearance of the  $G_8$  aromatic proton resonance and significant movement of the  $A_7$  and  $A_9$  proton resonances in the **1-oxo** strand relative to the parent strand **1**.

#### Page 9-12:

**Supplementary Table 4**: Chemical shift assignments for base and sugar protons on the parent and lesion duplexes. Note that for the purposes of brevity in comparison of lesion and parent duplexes, only those H2', H2", H3', and cytosine amino proton resonances that show significant movement ( $\geq 0.02$  ppm) relative to the parent have been specifically included in this table; nonetheless, almost all of these could be identified in the spectrum except for those H3' that are swamped out by the resonance of residual water. H4' and H5' protons were not assigned.

#### Page 13:

**Supplementary Table 5:** Representative results of a fit to Eqn. 4 of the amplitudes of each peak as a function of mixing time. The results for 100 mM total glycine are shown here. The results of these fits of individual peaks were then used to seed a simultaneous fit of all peaks and spectra, yielding the refined values in Supplementary Table 6.

**Supplementary Table 6**: Representative results of a simultaneous, multiparameter non-linear least-squares fit of a set of Lorentzian peaks to twenty-two spectra. This second fit was used to refine the results of Table 5 to deconvolute overlapping peaks and account for small peak volumes at some time points. The fit was implemented in Matlab using the *nlinfit* function. Each of the peaks was modeled using 5 free parameters (chemical shift, linewidth,  $I_{z.eq}$ ,  $R_{1i}$  and  $k_{ex}$ ). The results for 100 mM total glycine are shown here.

**Supplementary Figure 6**: Representative results of the mulitparameter Matlab fit to a set of spectra. The first of the 22 spectra in the set is shown here, corresponding to a mixing time of 520 µs as measured for the 100 mM total glycine sample. The residuals of the fit are shown in the lower panel. The data points are colored blue, and the fit spectrum is colored red. The peaks are numbered from the most downfield to upfield, as indicated above each with a green dot, corresponding to the numbering in Supplementary Tables 5 and 6.

#### Page 14:

**Supplementary Figure 7:** Exchange rate of DNA imino protons in parent duplex **1-2** are correlated with their exchange rates in the lesion duplex **10x0-2** over the whole range of glycine concentrations tested. The reference line demonstrates a perfect 1:1 correspondence. The exchange rate of the 80x0G N1 imino proton is consistently ~1.4X higher than that of normal G8 in the parent duplex across this range of concentrations. The exchange rates of the other central guanines in the lesion duplex (G21, G6, G26, G12) are ~1.2X higher than that of the corresponding guanines in the parent duplex, but the thymine exchange rates are slightly lower.







Supplementary Table 1: Mixing times for measurement of water relaxation (R<sub>1w</sub>).

- 3 1.2 ms
- 4 0.4 s
- 5 10 s
- 6 1.6 s
- 7 2.8 s
- 8 3.6 s
- 9 15 s
- 10 0.8 s
- 11 3.2 s 12 2 s
- 12 2 S 13 4 s
- 13 43 14 1.2 s
- 15 2.4 s
- 16 6 s

Supplementary Table 2: Mixing times for measurement of imino exchange (kex).

- 17 520 μs
- 18 600 ms
- 19 10 ms
- 20 150 ms
- 21 1.5 ms
- 22 350 ms
- 23 500 ms
- 24 1ms
- 25 250 ms
- 26 1.5 s
- 27 3 ms 28 75 ms
- 29 300 ms
- 2) 500 ms
- 30 20 ms
- 31 1 S 32 400 ms
- 33 100 ms
- 34 750 ms
- 35 200 ms
- 36 450 ms
- 37 50 ms
- 38 2 s

## **Supplemental Figure 2**



**Supplemental Table 3**: Thermodynamic Data for the ssDNA ⇔ dsDNA Equilibrium

|                            | T <sub>m</sub> at 21 uM             | ∆H°                                  | ΔS°                                    | ∆G° at 25°C                               |
|----------------------------|-------------------------------------|--------------------------------------|----------------------------------------|-------------------------------------------|
|                            | duplex in °C                        | kcal/mol                             | cal/mol K                              | kcal/mol                                  |
| 1-2                        | 64.4                                | -126                                 | -349                                   | -21.4                                     |
|                            | ± 0.2                               | ± 4                                  | ± 10                                   | ± 0.7                                     |
| 10x0-2                     | 63.4                                | -124                                 | -345                                   | -21.0                                     |
|                            | ± 0.2                               | ± 5                                  | ± 13                                   | ± 0.9                                     |
| Difference<br>due to 80x0G | $\Delta T_{\rm m} = -1.0$ $\pm 0.3$ | $\Delta\Delta H^{\circ} = +2$<br>± 6 | $\Delta\Delta S^{\circ} = +4$ $\pm 16$ | $\Delta\Delta G^{\circ} = +0.4$ $\pm 1.1$ |

Supplementary Figure 3 Parent NOESY (Duplex 1-2)



Page 6



Supplementary Figure 5 NOESY Overlay Parent (red) and Lesion (blue) Duplexes



### Lesion Strand 1 or 1oxo

| BASE      | Number  | location | distance | ppm 1  | ppm 1oxo | delta ppm |
|-----------|---------|----------|----------|--------|----------|-----------|
| BASE PF   | ROTONS  |          |          |        |          |           |
| G8        | H8      | base     | 0        | 7.607  | N/A      |           |
| A9        | H8      | base     | 1        | 8.05   | 8.133    | -0.083    |
| A7        | H8      | base     | 1        | 8.018  | 8.14     | -0.122    |
| G6        | H8      | base     | 2        | 7.841  | 7.859    | -0.018    |
| C10       | H6      | base     | 2        | 7.197  | 7.218    | -0.021    |
| T11       | H6      | base     | 3        | 7.28   | 7.28     | 0.000     |
| C5        | H6      | base     | 3        | 7.379  | 7.376    | 0.003     |
| G12       | H8      | base     | 4        | 7.874  | 7.874    | 0.000     |
| T4        | H6      | base     | 4        | 7.174  | 7.17     | 0.004     |
| A3        | H8      | base     | 5        | 8.407  | 8.403    | 0.004     |
| T13       | H6      | base     | 5        | 7.175  | 7.173    | 0.002     |
| G14       | H8      | base     | 6        | 7.905  | 7.901    | 0.004     |
| C2        | H6      | base     | 6        | 7.629  | 7.628    | 0.001     |
| C15       | H6      | base     | 7        | 7.492  | 7.484    | 0.008     |
| C1        | H6      | base     | 7        | 7.77   | 7.767    | 0.003     |
|           |         |          |          |        |          |           |
| C10       | H5      | base     | 2        | 5.101  | 5.122    | -0.021    |
| C5        | H5      | base     | 3        | 5.566  | 5.556    | 0.010     |
| C2        | H5      | base     | 6        | 5.745  | 5.741    | 0.004     |
| C15       | H5      | base     | 7        | 5.508  | 5.497    | 0.011     |
| Т11       | 5043    | hase     | З        | 1 531  | 1 531    | 0 000     |
| T11<br>T4 | 5CH3    | hase     | 4        | 1 444  | 1 439    | 0.000     |
| T13       | 5CH3    | hase     | 5        | 1 45   | 1 447    | 0.003     |
| 115       | 56115   | buse     | 5        | 1.15   | 1.1.7    | 0.005     |
| G8/oxoG   | { imino | base     | 0        | 12.550 | 12.830   | -0.280    |
| G6        | imino   | base     | 2        | 12.660 | 12.720   | -0.060    |
| T11       | imino   | base     | 3        | 13.650 | 13.660   | -0.010    |
| G12       | imino   | base     | 4        | 12.440 | 12.450   | -0.010    |
| T4        | imino   | base     | 4        | 13.530 | 13.530   | 0.000     |
| T13       | imino   | base     | 5        | 13.680 | 13.680   | 0.000     |
| G14       | imino   | base     | 6        | 12.860 | 12.860   | 0.000     |

| Lesion Strand 1 or 1oxo |     |       |   |       |         |        |  |  |  |  |
|-------------------------|-----|-------|---|-------|---------|--------|--|--|--|--|
| SUGAR PROTONS           |     |       |   |       |         |        |  |  |  |  |
| G8                      | H1' | sugar | 0 | 5.459 | missing |        |  |  |  |  |
| A7                      | H1' | sugar | 1 | 5.963 | 6.243   | -0.280 |  |  |  |  |
| A9                      | H1' | sugar | 1 | 6.178 | 6.172   | 0.006  |  |  |  |  |
| G6                      | H1' | sugar | 2 | 5.391 | 5.323   | 0.068  |  |  |  |  |
| C10                     | H1' | sugar | 2 | 5.772 | 5.788   | -0.016 |  |  |  |  |
| T11                     | H1' | sugar | 3 | 5.771 | 5.768   | 0.003  |  |  |  |  |
| C5                      | H1' | sugar | 3 | 5.598 | 5.582   | 0.016  |  |  |  |  |
| T4                      | H1' | sugar | 4 | 5.893 | 5.888   | 0.005  |  |  |  |  |
| G12                     | H1' | sugar | 4 | 5.952 | 5.949   | 0.003  |  |  |  |  |
| T13                     | H1' | sugar | 5 | 5.827 | 5.823   | 0.004  |  |  |  |  |
| A3                      | H1' | sugar | 5 | 6.341 | 6.336   | 0.005  |  |  |  |  |
| G14                     | H1' | sugar | 6 | 5.95  | 5.942   | 0.008  |  |  |  |  |
| C2                      | H1' | sugar | 6 | 5.477 | 5.467   | 0.010  |  |  |  |  |
| C15                     | H1' | sugar | 7 | 6.211 | 6.204   | 0.007  |  |  |  |  |
| C1                      | H1' | sugar | 7 | 5.996 | 5.991   | 0.005  |  |  |  |  |
| G8                      | H2" | sugar | 0 | 2.649 | 3.156   | -0.507 |  |  |  |  |
| G8                      | H2' | sugar | 0 | 2.504 | 2.276   | 0.228  |  |  |  |  |
| A7                      | H2' | sugar | 1 | 2.596 | 2.498   | 0.098  |  |  |  |  |
| A7                      | H2" | sugar | 1 | 2.836 | 3.128   | -0.292 |  |  |  |  |
| A9                      | H2' | sugar | 1 | 2.622 | 2.617   | 0.005  |  |  |  |  |
| A9                      | H2" | sugar | 1 | 2.868 | 2.863   | 0.005  |  |  |  |  |
| G6                      | H2' | sugar | 2 | 2.701 | 2.699   | 0.002  |  |  |  |  |
| G6                      | H2" | sugar | 2 | 2.622 | 2.634   | -0.012 |  |  |  |  |
| oxo/G8                  | H3' | sugar | 0 | 4.975 | 5.088   | -0.113 |  |  |  |  |
| A9                      | H3' | sugar | 1 | 4.98  | 4.983   | -0.003 |  |  |  |  |
| A7                      | H3' | sugar | 1 | 5.028 | 5.014   | 0.014  |  |  |  |  |
| G6                      | H3' | sugar | 2 | 4.964 | 4.956   | 0.008  |  |  |  |  |

# Complementary Strand 2 (or 2 opposite 1oxo)

| BASE   | Number | location | distance | ppm 2  | ppm 2 (oxo) | delta ppm |
|--------|--------|----------|----------|--------|-------------|-----------|
| BASE P | ROTONS |          |          |        |             |           |
| C23    | H6     | base     | 0        | 7.569  | 7.573       | -0.004    |
| T24    | H6     | base     | 1        | 7.416  | 7.402       | 0.014     |
| T22    | H6     | base     | 1        | 7.195  | 7.177       | 0.018     |
| G21    | H8     | base     | 2        | 7.544  | 7.544       | 0.000     |
| C25    | H6     | base     | 2        | 7.451  | 7.454       | -0.003    |
| G26    | H8     | base     | 3        | 7.908  | 7.908       | 0.000     |
| A20    | H8     | base     | 3        | 8.14   | 8.138       | 0.002     |
| A20    | H2     | base     | 3        | 7.445  | 7.448       | -0.003    |
| A27    | H8     | base     | 4        | 8.187  | 8.189       | -0.002    |
| C19    | H6     | base     | 4        | 7.253  | 7.25        | 0.003     |
| A18    | H8     | base     | 5        | 8.281  | 8.278       | 0.003     |
| T28    | H6     | base     | 5        | 7.047  | 7.044       | 0.003     |
| G29    | H8     | base     | 6        | 7.804  | 7.799       | 0.005     |
| C17    | H6     | base     | 6        | 7.471  | 7.468       | 0.003     |
| G30    | H8     | base     | 7        | 7.796  | 7.792       | 0.004     |
| G16    | H8     | base     | 7        | 7.966  | 7.963       | 0.003     |
| C23    | H5     | base     | 0        | 5.525  | 5.544       | -0.019    |
| C25    | H5     | base     | 2        | 5.636  | 5.641       | -0.005    |
| C19    | H5     | base     | 4        | 5.324  | 5.324       | 0.000     |
| C17    | H5     | base     | 6        | 5.463  | 5.456       | 0.007     |
| T74    | 5043   | haco     | 1        | 1 606  | 1 555       | 0.051     |
| T27    | 5CH3   | base     | 1        | 1 218  | 1 211       | 0.001     |
| T28    | 5CH3   | base     | 5        | 1 396  | 1 394       | 0.007     |
| 120    | 56115  | buse     | 5        | 11000  | 1100        | 0.002     |
| T22    | imino  | base     | 1        | 13.580 | 13.590      | -0.010    |
| T24    | imino  | base     | 1        | 13.720 | 13.630      | 0.090     |
| G21    | imino  | base     | 2        | 12.720 | 12.750      | -0.030    |
| G26    | imino  | base     | 3        | 12.580 | 12.600      | -0.020    |
| T28    | imino  | base     | 5        | 13.640 | 13.630      | 0.010     |
| G29    | imino  | base     | 6        | 12.860 | 12.860      | 0.000     |
|        |        |          |          |        |             |           |
| C23    | N4b    | base     | 0        | 6.921  | 6.864       | 0.057     |
| C23    | N4a    | base     | 0        | 8.242  | 8.357       | -0.115    |

|               | Comp | lementary St | rand 2 ( | or 2 opposit | e 10xo) |        |  |  |  |  |
|---------------|------|--------------|----------|--------------|---------|--------|--|--|--|--|
| SUGAR PROTONS |      |              |          |              |         |        |  |  |  |  |
| C23           | H1'  | sugar        | 0        | 5.992        | 5.974   | 0.018  |  |  |  |  |
| T24           | H1'  | sugar        | 1        | 6.006        | 6.015   | -0.009 |  |  |  |  |
| T22           | H1'  | sugar        | 1        | 5.556        | 5.563   | -0.007 |  |  |  |  |
| G21           | H1'  | sugar        | 2        | 5.832        | 5.829   | 0.003  |  |  |  |  |
| C25           | H1'  | sugar        | 2        | 5.512        | 5.495   | 0.017  |  |  |  |  |
| G26           | H1'  | sugar        | 3        | 5.623        | 5.611   | 0.012  |  |  |  |  |
| A20           | H1'  | sugar        | 3        | 6.037        | 6.028   | 0.009  |  |  |  |  |
| C19           | H1'  | sugar        | 4        | 5.436        | 5.427   | 0.009  |  |  |  |  |
| A27           | H1'  | sugar        | 4        | 6.195        | 6.195   | 0.000  |  |  |  |  |
| T28           | H1'  | sugar        | 5        | 5.667        | 5.662   | 0.005  |  |  |  |  |
| A18           | H1'  | sugar        | 5        | 6.222        | 6.216   | 0.006  |  |  |  |  |
| G29           | H1'  | sugar        | 6        | 5.643        | 5.636   | 0.007  |  |  |  |  |
| C17           | H1'  | sugar        | 6        | 5.646        | 5.639   | 0.007  |  |  |  |  |
| G30           | H1'  | sugar        | 7        | 6.158        | 6.152   | 0.006  |  |  |  |  |
| G16           | H1'  | sugar        | 7        | 5.985        | 5.988   | -0.003 |  |  |  |  |

# Supplementary Table 5

| #Pk | ppm    | width | Amp | err  | R1i   | err  | kex  | err  |
|-----|--------|-------|-----|------|-------|------|------|------|
| 1   | 13.506 | 0.01  | 3.8 | 0.03 | 6.38  | 0.27 | 2.41 | 0.09 |
| 2   | 13.463 | 0.016 | 7   | 0.03 | 5.05  | 0.19 | 1.31 | 0.04 |
| 3   | 13.411 | 0.01  | 3.5 | 0.02 | 7.46  | 0.22 | 3.07 | 0.08 |
| 4   | 13.349 | 0.015 | 3   | 0.02 | 6.57  | 0.26 | 2.28 | 0.08 |
| 5   | 12.685 | 0.012 | 4.5 | 0.03 | 11.98 | 0.26 | 6.27 | 0.13 |
| 6   | 12.654 | 0.015 | 3.4 | 0.03 | 10.94 | 0.51 | 3.41 | 0.15 |
| 7   | 12.576 | 0.01  | 2.8 | 0.03 | 7.18  | 0.53 | 1.77 | 0.12 |
| 8   | 12.544 | 0.014 | 3.1 | 0.02 | 12.09 | 0.79 | 2.51 | 0.16 |
| 9   | 12.426 | 0.013 | 2.4 | 0.03 | 10.41 | 0.91 | 2.33 | 0.20 |
| 10  | 12.275 | 0.012 | 2.3 | 0.02 | 9.24  | 0.71 | 2.27 | 0.17 |

# Supplementary Table 6

| #Pk | ppm    | err    | width  | err    | Intens. | err     | R1i   | err  | kex  | err  |
|-----|--------|--------|--------|--------|---------|---------|-------|------|------|------|
| 1   | 13.507 | 0.0001 | 0.0086 | 0.0001 | 0.08    | 0.00082 | 6.56  | 0.19 | 2.82 | 0.07 |
| 2   | 13.463 | 0.0001 | 0.0170 | 0.0001 | 0.355   | 0.0013  | 5.16  | 0.08 | 1.30 | 0.02 |
| 3   | 13.412 | 0.0001 | 0.0113 | 0.0001 | 0.098   | 0.001   | 8.44  | 0.23 | 3.61 | 0.09 |
| 4   | 13.349 | 0.0001 | 0.0163 | 0.0001 | 0.137   | 0.00095 | 7.03  | 0.2  | 2.36 | 0.06 |
| 5   | 12.686 | 0.0001 | 0.0113 | 0.0001 | 0.147   | 0.0014  | 13.33 | 0.2  | 7.38 | 0.10 |
| 6   | 12.654 | 0.0001 | 0.0153 | 0.0001 | 0.137   | 0.0015  | 12.1  | 0.46 | 3.30 | 0.12 |
| 7   | 12.577 | 0.0001 | 0.0089 | 0.0001 | 0.057   | 0.001   | 6.61  | 0.48 | 1.65 | 0.11 |
| 8   | 12.546 | 0.0001 | 0.0172 | 0.0002 | 0.142   | 0.0014  | 13.98 | 0.82 | 2.49 | 0.15 |
| 9   | 12.426 | 0.0001 | 0.0146 | 0.0001 | 0.099   | 0.00082 | 11.65 | 0.75 | 2.28 | 0.15 |
| 10  | 12.274 | 0.0001 | 0.0142 | 0.0001 | 0.096   | 0.00078 | 9.59  | 0.56 | 2.09 | 0.12 |

# Supplementary Figure 6



