"N-O Chemistry for Antibiotics: Discovery of N-Alkyl-N-(pyridin-2yl)hydroxylamine Scaffolds as Selective Antibacterial Agents Using Nitroso Diels-Alder and Ene Chemistry"

Supporting Information

Timothy A. Wencewicz, Baiyuan Yang, James R. Rudloff, Allen G. Oliver, and Marvin J. Miller^{*}

Department of Chemistry & Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556

Table of Contents

I.	Table of All Structures From This Work	Table S1; S2-S5.
II.	Table of All Biological Data From This Work	Table S2; S6-S12.
III.	Table of All Cell Lines From This Work	Table S3; S13.
IV.	Experimental Procedures and Compound Characterization Data	S14-S33.
V.	Copies of ¹ H-NMR and ¹³ C-NMR Spectra	S34-S153.
VI.	Copies of HPLC Chromatograms	S154-S169.
VII.	X-ray Diffraction Data Tables S4-S10; Figur	es S1-S2; S169-S175.
VIII.	References	S175-S176.

^{*}To whom correspondence should be addressed. M.J.M: phone, (574) 631-7571; fax, (574) 631 6652; email, mmiller1@nd.edu.

I. Table of All Structures From This Work

Table S1. Structures and antibacterial activity against Micrococcus luteus ATCC 10240 in the agar diffusion assay.									
Library ^a	Structure ^b	Comp. ^c	n	syn/anti ^d	R ₁	\mathbf{R}_2	Ref. ^e	Active? ^f	
		S1	-	-	Bn	-	4	No	
		S2	-	-	Ph	-	4	No	
		S 3	-	-	t-BuO	-	4	No	
	0	64			BocHN		4	NL	
		54	-	-		-	4	INO	
	R ₁ NHOH				BocHN ्रे				
		95					4	No	
		33	-	-	\rightarrow	-	4	NO	
		8	-	-	6-Me	-	4	No	
		10	-	-	Н	-	4	nt	
A		17a	-	-	6-Et	-	4	No	
Nitrosos &		17b	-	-	4-Me	-	4	No	
Precursors		17c	-	-	3-Me	-	4	Yes ^g	
		17d	-	-	5-Cl	-	4	No	
	N N	17e	-	-	5-Br	-	4	No	
		17f	-	-	5-1	-	4	No	
		17g	-	-	3-CI-5-CI	-	4	No	
		17h	-	-	5-Br-6-Me	-	4	No	
		17i	-	-	3-CI-5-CF ₃	-	4	No	
		13	-	-	-	-	4	No	
	N N N								
							4	Ŋ	
	O N O	15	-	-	-	-	4	No	
		S6	1		Bn		4	No	
	$O (N^n)$	<u> </u>	2	_	Bn	_	4	No	
		<u> </u>	-	-	Ph	-	4	No	
	(±)	<u> </u>	1	_	t-BuO	-	4	No	
		6	2	_	5-Br	-	1.4	No	
В	(N) n	S10	1	_	5-Cl	-	1.4	No	
Diels-Alder	$R_1 \frac{ }{ } = 0$	S11	1	_	5-Br	-	1.4	No	
Cycloadducts	$N N (\pm)$	S12	1	-	6-Me	-	1,4	No	
		S13	2	-	6-Me	-	1,4	No	
							· · · ·		
		S14					1.4	No	
	N N	514	-	-	-	-	1,4	NO	
	(±)								
C	O^{n}	S15	1	anti	Bn	Me	3,4	No	
Ring Opened	Ŭ (<u>S16</u>	1	anti	Bn	<i>t</i> -Bu	3,4	No	
Compounds	$R_1 N^{\bullet}$	<u>\$17</u>	1	anti	<i>t</i> -BuO	Me	3,4	No	
	(±) UH	S18	2	anti	Bn	Me	3,4	No	
		S19	1	anti	<i>t</i> -BuO	Me	3,4	No	
	1 [№] [№] /n (±) ОН	S20	2	anti	Bn	Me	3,4	No	
	, , OR ₂	7a	2	anti	5-Br	Me	1.4	Yes	
		S21	1	syn/anti	5-Cl	<i>i</i> -Pr	1.4	Yes	
	N N	S22	1	syn/anti	5-Cl	<i>t</i> -Bu	1.4	Yes	
	(±) OH	S23	1	syn	5-Br	Н	1,4	Yes	
				-					

		S24	1	anti	5-Br	Н	1,4	Yes
		S25	1	syn/anti	5-Br	Me	1,4	Yes
		S26	1	syn/anti	5-Br	<i>i</i> -Pr	1,4	Yes
		S27	2	anti	5-Br	<i>i</i> -Pr	1,4	Yes
		S28	1	syn/anti	5-Br	<i>t</i> -Bu	1,4	Yes
		S29	2	anti	5-Br	t-Bu	1,4	Yes
		S30	2	anti	5-Br	allyl	1,4	Yes
		S31	1	syn/anti	6-Me	Me	1,4	Yes
		S32	1	syn/anti	6-Me	<i>i</i> -Pr	1,4	Yes
		S33	2	anti	6-Me	<i>i</i> -Pr	1,4	Yes
		S34	1	anti	6-Me	t-Bu	1,4	Yes
		S35	2	anti	6-Me	t-Bu	1,4	Yes
		7b	2	anti	5-Br	Me	1,4	Yes
		S36	1	anti	5-C1	Me	1,4	Yes
		S 37	1	anti	5-Cl	t-Bu	1.4	Yes
		S38	1	anti	5-Br	Н	1.4	Yes
		S39	2	anti	5-Br	Н	1.4	Yes
		S40	1	anti	5-Br	Me	1.4	Yes
	R ₂ O	S41	1	anti	5-Br	<i>i</i> -Pr	1,4	Yes
	$R_1 $	S42	2	anti	5-Br	<i>i</i> -Pr	1,4	Yes
	N N	S43	2	anti	5-Br	<i>t</i> -Bu	1,4	Yes
	(±) OH	S44	2	anti	5-Br	Bn	1.4	Yes
		S45	2	anti	5-Br	allvl	1.4	Yes
		S46	1	anti	6-Me	Me	1.4	Yes
		<i>a</i> 1-	_	anti $+ 1.4$ -				
		S4 7	2	anti isomer	6-Me	Me	1,4	Yes
		S48	1	anti	6-Me	<i>i</i> -Pr	1,4	Yes
		S49	2	anti	6-Me	<i>i</i> -Pr	1,4	Yes
		S50	2	anti	6-Me	t-Bu	1,4	Yes
		S51	-	syn/anti	-	Me	1,4	No
	(±) OH	S52	-	syn/anti	-	^t Bu	1,4	No
	ON N (±) OH O'Bu	S53	-	anti	-	-	1,4	No
D Ene Products	BocHN (±) O	854	-	-	-	-		No
	$R_2 \frac{1}{l}$ R_1	9	-	-	soor soor	6-Me	2,4, This Work	Yes
	`N´ `N'`` (±) OH	12	-	-		Н	2,4	Yes
		18a	-	-		6-Et	This Work	Yes
		18b	-	-		4-Me	This Work	Yes
		18c	-	-		3-Me	This Work	Yes
		18d	-	-		5-Cl	4, This Work	Yes
		18e	-	-		5-Br	2,4, This Work	Yes
		18f	-	-		5-I	This Work	Yes

			1			2 C1		
		18g	-	-		5-Cl-	This Work	Yes
		18h	-	-		5-Br- 6-Me	This Work	Yes
		18i	-	-		3-Cl- 5-CF ₃	This Work	No
		S55	-	-	OH No.	5-Br	2,4	Yes
		11a	-	-	Y	Н	2,4, This Work	Yes
		\$56	-	-		5-Br	2.4	Yes
		409	- I		о́н	6-Ft	This Work	Ves
			-		332	H	This Work	Yes
		19b	-	-	Ph	Н	This Work	Yes
		19c	-	-	, JAN	Н	This Work	Yes
	N N OH	14	-	-	-	-	This Work	Yes
		16	-	-	545 M	-	2,4	Yes
		S57	-	-	5-3-3-5 5-3-5-5	-	2,4	Yes
	N N ^R 1 (±) OH	S58	-	-	Love C	-	2,4	Yes
		S59	-	-	SY Ph	-	2,4	Yes
		30 a	-	-	Me	-	This Work	No
		30b	-	-	Pr	-	This Work	No
		30c	-	-	<i>n</i> -hexyl	-	This Work	No
		30d	-	-	Bn	-	This Work	No
	└└ _N ╱Ѻ₽МВ	30e	-	-	$(CH_2)_2Ph$	-	This Work	No
		30f	-	-	allyl	_	This Work	No
Е		30g	-	-	3-(PhO)Bn	_	This Work	No
O-Alkyl-		30h	-	-	4-(CF ₃)Bn	-	This Work	No
Hydroxyl-		30i	-	-	4-(CF ₃ O)Bn	-	This Work	No
Amines	OPMB N.Bn	36	-	-	-	-	This Work	Yes
	Bn N OPMB	38	-	-	-	-	This Work	No
F		31 a	-	-	Me	-	This Work	Yes
Buchwald	DH L	31b	-	-	Pr	-	This Work	No
Hydroxyl-	N N	31c	-	-	<i>n</i> -hexyl	-	This Work	Yes
Amines	R ₁	31d	-	-	Bn	-	This Work	Yes

						r		
		31e	-	-	$(CH_2)_2Ph$	-	This Work	Yes
		31f	-	-	allyl	-	This Work	Yes
		31g	-	-	3-(PhO)Bn	-	This Work	No
		31h	-	-	4-(CF ₃)Bn	-	This Work	Yes
		31i	-	-	4-(CF ₃ O)Bn	-	This Work	Yes
	OH N Bn	37	-	-	-	-	This Work	Yes
\mathbf{G}	$R_2 \frac{1}{11}$	33	-	-	Bn	Н	This Work	Yes
Hydroxyl- Amines	N N OAC R ₁	35	-	-	,,,OMe	Br	This Work	Yes
Н		32	-	-	Bn	Н	This Work	No
N-O Reduced Compounds		34	-	-	,,,OMe	Br	This Work	No
I Homologated Hydroxyl- Amines	OH N Bn	39	-	-	-	-	This Work	No

^aCompound library is organized by types of structures (A–I) rather than compound numbers.

^b(\pm) denotes a racemic compound (all compounds were tested in racemic form).

^cCompounds only appearing in the supporting information are denoted with a capital **S** before the number and are numbered based on chronological appearance in Table S1. If a compound was used in main text, the original compound number assigned in the main text was retained throughout the supporting information.

^dSome compounds, as indicated in the table, were isolated, characterized, and tested as a mixture of syn/anti diastereomeric mixtures of isomers.

^eReference contains disclosure of the original synthesis of the compound and spectral characterization.

^fIndicates antibacterial activity against *Micrococcus luteus* ATCC 10240 in the agar diffusion antibacterial susceptibility assay. "Yes" denotes that the compound gave a growth inhibition zone diameter of >15 mm; "No" denotes that the compound gave a growth inhibition zone diameter of \leq 15 mm; "nt" denotes that the compound was not tested. All of the tabulated biological data is given in Table S2.

^gThis was the only nitroso compound with moderate activity. See Table S2.

II. Table of All Biological Data From This Work

Table S2. Complete list of biological data for compounds used in this study. Diameters of growth inhibition zones (mm) in the agar diffusion antibacterial susceptibility assay.^a Minimum inhibitory concentrations (MIC₉₀; μ M) in the broth microdilution antibacterial susceptibility assay.^b Inhibitory concentrations (IC₅₀; μ M) and percent growth inhibition values (compound concentration of 20 μ M) against cancer cell lines.^c

Comp ^d	(diameter of g	Gram-pos owth inhibition in par	sitive Bacteria n zone in mm; MI rentheses)	C ₉₀ in μM given	Gram- (diameter of gro	negative Bacteria	Yeast (diameter of zone in mm)	Cancer Cell Lines (% Inhibition @ 20 μM; IC ₅₀ in μM given in parentheses)			
	<i>M. luteus</i> ATCC 10240	S. aureus SG511	<i>E. faecalis</i> ATCC 49532	<i>M. vaccae</i> IMET 10670	P. aeruginosa 799/WT	P. aeruginosa 799/61	<i>E. coli</i> X580	S. salmonicolor 549	MCF7	PC3	HeLa
6	0	0	0	0	nt	0	0	nt	nt	nt	nt
7a	34 (4.0 μM)	12 (>128μM)	16P (>128 μM)	17p	nt	0	0	nt	33%	32%	25%
7b	34 (4.0 μM)	18p (≥128 μM)	20P (>128 μM)	22s	nt	0	0	nt	nt	nt	nt
8	0	0	0	0	0	0	0	nt	nt	nt	nt
9	48 (4.0 μM)	12 (>128μM)	15P (>128 μM)	20P	nt	0	0	nt	11%	24%	0%
10	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt
11a	35 (8.0 μM)	19 (64 μM)	20P (>128 μM)	16p	nt	0	18h	nt	57%	35%	31%
12	31 (8.0 μM)	18 (128 μM)	22P (>128 μM)	nt	nt	nt	nt	nt	50%	14%	25%
13	9.5	0	0	nt	nt	nt	nt	nt	nt	nt	nt
14	31 (8.0 μM)	13 (128 μM)	13P/h (>128 μM)	nt	nt	nt	nt	nt	76% (15μM)	17%	41%

15	0	0	0	0	0	0	0	nt	nt	nt	nt
16	21 (64 μM)	0 (>128 μM)	13P (>128 μM)	0	nt	nt	nt	nt	10%	28%	34%
17a	14	11	0	nt	nt	nt	nt	nt	nt	nt	nt
17b	14	9.5	12h	nt	nt	nt	nt	nt	nt	nt	nt
17c	17	15	116p	nt	nt	nt	nt	nt	nt	nt	nt
17d	11.5p	0	nt	9.5	nt	nt	nt	nt	nt	nt	nt
17e	11/13p	9.5/12P	nt	10	nt	nt	nt	nt	nt	nt	nt
17f	14	11	9.5	nt	nt	nt	nt	nt	nt	nt	nt
17g	9.5	0	0	nt	nt	nt	nt	nt	nt	nt	nt
17h	15	12	0	nt	nt	nt	nt	nt	nt	nt	nt
17i	0	0	17	nt	nt	nt	nt	nt	nt	nt	nt
18 a	52 (2.0 μM)	11/20h (>128 μM)	22P/h (>128 μM)	nt	nt	nt	nt	nt	22%	11%	13%
18b	29 (4.0 μM)	20 (128 μM)	22P (>128 μM)	nt	nt	nt	nt	nt	74% (12μM)	17%	37%
18c	25 (16 μM)	10 (>128 μM)	19P/h (>128 μM)	nt	nt	nt	nt	nt	nt	nt	nt
18d	40 (2.0 μM)	18 (128 μM)	15/21P (≥128 μM)	nt	nt	nt	nt	nt	68% (14μM)	0%	18%
18e	35 (4.0 μM)	17P (>128 μM)	19P (>128 μM)	26s	nt	nt	nt	nt	70% (10µM)	12%	19%
18f	38 (2.0 μM)	12 (>128 μM)	19P/h (>128 μM)	nt	nt	nt	nt	nt	75% (8 μM)	17%	15%
18g	27 (16 μM)	0 (>128 μM)	14P (>128 μM)	nt	nt	nt	nt	nt	29%	20%	24%

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	18h	35 (4.0 μM)	13 (>128 μM)	12P (>128 μM)	nt	nt	nt	nt	nt	19%	0%	21%
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	18i	15 (128 μM)	0 (>128 μM)	13P (>128 μM)	nt	nt	nt	nt	nt	20%	13%	30%
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	19a	33 (4.0 μM)	15 (128 μM)	18P (>128 μM)	nt	nt	nt	nt	nt	63%	20%	3%
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	19b	20 (64 μM)	19 (32 μM)	18P (>128 μM)	nt	nt	nt	nt	nt	nt	nt	nt
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	19c	30 (16 μM)	15p (128 μM)	16P (>128 μM)	nt	nt	nt	nt	nt	49%	24%	37%
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	30a	0	0	0	0	nt	nt	nt	nt	nt	nt	nt
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	30b	0	0	0	nt	nt	nt	nt	nt	nt	nt	nt
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	30c	13P/h	0	0	nt	nt	nt	nt	nt	nt	nt	nt
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	30d	0 (>128 μM)	0 (>128 μM)	0 (>128 μM)	nt	nt	nt	nt	nt	nt	nt	nt
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	30e	0	0	0	nt	nt	nt	nt	nt	nt	nt	nt
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	30f	0	0	0	nt	nt	nt	nt	nt	nt	nt	nt
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	30g	0	0	0	nt	nt	nt	nt	nt	nt	nt	nt
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	30h	14P	0	0	nt	nt	nt	nt	nt	nt	nt	nt
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	30i	14P	0	0	nt	nt	nt	nt	nt	nt	nt	nt
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	31 a	18p/24P (≥128 μM)	14h (>128 μM)	11P/h (>128 μM)	nt	nt	nt	nt	nt	90% (17μM)	63% (15μM)	97% (17μM)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	31b	13p (>128 μM)	0 (>128 μM)	0 (>128 μM)	nt	nt	nt	nt	nt	nt	nt	nt
	31c	15 (128 μM)	17p (>128 μM)	16P (>128 μM)	nt	nt	nt	nt	nt	nt	nt	nt

31d	24 (64 μM)	18 (128 μM)	20P (>128 μM)	15	0	0	0	nt	0%	0%	10%
31e	16 (128 μM)	14h (>128 μM)	15 (>128 μM)	nt	nt	nt	nt	nt	nt	nt	nt
31f	14 (>128 μM)	0 (>128 μM)	12P (>128 μM)	11P	0	0	0	nt	nt	nt	nt
31g	12p/P (>128 μM)	13 (>128 μM)	0 (>128 μM)	14	0	0	12	nt	nt	nt	nt
31h	16 (128 μM)	15s (>128 μM)	15 (>128 μM)	nt	nt	nt	nt	nt	nt	nt	nt
31i	17/21h (128 μM)	14h (>128 μM)	15P (>128 μM)	nt	nt	nt	nt	nt	nt	nt	nt
32	0 (>128 μM)	0 (>128 μM)	0 (>128 μM)	0	0	0	0	nt	nt	nt	nt
33	20 (128 μM)	12 (>128 μM)	11P (>128 μM)	0	0	0	0	nt	nt	nt	nt
34	0 (>128 μM)	0 (>128 μM)	0 (>128 μM)	0	nt	nt	nt	nt	nt	nt	nt
35	22 (32 μM)	0 (>128 μM)	0 (>128 μM)	0	nt	0	0	nt	nt	nt	nt
36	24	15	0	23	0	11P	0	nt	nt	nt	nt
37	15p (≥128 μM)	16p (>128 μM)	0 (>128 μM)	12P/h	0	13P	0	nt	nt	nt	nt
38	14P	13	0	nt	nt	nt	nt	nt	nt	nt	nt
39	0 (>128 μM)	0 (>128 μM)	0 (>128 μM)	0	0	0	0	nt	nt	nt	nt

40	31	18P	19.5P								
40a	(2.0 µM)	(>128 µM)	(>128 µM)	nt	nt	nt	nt	nt	nt	nt	nt
S1	0	0	0	0	0	0	0	nt	nt	nt	nt
S2	0	0	0	nt	nt	nt	nt	nt	nt	nt	nt
S 3	0	0	0	0	0	0	0	nt	nt	nt	nt
S4	0	0	0	0	0	0	0	nt	nt	nt	nt
S5	0	0	0	0	0	0	0	nt	nt	nt	nt
S6	0	0	nt	0	nt						
S7	0	0	nt	0	nt						
S8	0	0	0	nt	nt	nt	nt	nt	nt	nt	nt
S9	0	0	nt	0	nt						
S10	11/15p/17P	10/15P	nt	12h	nt						
S11	15.5	0	nt	0	nt	0	0	nt	nt	nt	nt
S12	17P	9.5/11P	nt	0	nt	0	0	nt	nt	nt	nt
S13	0	0	nt	0	nt						
S14	0	0	nt	0	nt						
S15	0	0	nt	0	nt						
S16	0	0	nt	0	nt						
S17	0	0	nt	0	nt						
S18	12h	0	nt	15P/h	nt						
S19	0	0	nt	0	nt						
S20	0	0	nt	0	nt						
S21	29	10P	nt	14p	nt						
S22	28	12p	nt	14p	nt						
S23	25.5	9.5p	nt	0	nt						
S24	26.5	0	nt	0	nt						

S25	30	11/12p	nt	15p/18P	nt	0	0	nt	nt	nt	nt
S26	27	12.5p	nt	15p	nt						
S27	23	0	nt	15P	nt						
S28	25	12p	nt	14p	nt						
S29	25	12h	nt	15P/h	nt						
S30	20	0	nt	0	nt						
S31	26	19h	nt	0	nt	0	0	nt	nt	nt	nt
S32	27.5	0	nt	12h	nt						
S33	19	12P	nt	0	nt						
S34	26.5	11p	nt	12P	nt						
S35	26.5	15P	nt	13h	nt						
S36	29	13p	nt	15p	nt						
S37	30	11	nt	14p	nt						
S38	28	0	nt	9.5	nt	0	0	nt	nt	nt	nt
S39	30	18	nt	16p	nt						
S40	31	13	nt	15p/18P	nt	0	0	nt	nt	nt	nt
S41	30	11P	nt	0	nt						
S42	27.5	10	nt	16p	nt						
S43	27	13/18P	nt	18p	nt						
S44	22	11	nt	12P	nt						
S45	22	9.5	nt	16P	nt						
S46	32	20P	nt	17p/P	nt	0	0	nt	nt	nt	nt
S47	29.5	20P	nt	13h	nt						
S48	30	0	nt	12h	nt						
S49	23	13P	nt	0	nt						
S50	27	16P	nt	15P/h	nt						

S51	0	0	nt	0	nt	nt	nt	nt	nt	nt	nt
S52	12p	0	nt	0	nt	nt	nt	nt	nt	nt	nt
S53	14	0	nt	0	nt	nt	nt	nt	nt	nt	nt
S54	0	0	0	nt	nt	nt	nt	nt	nt	nt	nt
S55	21	11.5	nt	15	nt	nt	nt	nt	nt	nt	nt
S56	29	11	nt	12/18p	nt	nt	nt	nt	nt	nt	nt
S57	23	0	nt	0	nt	nt	nt	nt	nt	nt	nt
S58	27	11	nt	0	nt	nt	nt	nt	nt	nt	nt
S59	17	9.5	nt	0	nt	nt	nt	nt	nt	nt	nt
cipro ^e	0 (8.0 μM)	26 (0.5 μM)	17 (2.0 μM)	30	35	45	40	nt	nt	nt	nt
TSA ^f	nt	nt	nt	nt	nt	nt	nt	nt	65% ^g	59% ^h	50% ⁱ

^aA description of the agar diffusion antibacterial susceptibility assay is given in the main text along with a referenced literature protocol. Performed at UND.

^bA description of the broth microdilution MIC₉₀ determination assay is given in the main text along with a referenced literature protocol. Performed at UND.

^cA description of this assay has been reported by our group previously.⁵ Performed at UND.

^dCompounds are shown in chronological order beginning with compounds featured in the main article text followed by compounds only shown in the supporting information.

^eCiprofloxacin; used as a broad spectrum antibacterial standard at a concentration of 5 µg/mL.

^fTrichostatin A; used as a broad spectrum anticancer standard at concentrations indicated below.

^gPercent inhibition at 25 nM TSA. ^hPercent inhibition at 200 nM TSA. ⁱPercent inhibition at 150 nM TSA.

nt: indicates compound was not tested

h: indicates only a hint of growth inhibition detectable

P: indicates a very unclear growth inhibition zone

p: indicates unclear growth inhibition zone

s: indicates single colonies in the growth inhibition zone

III. Table of All Cell Lines From This Work

Table S3. Origins and markers of cell lines used in this work.		
Cell Line	Marker	Origin/Reference
Gram-positive bacteria		
Micrococcus luteus ATCC 10240	wild type	American Type Culture Collection
Staphylococcus aureus SG511	wild type	Hans Knöll Institute, Jena, Germany
Enterococcus faecalis ATCC 49532	wild type	American Type Culture Collection
<i>Mycobacterium vaccae</i> IMET 10670	wild type	Hans Knöll Institute, Jena, Germany
<i>Bacillus subtilis</i> ATCC 6633	wild type	American Type Culture Collection
Staphylococcus aureus 134/94 (MRSA)	multidrug resistant	Witte et al. 1994 ⁶
Enterococcus faecalis 1528 (VRE)	vancomycin resistant	Klare et al. 1995 ⁷
Gram-negative bacteria		
Pseudomonas aeruginosa KW799/WT	wild Type	Zimmermann 1980 ⁸
Pseudomonas aeruginosa KW799/61	antibiotic susceptible penetration mutant	Zimmermann 1980 ⁸
<i>Escherichia coli</i> DC0	wild type	Richmond et al. 1976 ⁹
Escherichia coli DC2	antibiotic susceptible penetration mutant	Richmond et al. 1976 ⁹
Escherichia coli X580	β-Lactam Hypersensitive	Eli Lilly & Co.
Yeast		
Sporobolomyces		
salmonicolor	wild type	Hans Knöll Institute, Jena, Germany
549		
Cancer cell lines		
MCF-7	breast cancer	Soule et al. 1973 ¹⁰
PC-3	prostate cancer	Alimerah et al. 2006^{11}
HeLa	cervical cancer	Rahbari et al. 2009 ¹²

IV. Experimental Procedures and Compound Characterization Data

General Procedure A: Nitroso ene reaction.

This general procedure followed a method described previously.^{2,4} The nitroso compound (1.0 equiv) was slowly added to a solution of the olefin (2.0 equiv) in anhydrous CH_2Cl_2 (1.0 M with respect to olefin) at 0 °C (ice bath temp). Once complete (TLC analysis; hexanes/EtOAc), the CH_2Cl_2 was evaporated under reduced pressure and the crude product was purified by silica gel column chromatography (hexanes/EtOAc) to give the desired nitroso ene adduct.

General Procedure B: Alkylation of BocNHOPMB (27).

Sodium hydride (60% in mineral oil; 1.2 equiv) solid was added to a solution of BocNHOPMB (27, 1.0 equiv) in anhydrous DMF (0.3–0.4 M with respect to 27) at 0 °C (ice bath temp). After stirring for 30 min, the alkyl halide (1.2 equiv) was added dropwise. The mixture was warmed to rt and stirred overnight under dry argon. The mixture was then cooled to 0 °C (ice bath temp) and quenched by slow addition of 10% aqueous NaHCO₃. The DMF and H₂O were removed by high vacuum rotary evaporation (~1 mm Hg). The resulting material was partitioned between EtOAc and H₂O and the layers were separated. The H₂O was extracted at least once with EtOAc. All the EtOAc layers were combined, washed with brine, dried over anhydrous MgSO₄, filtered, and concentrated. The crude product was purified by silica gel column chromatography (hexanes/EtOAc) to give the desired *N*-alkylated product (28).

General Procedure C: *N*-Boc-deprotection of *N*-Boc-*N*-alkyl-*O*-(4-methoxybenzyl)hydroxylamines (28).

Anhydrous TFA added solution of N-Boc-N-alkyl-O-(4was to a the methoxybenzyl)hydroxylamine (28, 1.0 equiv) in anhydrous CH₂Cl₂ (20%-50% TFA v/v; ~0.3 M with respect to 28). After 15 min at rt, the TFA and CH₂Cl₂ were removed under vacuum and the resulting material was dissolved in CHCl₃ and washed with saturated aqueous NaHCO₃. The layers were separated and the CHCl₃ was dried over anhydrous MgSO₄, filtered, and concentrated. The crude product was purified by silica gel column chromatography (hexanes/EtOAc) to give the desired *N*-alkyl-*O*-(4-methoxybenzyl)hydroxylamine (29).

General Procedure D: Buchwald-Hartwig amination cross-coupling reactions.

This procedure followed the general method described previously by Buchwald and coworkers.¹³ The *N*-alkyl-*O*-(4-methoxybenzyl)hydroxylamine (**29**, 1.2 equiv), 2-bromopyridine (1.0 equiv), $Pd_2(dba)_3$ (0.02 equiv), (±)-BINAP (0.04 equiv), and NaO^tBu (1.4 equiv) were dissolved in

anhydrous toluene (0.13 M with respect to the hydroxylamine), respectively, in an oven-dried, argon-flushed Schlenk tube. The mixture was heated to 70 °C (oil bath temp) over the course of the reaction. Once complete (TLC; hexanes/EtOAc), the mixture was cooled to rt, diluted with Et_2O , and vacuum filtered through celite. The Et_2O was washed once with brine, dried over anhydrous MgSO₄, filtered, and concentrated. The crude product was purified by silica gel column chromatography (hexanes/EtOAc or hexanes/CH₂Cl₂) to give the desired *N*-alkyl-*O*-PMB-*N*-(pyridin-2-yl)hydroxylamine (**30**).

General Procedure E: Removal of *O*-PMB protecting group.

Anhydrous TFA was added slowly to a solution of the *N*-alkyl-*O*-PMB-*N*-(pyridin-2yl)hydroxylamine (**30**, 1.0 equiv) and triethylsilane (2.0 equiv) in anhydrous CH_2Cl_2 (30% TFA v/v; ~0.03 M with respect to **30**) and stirred at rt under dry argon. Once complete (TLC analysis; hexanes/EtOAc), the mixture was diluted with CH_2Cl_2 and washed with saturated aqueous NaHCO₃. The layers were separated and the CH_2Cl_2 was dried over anhydrous MgSO₄, filtered, and concentrated. The crude product was purified either by silica gel column chromatography (hexanes/EtOAc) or precipitation/trituration with cold pentanes to give the desired *N*-alkyl-*N*-(pyridin-2-yl)hydroxylamine (**31**).

(±) *N*-(6-Methylpyridin-2-yl)-*N*-(3-methylbut-3-en-2-yl)hydroxylamine (9). This compound was prepared according to general procedure **A** using 2-methyl-2-butene (62.4 mg, 0.89 mmol) and 5-methyl-2-nitrosopyridine **8** (53.7 mg, 0.44 mmol) in 1 mL of CH₂Cl₂ for 20 min. Purification (0.5 x 6 in silica gel column; 17%–25% EtOAc in hexanes) provided the desired ene adduct (9) in 38% yield as a white solid (32.1 mg, 0.17 mmol). Mp 106–108 °C; ¹H-NMR (600 MHz, DMSO-*d*₆) δ 8.64 (s, N–OH, 1 H), 7.47 (dd, *J* = 8.2, 7.0 Hz, 1 H), 6.84 (d, *J* = 8.2 Hz, 1 H), 6.57 (d, *J* = 6.5 Hz, 1 H), 5.09 (dd, *J* = 13.2, 6.5 Hz, 1 H), 4.87 (m, 1 H), 4.84 (m, 1 H), 2.32 (s, 3 H), 1.72 (s, 3 H), 1.15 (d, *J* = 6.5 Hz, 3 H); ¹³C-NMR (150 MHz, DMSO-*d*₆) δ 162.6, 155.3, 146.0, 137.8, 113.4, 111.6, 105.5, 58.1, 24.2, 21.5, 13.5; HRMS-ESI (m/z): [M+Na]⁺ calcd. for C₁₁H₁₆N₂NaO: 215.1155, found 215.1141; HPLC retention time 7.02 min.

(±) (*E*)-6-(*N*-Hydroxy-*N*-(pyridin-2-yl)amino)-3,7-dimethylocta-2,7-dien-1-ol (11a). This compound was prepared according to general procedure A using geraniol (137.0 mg, 0.89 mmol) and 2-nitrosopyridine 10 (47.6 mg, 0.44 mmol) in 1 mL of CH_2Cl_2 for 25 min. Purification (0.5 x 6 in silica gel column; 50% EtOAc in hexanes) provided the desired ene adduct (11a) as a white solid (58.9 mg, 0.22 mmol) and a mixture of 11a and 11b as a yellow solid (23.1 mg, 0.09

mmol) in 71% overall yield. Mp 108–110 °C; ¹H-NMR (600 MHz, DMSO- d_6) δ 8.81 (s, N–OH, 1 H), 8.10 (ddd, J = 4.8, 1.9, 0.9 Hz, 1 H), 7.57 (ddd, J = 9.1, 7.0, 1.7 Hz, 1 H), 7.01 (dt, J = 8.3, 1.0, Hz, 1 H), 6.66 (ddd, J = 7.2, 4.8, 0.9 Hz, 1 H), 5.25–5.21 (m, 1 H), 4.94 (t, J = 6.9 Hz, 1 H), 4.86–4.84 (m, 1 H), 4.80 (t, J = 1.6 Hz, 1 H), 4.40 (t, J = 5.3 Hz, –OH, 1 H), 3.91 (t, J = 5.7 Hz, 2 H), 2.03–1.97 (m, 1 H), 1.91–1.74 (m, 3 H), 1.66 (s, 3 H), 1.56 (s, 3 H); ¹³C-NMR (150 MHz, DMSO- d_6) δ 163.0, 146.9, 144.4, 137.4, 135.6, 125.1, 113.8, 112.6, 107.8, 62.6, 57.5, 27.2, 21.4, 16.1; HRMS-ESI (m/z): [M+H]⁺ calcd. for C₁₅H₂₃N₂O₂: 263.1754, found 263.1768; IR (neat): 3188.5 (br), 3113.2, 3070.2, 3022.4, 1664.7, 1500.9, 1470.1, 1296.4, 1017.0, 981.4 cm⁻¹; HPLC retention time 6.18 min.

(±) *N*-(**3-Methylbut-3-en-2-yl**)-*N*-(**pyridin-2-yl**)**hydroxylamine** (**12**). This compound was prepared according to general procedure **A** using 2-methyl-2-butene (62.4 mg, 0.89 mmol) and 2-nitrosopyridine **10** (47.6 mg, 0.44 mmol) in 1 mL of CH₂Cl₂ for 15 min. Purification (0.5 x 6 in silica gel column; 17%–25% EtOAc in hexanes) provided the desired ene adduct (**12**) in 48% yield as a tan solid (37.6 mg, 0.21 mmol). Mp 67–70 °C; ¹H-NMR (600 MHz, DMSO-*d*₆) δ 8.73 (s, N–OH, 1 H), 8.13 (ddd, *J* = 4.8, 1.9, 0.9 Hz, 1 H), 7.59 (ddd, *J* = 8.5, 7.3, 2.0 Hz, 1 H), 7.04 (dt, *J* = 8.5, 0.9 Hz, 1 H), 6.70 (ddd, *J* = 7.2, 4.8, 1.2 Hz, 1 H), 5.07 (q, *J* = 6.7 Hz, 1 H), 4.88–4.87 (m, 2 H), 1.73 (s, 3 H), 1.16 (d, *J* = 6.7 Hz, 3 H); ¹³C-NMR (150 MHz, DMSO-*d*₆) δ 162.9, 147.0, 145.8, 137.5, 114.2, 111.6, 108.5, 58.1, 21.4, 13.4; HRMS-ESI (m/z): [M+H]⁺ calcd. for C₁₀H₁₅N₂O: 179.1179, found 179.1200; HPLC retention time 5.86 min.

(±) *N*-(**3-Methylbut-3-en-2-yl**)-*N*-(**quinolin-2-yl**)**hydroxylamine** (**14**). This compound was prepared according to general procedure **A** using 2-methyl-2-butene (0.1 mL, 0.95 mmol) and 2-nitrosoquinoline **13** (50.0 mg, 0.32 mmol) in 2 mL of CH₂Cl₂ for 1 h. Purification (0.75 x 6 in silica gel column; 10%–30% EtOAc in hexanes) provided the desired ene adduct (**14**) in 53% yield as an orange solid (38.0 mg, 0.17 mmol). Mp 83–85 °C; ¹H-NMR (600 MHz, DMSO-*d*₆) δ 9.12 (br s, N–OH, 1 H), 8.11 (d, *J* = 8.8 Hz, 1 H), 7.74 (dd, *J* = 7.9, 1.2 Hz, 1 H), 7.63–7.59 (m, 1 H), 7.57–7.53 (m, 1 H), 7.36 (d, *J* = 9.1 Hz, 1 H), 7.27 (ddd, *J* = 7.9, 6.8, 1.2 Hz, 1 H), 5.37 (q, *J* = 6.7 Hz, 1 H), 4.90–4.88 (m, 1 H), 1.75 (s, 3 H), 1.27 (d, *J* = 6.7 Hz, 3 H); ¹³C-NMR (150 MHz, DMSO-*d*₆) δ 160.8, 146.7, 145.6, 137.4, 129.4, 127.5, 126.3, 123.3, 122.4, 111.8, 110.7, 57.3, 21.4, 14.0; HRMS-ESI (m/z): [M+H]⁺ calcd. for C₁₄H₁₇N₂O: 229.1335, found 229.1324; HPLC retention time 6.76 min.

(±) *N*-(5-Methylisoxazol-3-yl)-*N*-(3-methylbut-3-en-2-yl)hydroxylamine (16). This compound was prepared according to general procedure **A** using 2-methyl-2-butene (62.4 mg, 0.89 mmol) and 5-methyl-3-nitrosoisoxazole **15** (49.3 mg, 0.44 mmol) in 1 mL of CH₂Cl₂ for 10 min. Purification (0.5 x 6 in silica gel column; 17%–25% EtOAc in hexanes) provided the desired ene adduct (**16**) in 94% yield as a white solid (75.4 mg, 0.41 mmol). Mp 80–82 °C; ¹H-NMR (500 MHz, DMSO-*d*₆) δ 8.95 (s, N–OH, 1 H), 5.94 (m, 1 H), 4.91–4.88 (m, 1 H), 4.88–4.85 (m, 1 H), 4.09 (q, *J* = 6.5 Hz, 1 H), 2.28 (s, 3H), 1.75 (s, 3 H), 1.19 (d, *J* = 6.6 Hz, 1 H); ¹³C-NMR (125 MHz, DMSO-*d*₆) δ 169.6, 168.2, 144.5, 111.9, 94.6, 61.3, 20.7, 12.8, 11.7; HRMS-ESI (m/z): [M+H]⁺ calcd. for C₉H₁₅N₂O₂: 183.1128, found 183.1131; HPLC retention time 5.31 min.

(±) *N*-(3-Methylbut-3-en-2-yl)-*N*-(4-methylpyridin-2-yl)-hydroxylamine (18b). This compound was prepared according to general procedure **A** using 2-methyl-2-butene (0.42 mL, 3.97 mmol) and 4-methyl-2-nitrosopyridine **17b** (244.0 mg, 2.00 mmol) in 4 mL of CH₂Cl₂ for 30 min. Purification (1.25 x 6 in silica gel column; 10%–20% EtOAc in hexanes) provided the desired ene adduct (**18b**) in 47% yield as a light brown solid (180.0 mg, 0.94 mmol). Mp 97.5–98.5 °C; ¹H-NMR (600 MHz, DMSO- d_6) δ 8.69 (br s, N–OH, 1 H), 7.99 (d, *J* = 5.0 Hz, 1 H), 6.88 (dt, *J* = 1.5, 0.8 Hz, 1 H), 6.56–6.54 (m, 1 H), 5.05 (q, *J* = 6.7 Hz, 1 H), 4.87–4.86 (m, 1 H), 4.86–4.84 (m, 1 H), 2.24 (s, 3 H), 1.74–1.71 (m, 3 H), 1.14 (d, *J* = 6.7 Hz, 3 H); ¹³C-NMR (150 MHz, DMSO- d_6) δ 163.1, 147.9, 146.9, 146.0, 115.6, 111.6, 108.8, 58.3, 21.5, 20.9, 13.4; HRMS-ESI (m/z): [M+H]⁺ calcd. for C₁₁H₁₇N₂O: 193.1335, found 193.1326; HPLC retention time 6.35 min.

(±) *N*-(3-Methylbut-3-en-2-yl)-*N*-(3-methylpyridin-2-yl)-hydroxylamine (18c). This compound was prepared according to general procedure **A** using 2-methyl-2-butene (0.42 mL, 3.97 mmol) and 3-methyl-2-nitrosopyridine **17c** (244.0 mg, 2.00 mmol) in 4 mL of CH₂Cl₂ for 9 h. Purification (1.25 x 7 in silica gel column; 10%–30% EtOAc in hexanes) provided the desired ene adduct (**18c**) in 8% yield as a clear, colorless oil (30.0 mg, 0.16 mmol). ¹H-NMR (600 MHz, DMSO-*d*₆) δ 8.34 (br s, N–OH, 1 H), 8..09 (dd, *J* = 4.7, 1.5 Hz, 1 H), 7.48 (ddd, *J* = 7.3, 1.9, 0.7 Hz, 1 H), 6.94 (dd, *J* = 7.2, 4.8 Hz, 1 H), 4.89–4.87 (m, 1 H), 4.78–4.76 (m, 1 H), 4.43 (q, *J* = 6.5 Hz, 1 H), 2.31 (s, 3 H), 1.78 (s, 3 H), 1.16 (d, *J* = 6.5 Hz, 3 H); ¹³C-NMR (150 MHz, DMSO-*d*₆) δ 160.4, 147.1, 144.1, 139.3, 126.1, 118.9, 111.1, 60.2, 20.5, 18.8, 15.0; HRMS-ESI (m/z): [M+H]⁺ calcd. for C₁₁H₁₇N₂O: 193.1335, found 193.1335; HPLC retention time 6.75 min.

(±) *N*-(5-Chloropyridin-2-yl)-*N*-(3-methylbut-3-en-2-yl)hydroxylamine (18d). This compound was prepared according to general procedure **A** using 2-methyl-2-butene (0.22 mL, 2.08 mmol) and 5-chloro-2-nitrosopyridine **17d** (141.0 mg, 0.99 mmol) in 2 mL of CH₂Cl₂ for 30 min. Purification (0.75 x 6 in silica gel column; 5%–10% EtOAc in hexanes) provided the desired ene adduct (**18d**) in 59% yield as a tan solid (150.0 mg, 0.58 mmol). Mp 64.5–66 °C; ¹H-NMR (600 MHz, DMSO- d_6) δ 8.97 (s, N–OH, 1 H), 8.15 (dd, *J* = 2.6, 0.6 Hz, 1 H), 7.67 (dd, *J* = 8.8, 2.6 Hz, 1 H), 7.04 (dd, *J* = 8.9, 0.7 Hz, 1 H), 5.01 (q, *J* = 6.7 Hz, 1 H), 4.88–4.85 (m, 2 H), 1.71 (s, 3 H), 1.18 (d, *J* = 6.7 Hz, 3 H); ¹³C-NMR (150 MHz, DMSO- d_6) δ 161.4, 145.4, 145.2, 137.3, 120.0, 111.9, 109.8, 58.3, 21.3, 13.7; HRMS-ESI (m/z): [M+H]⁺ calcd. for C₁₀H₁₄ClN₂O: 213.0789, found 213.0806; HPLC retention time 7.99 min.

(±) *N*-(**5-Bromopyridin-2-yl**)-*N*-(**3-methylbut-3-en-2-yl**)hydroxylamine (18e). This compound was prepared according to general procedure **A** using 2-methyl-2-butene (62.4 mg, 0.89 mmol) and 5-bromo-2-nitrosopyridine **17e** (82.3 mg, 0.44 mmol) in 1 mL of CH₂Cl₂ for 10 min. Purification (0.5 x 6 in silica gel column; 17%–25% EtOAc in hexanes) provided the desired ene adduct (18e) in 64% yield as a faint yellow solid (72.4 mg, 0.28 mmol). Mp 65–67 °C; ¹H-NMR (600 MHz, DMSO-*d*₆) δ 8.98 (s, N–OH, 1 H), 8.20 (dd, *J* = 2.5, 0.7 Hz, 1 H), 7.76 (dd, *J* = 8.8, 2.6 Hz, 1 H), 6.99 (dd, *J* = 8.9, 0.7 Hz, 1 H), 5.01 (q, *J* = 6.7 Hz, 1 H), 4.87–4.85 (m, 2 H), 1.70 (s, 3 H), 1.18 (d, *J* = 6.7 Hz, 3 H); ¹³C-NMR (150 MHz, DMSO-*d*₆) δ 161.5, 147.4, 145.3, 139.9, 111.9, 110.4, 108.0, 58.2, 21.3, 13.7; HRMS-ESI (m/z): [M+H]⁺ calcd. for C₁₀H₁₄BrN₂O: 257.0284, found 257.0290; HPLC retention time 8.21 min.

(±) *N*-(5-Iodopyridin-2-yl)-*N*-(3-methylbut-3-en-2-yl)hydroxylamine (18f). This compound was prepared according to general procedure **A** using 2-methyl-2-butene (0.10 mL, 0.95 mmol) and 5-iodo-2-nitrosopyridine **17f** (68.0 mg, 0.29 mmol) in 2 mL of CH₂Cl₂ for 1 h. Purification (0.75 x 8 in silica gel column; 1%–15% EtOAc in hexanes) provided the desired ene adduct (**18f**) in 68% yield as a grey solid (60.0 mg, 0.20 mmol). Mp 88.5–90 °C; ¹H-NMR (600 MHz, DMSO-*d*₆) δ 8.95 (s, N–OH, 1 H), 8.29 (dd, *J* = 2.3, 0.6 Hz, 1 H), 7.86 (dd, *J* = 8.8, 2.3 Hz, 1 H), 6.91 (dd, *J* = 8.8, 0.6 Hz, 1 H), 5.00 (q, *J* = 6.7 Hz, 1 H), 4.87–4.85 (m, 2 H), 1.70 (s, 3 H), 1.17 (d, *J* = 6.7 Hz, 3 H); ¹³C-NMR (150 MHz, DMSO-*d*₆) δ 161.7, 152.3, 145.4, 145.1, 111.9, 111.1, 79.3, 58.1, 21.3, 13.7; HRMS-ESI (m/z): [M+H]⁺ calcd. for C₁₀H₁₄IN₂O: 305.0145, found 305.0145; HPLC retention time 8.56 min.

(±) *N*-(**3**,**5**-Dichloropyridin-2-yl)-*N*-(**3**-methylbut-**3**-en-2-yl)hydroxylamine (**18**g). This compound was prepared according to general procedure **A** using 2-methyl-2-butene (0.22 mL, 2.08 mmol) and 3,5-dichloro-2-nitrosopyridine **17g** (176.0 mg, 0.99 mmol) in 2 mL of CH₂Cl₂ for 1 h. Purification (0.75 x 6 in silica gel column; 5%–10% EtOAc in hexanes) provided the desired ene adduct (**18g**) in 67% yield as a clear, colorless oil (165.0 mg, 0.67 mmol). ¹H-NMR (600 MHz, DMSO-*d*₆) δ 8.82 (s, N–OH, 1 H), 8.29 (d, *J* = 2.3 Hz, 1 H), 8.05 (d, *J* = 2.3 Hz, 1 H), 4.87–4.85 (m, 1 H), 4.80–4.78 (m, 1 H), 4.41 (q, *J* = 6.6 Hz, 1 H), 1.77 (s, 3 H), 1.21 (d, *J* = 6.5 Hz, 3 H); ¹³C-NMR (150 MHz, DMSO-*d*₆) δ 157.0, 146.1, 143.6, 138.3, 124.7, 123.0, 111.7, 60.6, 20.6, 14.9; HRMS-ESI (m/z): [M+H]⁺ calcd. for C₁₀H₁₃Cl₂N₂O: 247.0399, found 247.0427; HPLC retention time 8.63 min.

(±) *N*-(**5-Bromo-6-methylpyridin-2-yl**)-*N*-(**3-methylbut-3-en-2-yl**)hydroxylamine (18h). This compound was prepared according to general procedure **A** using 2-methyl-2-butene (0.21 mL, 1.99 mmol) and 5-bromo-6-methyl-2-nitrosopyridine **17h** (201.0 mg, 1.00 mmol) in 2 mL of CH₂Cl₂ for 30 min. Purification (1 x 6 in silica gel column; 5%–20% EtOAc in hexanes) provided the desired ene adduct (**18h**) in 62% yield as a faint orange solid (169.0 mg, 0.62 mmol). Mp 65–67 °C; ¹H-NMR (500 MHz, DMSO-*d*₆) δ 8.90 (s, N–OH, 1 H), 7.71 (d, *J* = 8.8 Hz, 1 H), 6.81 (d, *J* = 8.8 Hz, 1 H), 5.04 (q, *J* = 6.5 Hz, 1 H), 4.88–4.86 (m, 1 H), 4.86–4.83 (m, 1 H), 2.42 (s, 3 H), 1.70 (s, 3 H), 1.17 (d, *J* = 6.8 Hz, 3 H); ¹³C-NMR (125 MHz, DMSO-*d*₆) δ 161.3, 153.2, 145.5, 141.0, 111.9, 108.3, 108.1, 58.2, 24.6, 21.4, 13.8; HRMS-ESI (m/z): [M+H]⁺ calcd. for C₁₁H₁₆BrN₂O: 271.0441; found, 271.0432; HPLC retention time 9.27 min.

(±) *N*-(**3**-Chloro-**5**-(trifluoromethyl)pyridin-2-yl)-*N*-(**3**-methylbut-**3**-en-**2**-yl)hydroxylamine (**18i**). This compound was prepared according to general procedure **A** using 2-methyl-2-butene (0.11 mL, 1.00 mmol) and 3-chloro-5-(trifluoromethyl)-2-nitrosopyridine **17i** (105.0 mg, 0.50 mmol) in 2 mL of CH₂Cl₂ for 45 min. Purification (0.75 x 8 in silica gel column; 5%–10% EtOAc in hexanes) provided the desired ene adduct (**18i**) in 75% yield as a faint purple solid (105.6 mg, 0.38 mmol). Mp 39–40 °C; ¹H-NMR (600 MHz, DMSO-*d*₆) δ 9.21 (s, 1 H), 8.52– 8.50 (m, 1 H), 8.13–8.10 (m, 1 H), 4.92–4.90 (m, 1 H), 4.88–4.86 (m, 1 H), 4.84 (q, *J* = 6.5 Hz, 1 H), 1.76 (s, 3 H), 1.27 (d, *J* = 6.8 Hz, 3 H); ¹³C-NMR (150 MHz, DMSO-*d*₆) δ 159.6, 145.2, 142.4 (q, *J*_{C-F} = 4.3 Hz), 136.6 (q, *J*_{C-F} = 3.2 Hz), 123.4 (q, *J*_{C-F} = 271.5 Hz), 118.8, 118.3 (q, *J*_{C-F} = 33.1 Hz), 112.1, 59.2, 21.1, 14.2; HRMS-ESI (m/z): [M+H]⁺ calcd. for C₁₁H₁₃ClF₃N₂O: 281.0663, found 281.0677; HPLC retention time 9.16 min. *N*-(2,3-Dimethylbut-3-en-2-yl)-*N*-(pyridin-2-yl)hydroxylamine (19a). This compound was prepared according to general procedure **A** using 2,3-dimethyl-2-butene (0.11 mL, 1.0 mmol) and 2-nitrosopyridine **10** (50.0 mg, 0.46 mmol) in 2 mL of CH₂Cl₂ for 30 min. Purification (0.5 x 6 in silica gel column; 5%–10% EtOAc in hexanes) provided the desired ene adduct (**19a**) in 71% yield as a brown oil (63.2 mg, 0.33 mmol). ¹H-NMR (600 MHz, DMSO-*d*₆) δ 8.94 (s, N–OH, 1 H), 8.09–8.06 (m, 1 H), 7.57 (ddd, J = 8.5, 7.3, 2.1 Hz, 1 H), 7.12 (dt, J = 8.2, 0.9 Hz, 1 H), 6.74 (ddd, J = 7.2, 4.8, 1.2 Hz, 1 H), 4.74–4.73 (m, 1 H), 4.63–4.61 (m, 1 H), 1.79 (d, J = 0.6 Hz, 3 H), 1.35 (s, 6 H); ¹³C-NMR (150 MHz, DMSO-*d*₆) δ 163.1, 152.3, 146.3, 136.9, 115.3, 111.6, 107.4, 65.8, 24.7, 20.0; HRMS-ESI (m/z): [M+H]⁺ calcd. for C₁₁H₁₇N₂O: 193.1335, found 193.1340; HPLC retention time 6.81 min.

N-(2-Phenylallyl)-*N*-(pyridin-2-yl)hydroxylamine (19b). This compound was prepared according to general procedure **A** using 1-(prop-1-en-2-yl)benzene (109.0 mg, 0.92 mmol) and 2-nitrosopyridine **10** (50.0 mg, 0.46 mmol) in 2 mL of CH₂Cl₂ for 3 h. Purification (0.5 x 6 in silica gel column; 5%–10% EtOAc in hexanes) provided the desired ene adduct (**19b**) in 6% yield as a yellow oil (6.3 mg, 0.03 mmol). ¹H-NMR (600 MHz, CDCl₃) δ 8.24 (d, *J* = 4.7 Hz, 1 H), 7.60–7.54 (m, 3 H), 7.34 (t, *J* = 7.5 Hz, 2 H), 7.29 (d, *J* = 7.3 Hz, 1 H), 7.09 (d, *J* = 8.5 Hz, 1 H), 6.82–6.78 (m, 1 H), 5.59 (s, 1 H), 5.40 (s, 1 H), 4.75 (s, 2 H); ¹³C-NMR (150 MHz, CDCl₃) δ 161.6, 146.5, 143.3, 138.9, 137.9, 128.3, 127.8, 126.3, 115.8, 115.5, 109.3, 58.6; HRMS-ESI (m/z): [M+H]⁺ calcd. for C₁₄H₁₅N₂O: 227.1179, found 227.1186; HPLC retention time, 7.39 min.

5-(*N*-Hydroxy-*N*-(pyridin-2-yl)amino)-6-methylhept-6-en-2-one (19c). This compound was prepared according to general procedure **A** using 6-methylhept-5-en-2-one (0.30 mL, 2.00 mmol) and 2-nitrosopyridine **10** (108.1 mg, 1.00 mmol) in 2 mL of CH₂Cl₂ for 10 min. Purification (1 x 5 in silica gel column; 33% EtOAc in hexanes) provided the desired ene adduct (**19c**) in 94% yield as a light brown, crystalline solid (220.0 mg, 0.94 mmol). Mp 66–70 °C; ¹H-NMR (600 MHz, DMSO-*d*₆) δ 8.82 (s, N-OH, 1 H), 8.10–8.07 (m, 1 H), 7.61–7.54 (m, 1 H), 7.01 (d, *J* = 8.5 Hz, 1 H), 6.68–6.64 (m, 1 H), 4.94 (t, *J* = 7.5 Hz, 1 H), 4.85–4.78 (m, 2 H), 2.48–2.38 (m, 2 H), 2.00 (s, 3 H), 1.94–1.87 (m, 2 H), 1.66–1.60 (m, 3 H); ¹³C-NMR (150 MHz, DMSO-*d*₆) δ 208.2, 163.0, 147.0, 144.5, 137.6, 113.9, 112.6, 107.6, 61.8, 40.0, 29.8, 23.0, 21.4; HRMS-ESI (m/z): [M+H]⁺ calcd. for C₁₃H₁₉N₂O₂: 235.1441, found 235.1444; IR (neat): 3091.7 (br), 3052.8, 1713.6, 1593.3, 1430.0, 1163.5 cm⁻¹; HPLC retention time 5.88 min.

N-Boc-*O*-(4-Methoxybenzyl)-*N*-methylhydroxylamine (28a). This compound was prepared according to general procedure **B** using BocNHOPBM (2.0 g, 7.90 mmol), sodium hydride (60% in mineral oil; 415.0 mg, 10.38 mmol), and methyl iodide (0.59 mL, 9.46 mmol) in 20 mL of DMF for 26 h. Purification (1.5 x 6 in silica gel column; 100% hexanes–10% EtOAc in hexanes) provided the desired product (28a) in 91% yield as a clear, colorless liquid (1.91 g, 7.15 mmol). ¹H-NMR (600 MHz, CDCl₃) δ 7.35–7.32 (m, 2 H), 6.90–6.87 (m, 2 H), 4.77 (s, 2 H), 3.81 (s, 3 H), 3.03 (s, 3 H), 1.50 (s, 9 H); ¹³C-NMR (150 MHz, CDCl₃) δ 159.8, 156.9, 131.0, 127.8, 113.7, 81.1, 76.0, 55.2, 36.7, 28.2; HRMS-ESI (m/z): $[M+Na]^+$ calcd. for C₁₄H₂₁NNaO₄: 290.1363, found 290.1361.

N-Boc-*O*-(4-Methoxybenzyl)-*N*-(prop-1-yl)hydroxylamine (28b). This compound was prepared according to general procedure **B** using BocNHOPBM (446.2 mg, 1.76 mmol), sodium hydride (60% in mineral oil; 102.0 mg, 2.55 mmol), and 1-bromopropane (0.19 mL, 2.09 mmol) in 6 mL of DMF for 5 h. Purification (1 x 6 in silica gel column; 10% EtOAc in hexanes) provided the desired product (28b) in 98% yield as a clear, colorless liquid (512.0 mg, 1.73 mmol). ¹H-NMR (300 MHz, CDCl₃) δ 7.33 (d, *J* = 8.6 Hz, 2 H), 6.88 (d, *J* = 8.8 Hz, 2 H), 4.76 (s, 2 H), 3.80 (s, 3 H), 3.41–3.33 (m, 2 H), 1.70–1.56 (m, 2 H), 1.51 (s, 9 H), 0.89 (t, *J* = 7.5 Hz, 3 H); ¹³C-NMR (75 MHz, CDCl₃) δ 159.7, 156.5, 130.9, 127.8, 113.7, 80.9, 76.3, 55.2, 51.1, 28.2, 20.3, 11.2; HRMS-ESI (m/z): [M+Na]⁺ calcd. for C₁₆H₂₅NNaO₄: 318.1676, found 318.1687.

N-Boc-*N*-(hex-1-yl)-*O*-(4-Methoxybenzyl)hydroxylamine (28c). This compound was prepared according to general procedure **B** using BocNHOPBM (550.0 mg, 2.17 mmol), sodium hydride (60% in mineral oil; 140.0 mg, 3.50 mmol), and 1-bromohexane (0.37 mL, 2.64 mmol) in 5 mL of DMF for 14 h. Purification (1 x 6 in silica gel column; 5%–20% EtOAc in hexanes) provided the desired product (28c) in 97% yield as a clear, colorless liquid (713.0 mg, 2.11 mmol). ¹H-NMR (600 MHz, CDCl₃) δ 7.35–7.31 (m, 2 H), 6.90–6.86 (m, 2 H), 4.76 (s, 2 H), 3.80 (s, 3 H), 3.40–3.37 (m, 2 H), 1.62–1.55 (m, 2 H), 1.51 (s, 9 H), 1.33–1.24 (m, 6 H), 0.90–0.86 (m, 3 H); ¹³C-NMR (150 MHz, CDCl₃) δ 159.7, 156.5, 130.9, 127.8, 113.7, 80.9, 76.3, 55.2, 49.5, 31.4, 28.3, 26.9, 26.3, 22.5, 14.0; HRMS-ESI (m/z): [M+H]⁺ calcd. for C₁₉H₃₂NO₄: 338.2326, found 338.2325.

N-Boc-*O*-(4-Methoxybenzyl)-*N*-(pheneth-2-yl)hydroxylamine (28e). This compound was prepared according to general procedure **B** using BocNHOPBM (513.0 mg, 2.03 mmol), sodium

hydride (60% in mineral oil; 120.0 mg, 3.00 mmol), and (2-bromoethyl)benzene (0.33 mL, 2.42 mmol) in 5 mL of DMF for 14 h. Purification (1 x 6 in silica gel column; 5%–20% EtOAc in hexanes) provided the desired product (**28e**) in 98% yield as a clear, colorless liquid (712.0 mg, 1.99 mmol). ¹H-NMR (600 MHz, CDCl₃) δ 7.38–7.35 (m, 2 H), 7.33–7.29 (m, 2 H), 7.25–7.21 (m, 3 H), 6.94–6.91 (m, 2 H), 4.79 (s, 2 H), 3.83 (s, 3 H), 3.66–3.62 (m, 2 H), 2.93–2.89 (m, 2 H), 1.49 (s, 9 H); ¹³C-NMR (150 MHz, CDCl₃) δ 159.7, 156.2, 138.9, 130.9, 128.8, 128.3, 127.8, 126.1, 113.7, 81.0, 76.4, 55.2, 51.2, 33.3, 28.2; HRMS-ESI (m/z): [M+Na]⁺ calcd. for C₂₁H₂₇NNaO₄: 380.1832, found 380.1833.

N-Allyl-*N*-Boc-*O*-(4-methoxybenzyl)hydroxylamine (28f). This compound was prepared according to general procedure **B** using BocNHOPBM (810.0 mg, 3.20 mmol), sodium hydride (60% in mineral oil; 180.0 mg, 4.50 mmol), and allyl bromide (0.33 mL, 3.90 mmol) in 8 mL of DMF for 10 h. Purification (1 x 6 in silica gel column; 10%–20% EtOAc in hexanes) provided the desired product (28f) in 87% yield as a clear, colorless liquid (815.0 mg, 2.78 mmol). ¹H-NMR (600 MHz, CDCl₃) δ 7.34–7.31 (m, 2 H), 6.90–6.87 (m, 2 H), 5.91–5.83 (m, 1 H), 5.23 (dq, *J* = 17.3, 1.5 Hz, 1 H), 5.20–5.17 (m, 1 H), 4.78 (s, 2 H), 3.99 (dt, *J* = 6.2, 1.3 Hz, 2 H), 3.81 (s, 3 H), 1.51 (s, 9 H); ¹³C-NMR (150 MHz, CDCl₃) δ 159.8, 156.6, 132.8, 131.0, 127.8, 118.0, 113.7, 81.3, 76.7, 55.2, 52.8, 28.3; HRMS-ESI (m/z): $[M+H]^+$ calcd. for C₁₆H₂₄NO₄: 294.1700, found 294.1705.

N-Boc-*O*-(4-Methoxybenzyl)-*N*-(3-phenoxybenzyl)hydroxylamine (28g). This compound was prepared according general procedure **B** using BocNHOPBM (600.0 mg, 2.37 mmol), sodium hydride (60% in mineral oil; 125.0 mg, 3.13 mmol), and 3-phenoxybenzyl bromide (515.0 mg, 1.96 mmol) in 8 mL of DMF for 24 h. Purification (1.25 x 6 in silica gel column; 10% EtOAc in hexanes) provided the desired product (28g) in 50% yield as a clear, colorless liquid (518.1 mg, 1.19 mmol). ¹H-NMR (600 MHz, CDCl₃) δ 7.35–7.31 (m, 2 H), 7.30 (t, *J* = 7.9 Hz, 1 H), 7.22–7.19 (m, 2 H), 7.11 (ddd, *J* = 7.5, 1.0, 0.9 Hz, 1 H), 7.10–7.07 (m, 1 H), 7.03–6.99 (m, 3 H), 6.95–6.93 (m, 1 H), 6.87–6.83 (m, 2 H), 4.66 (s, 2 H), 4.50 (s, 2 H), 3.81 (s, 3 H), 1.50 (s, 9 H); ¹³C-NMR (150 MHz, CDCl₃) δ 159.8, 157.3, 157.1, 156.5, 139.0, 131.0, 129.7, 129.6, 127.7, 123.4, 123.2, 119.0, 118.9, 117.9, 113.7, 81.6, 76.9, 55.2, 53.6, 28.3; HRMS-ESI (m/z): [M+Na]⁺ calcd. for C₂₆H₂₉NNaO₅: 458.1938, found 458.1942.

N-Boc-*O*-(4-Methoxybenzyl)-*N*-(4-(trifluoromethyl)benzyl)hydroxylamine (28h). This compound was prepared according to general procedure **B** using BocNHOPBM (798.0 mg, 3.15

mmol), sodium hydride (60% in mineral oil; 180.0 mg, 4.50 mmol), and 4-(trifluormethyl)benzyl bromide (1.05 g, 4.39 mmol) in 10 mL of DMF for 22 h. Purification (1.5 x 5 in silica gel column; 5%–20% EtOAc in hexanes) provided the desired product (**28h**) in 98% yield as a clear, colorless liquid (1.26 g, 3.07 mmol). ¹H-NMR (600 MHz, CDCl₃) δ 7.58 (d, J = 7.9 Hz, 2 H), 7.42 (d, J = 7.9 Hz, 2 H), 7.22–7.18 (m, 2 H), 6.87–6.84 (m, 2 H), 4.68 (s, 2 H), 4.57 (s, 2 H), 3.81 (s, 3 H), 1.51 (s, 9 H); ¹³C-NMR (150 MHz, CDCl₃) δ 159.9, 156.6, 141.0, 131.0, 129.8 (q, $J_{C-F} = 32.5$ Hz), 128.7, 127.5, 125.3 (q, $J_{C-F} = 3.9$ Hz), 123.2, 113.8, 81.9, 76.9, 55.2, 53.5, 28.3; HRMS-ESI (m/z): [M+H]⁺ calcd. for C₂₁H₂₅F₃NO₄: 412.1730, found 412.1738.

N-Boc-*O*-(4-Methoxybenzyl)-*N*-(4-(trifluoromethoxy)benzyl)hydroxylamine (28i). This compound was prepared according to general procedure **B** using BocNHOPBM (816.0 mg, 3.22 mmol), sodium hydride (60% in mineral oil; 195.0 mg, 4.87 mmol), and 4- (trifluoromethoxy)benzyl bromide (0.72 mL, 4.50 mmol) in 10 mL of DMF for 22 h. Purification (1.5 x 5 in silica gel column; 5%–30% EtOAc in hexanes) provided the desired product (**28i**) in 86% yield as a clear, colorless liquid (1.18 g, 2.77 mmol). ¹H-NMR (600 MHz, CDCl₃) δ 7.36–7.33 (m, 2 H), 7.21–7.18 (m, 2 H), 7.17 (dd, *J* = 8.8, 0.9 Hz, 2 H), 6.87–6.84 (m, 2 H), 4.66 (s, 2 H), 4.51 (s, 2 H), 3.81 (s, 3 H), 1.51 (s, 9 H); ¹³C-NMR (150 MHz, CDCl₃) δ 159.8, 156.6, 148.57 (q, *J*_{C-F} = 1.7 Hz) 135.7, 131.0, 130.1, 127.5, 120.9, 120.4 (q, *J*_{C-F} = 256.9 Hz), 113.8, 81.8, 76.9, 55.2, 53.1, 28.3; HRMS-ESI (m/z): [M+H]⁺ calcd. for C₂₁H₂₅F₃NO₅: 428.1679, found 428.1676.

O-(4-Methoxybenzyl)-*N*-methylhydroxylamine (29a). This compound was prepared according to general procedure C using compound 28a (754.0 mg, 2.82 mmol) in 8 mL of TFA:CH₂Cl₂ (1:4) for 15 min. The desired compound (29a) was isolated in 99% crude yield as a clear, colorless liquid (465.0 mg, 2.78 mmol) and was used directly in the next reaction without purification or characterization.

O-(4-Methoxybenzyl)-*N*-(prop-1-yl)hydroxylamine (29b). This compound was prepared according to general procedure C using compound 28b (702 mg, 2.38 mmol) in 8 mL of TFA:CH₂Cl₂ (1:1) for 15 min. The desired compound (29b) was isolated in 99% crude yield as a clear, colorless liquid (463.0 mg, 2.37 mmol) and was used directly in the next reaction without purification or characterization.

N-(Hex-1-yl)-*O*-(4-methoxybenzyl)hydroxylamine (29c). This compound was prepared according to general procedure C using compound 28c (1.00 g, 2.96 mmol) in 5 mL of

TFA:CH₂Cl₂ (1:1) for 15 min. Purification (1 x 6 in silica gel column; 10%–25% EtOAc in hexanes) provided the desired product (**29c**) in 77% yield as a clear, colorless liquid (541.3 mg, 2.28 mmol). ¹H-NMR (600 MHz, CDCl₃) δ 7.32–7.29 (m, 2 H), 6.91–6.87 (m, 2 H), 4.66 (s, 2 H), 3.81 (s, 3 H), 2.95–2.91 (m, 2 H), 1.54–1.48 (m, 2 H), 1.35–1.25 (m, 6 H), 0.91–0.87 (m, 3 H); ¹³C-NMR (150 MHz, CDCl₃) δ 159.3, 130.0, 129.9, 113.7, 75.8, 55.2, 52.1, 31.7, 27.2, 26.9, 22.6, 14.0; HRMS-ESI (m/z): [M+H]⁺ calcd. for C₁₄H₂₄NO₂: 238.1802, found 238.1802.

O-(4-Methoxybenzyl)-*N*-(pheneth-2-yl)hydroxylamine (29e). This compound was prepared according to general procedure **C** using compound **28e** (639.8 mg, 1.79 mmol) in 10 mL of TFA:CH₂Cl₂ (3:7) for 15 min. Purification (0.75 x 5 in silica gel column; 5%–25% EtOAc in hexanes) provided the desired product (**29e**) in 73% yield as a clear, colorless liquid (336.1 mg, 1.31 mmol). ¹H-NMR (600 MHz, CDCl₃) δ 7.33–7.28 (m, 4 H), 7.24–7.20 (m, 3 H), 6.92–6.88 (m, 2 H), 5.54 (br s, NH, 1 H), 4.67 (s, 2 H), 3.82 (s, 3 H), 3.19 (t, *J* = 7.2 Hz, 2 H), 2.86 (t, *J* = 7.2 Hz, 2 H); ¹³C-NMR (150 MHz, CDCl₃) δ 159.3, 139.5, 130.0, 129.9, 128.8, 128.5, 126.2, 113.7, 75.7, 55.3, 53.2, 33.7; HRMS-ESI (m/z): $[M+H]^+$ calcd. for C₁₆H₂₀NO₂: 258.1489, found 258.1489.

N-Allyl-*O*-(4-methoxybenzyl)hydroxylamine (29f). This compound was prepared according to general procedure **C** using compound **28f** (528.0 mg, 1.80 mmol) in 15 mL of TFA:CH₂Cl₂ (1:5) for 15 min. Purification (0.75 x 6 in silica gel column; 10%–20% EtOAc in hexanes) provided the desired product (**29f**) in 58% yield as a clear, colorless liquid (200.0 mg, 1.04 mmol). ¹H-NMR (600 MHz, CDCl₃) δ 7.32–7.28 (m, 2 H), 6.91–6.87 (m, 2 H), 5.96–5.88 (m, 1 H), 5.50 (br s, NH, 1 H), 5.24 (dq, *J* = 17.2, 1.6 Hz, 1 H), 5.19–5.15 (m,1 H), 4.66 (s, 2 H), 3.82 (s, 3 H), 3.54 (ddd, *J* = 6.3, 1.5, 1.3 Hz, 2 H); ¹³C-NMR (150 MHz, CDCl₃) δ 159.3, 134.3, 130.0, 129.9, 117.8, 113.7, 75.8, 55.3, 55.0; HRMS-ESI (m/z): [M+H]⁺ calcd. for C₁₁H₁₆NO₂: 194.1176, found 194.1177.

O-(4-Methoxybenzyl)-*N*-(3-phenoxybenzyl)hydroxylamine (29g). This compound was prepared according to general procedure C using compound 28g (196.0 mg, 0.45 mmol) in 8 mL of TFA:CH₂Cl₂ (1:7) for 15 min. Purification (1 x 6 in silica gel column; 10%–20% EtOAc in hexanes) provided the desired product (29g) in 70% yield as a clear, colorless liquid (105.0 mg, 0.31 mmol). ¹H-NMR (600 MHz, CDCl₃) δ 7.37–7.33 (m, 2 H), 7.30 (t, *J* = 7.9 Hz, 1 H), 7.25–7.22 (m, 2 H), 7.14–7.10 (m, 1 H), 7.10–7.08 (m, 1 H), 7.04–7.03 (m, 2 H), 7.03–7.01 (m, 1 H), 6.94 (ddd, *J* = 8.1, 2.6, 1.0 Hz, 1 H), 6.88–6.85 (m, 2 H), 5.69 (br s, NH, 1 H), 4.58 (s, 2 H), 4.01

(s, 2 H), 3.81 (s, 3 H); ¹³C-NMR (150 MHz, CDCl₃) δ 159.3, 157.3, 157.1, 139.8, 130.1, 129.8, 129.7, 129.6, 123.7, 123.2, 119.2, 118.9, 117.8, 113.7, 75.9, 56.1, 55.2; HRMS-ESI (m/z): [M+H]⁺ calcd. for C₂₁H₂₂NO₃: 336.1594, found 336.1599.

O-(4-Methoxybenzyl)-*N*-(4-(trifluoromethyl)benzyl)hydroxylamine (29h). This compound was prepared according to general procedure C using compound 28h (672.0 mg, 1.63 mmol) in 6 mL of TFA:CH₂Cl₂ (1:5) for 15 min. Purification (1.25 x 5 in silica gel column; 10%–20% EtOAc in hexanes) provided the desired product (29h) in 62% yield as an off-white solid (317.0 mg, 1.02 mmol). Mp 34.5–36.5 °C; ¹H-NMR (600 MHz, CDCl₃) δ 7.59 (d, *J* = 7.9 Hz, 2 H), 7.46 (d, *J* = 7.9 Hz, 2 H), 7.23–7.20 (m, 2 H), 6.88–6.85 (m, 2 H), 5.75 (br s, NH, 1 H), 4.57 (s, 2 H), 4.08 (s, 2 H), 3.81 (s, 3 H); ¹³C-NMR (150 MHz, CDCl₃) δ 159.4, 142.0, 130.1, 129.6, 129.1, 125.2 (q, *J*_{C-F} = 3.9 Hz), 113.7, 76.0, 55.9, 55.2; HRMS-ESI (m/z): $[M+H]^+$ calcd. for C₁₆H₁₇F₃NO₂: 312.1206, found 312.1190.

O-(4-Methoxybenzyl)-*N*-(4-(trifluoromethoxy)benzyl)hydroxylamine (29i). This compound was prepared according to general procedure **C** using compound 28i (607.0 mg, 1.42 mmol) in 6 mL of TFA:CH₂Cl₂ (1:5) for 15 min. Purification (1.25 x 6 in silica gel column; 10%–20% EtOAc in hexanes) provided the desired product (29i) in 71% yield as an off-white solid (331.0 mg, 1.01 mmol). Mp 28–30 °C; ¹H-NMR (600 MHz, CDCl₃) δ 7.39–7.36 (m, 2 H), 7.23–7.20 (m, 2 H), 7.20–7.17 (m, 2 H), 6.88–6.85 (m, 2 H), 5.70 (br s, NH, 1 H), 4.57 (s, 2 H), 4.03 (s, 2 H), 3.81 (s, 3 H); ¹³C-NMR (150 MHz, CDCl₃) δ 159.4, 136.6, 130.2, 130.1, 129.7, 120.8 (q, $J_{C-F} = 1.12$ Hz), 113.7, 76.0, 55.6, 55.2; HRMS-ESI (m/z): [M+H]⁺ calcd. for C₁₆H₁₇F₃NO₃: 328.1155, found 328.1142.

O-(4-Methoxybenzyl)-*N*-methyl-*N*-(pyridin-2-yl)hydroxylamine (30a). This compound was prepared according to general procedure **D** using crude compound **29a** (200.6 mg, 1.20 mmol), 2-bromopyridine (0.10 mL, 1.00 mmol), Pd₂(dba)₃ (18.0 mg, 0.02 mmol), (±) BINAP (25.0 mg, 0.04 mmol), and NaO'Bu (134.0 mg, 1.40 mmol) in 9 mL of toluene for 96 h. Purification (1.25 x 6 in silica gel column; 10%–20% EtOAc in hexanes) provided the desired product (**30a**) in 77% yield as a clear, colorless liquid (187.7 mg, 0.77 mmol). ¹H-NMR (600 MHz, CDCl₃) δ 8.25 (ddd, *J* = 4.8, 1.9, 0.9 Hz, 1 H), 7.55 (ddd, *J* = 8.6, 7.0, 1.8 Hz, 1 H), 7.41–7.38 (m, 2 H), 7.08 (dt, *J* = 8.3, 1.0 Hz, 1 H), 6.94–6.91 (m, 2 H), 6.79 (ddd, *J* = 7.3, 4.9, 1.0 Hz, 1 H), 4.85 (s, 3 H), 3.83 (s, 3 H), 3.26 (s, 3 H); ¹³C-NMR (150 MHz, CDCl₃) δ 163.1, 159.7, 147.6, 137.6,

130.7, 128.4, 116.1, 113.9, 109.3, 75.4, 55.3, 40.0; HRMS-ESI (m/z): $[M+H]^+$ calcd. for $C_{14}H_{17}N_2O_2$: 245.1285, found 245.1289; HPLC retention time 7.86 min.

O-(4-Methoxybenzyl)-*N*-(prop-1-yl)-*N*-(pyridin-2-yl)hydroxylamine (30b). This compound was prepared according to general procedure **D** using compound 29b (230.0 mg, 1.18 mmol), 2-bromopyridine (0.10 mL, 1.00 mmol), Pd₂(dba)₃ (18.0 mg, 0.02 mmol), (±) BINAP (25.0 mg, 0.04 mmol), and NaO'Bu (134.0 mg, 1.40 mmol) in 9 mL of toluene for 72 h. Purification (1 x 6 in silica gel column; 5%–20% EtOAc in hexanes) provided the desired product (30b) in 51% yield as a clear, colorless liquid (140.0 mg, 0.51 mmol). ¹H-NMR (300 MHz, CDCl₃) δ 8.27 (ddd, *J* = 4.9, 1.7, 0.8 Hz, 1 H), 7.56 (ddd, *J* = 8.3, 7.2, 1.9 Hz, 1 H), 7.39 (d, *J* = 8.6 Hz, 2 H), 7.08 (d, *J* = 8.3 Hz, 1 H), 6.93 (d, *J* = 8.6 Hz, 2 H), 6.77 (ddd, *J* = 7.3, 4.9, 0.8 Hz, 1 H), 4.82 (s, 2 H), 3.83 (s, 3 H), 3.71–3.63 (m, 2 H), 1.80–1.66 (m, 2 H), 0.96 (t, *J* = 7.3 Hz, 3 H); ¹³C-NMR (75 MHz, CDCl₃) δ 162.7, 159.7, 147.8, 137.7, 130.6, 128.3, 115.8, 113.9, 109.1, 75.8, 55.3, 55.2, 19.6, 11.6; HRMS-ESI (m/z): [M+H]⁺ calcd. for C₁₆H₂₁N₂O₂: 273.1598, found 273.1588; HPLC retention time 9.25 min.

N-(Hex-1-yl)-*O*-(4-methoxybenzyl)-*N*-(pyridin-2-yl)hydroxylamine (30c). This compound was prepared according to general procedure **D** using crude compound **29c** (245.0 mg, 1.03 mmol), 2-bromopyridine (135.6 mg, 0.86 mmol), Pd₂(dba)₃ (15.7 mg, 0.017 mmol), (±) BINAP (21.4 mg, 0.034 mmol), and NaO^tBu (115.5 mg, 1.20 mmol) in 8 mL of toluene for 72 h. Purification (1 x 8 in silica gel column; 5%–10% EtOAc in hexanes) provided the desired product (**30c**) in 40% yield as a clear, colorless liquid (107.3 mg, 0.34 mmol). ¹H-NMR (500 MHz, CDCl₃) δ 8.28–8.24 (m, 1 H), 7.56 (ddd, *J* = 8.6, 7.0, 1.9 Hz, 1 H), 7.38 (d, *J* = 8.4 Hz, 2 H), 7.09–7.04 (m, 1 H), 6.92 (d, *J* = 8.4 Hz, 2 H), 6.79–6.74 (m, 1 H), 4.81 (s, 2 H), 3.83 (s, 3 H), 3.71–3.66 (m, 2 H), 1.71–1.62 (m, 2 H), 1.39–1.23 (m, 8 H), 0.91–0.85 (m, 3 H); ¹³C-NMR (125 MHz, CDCl₃) δ 162.7, 159.7, 147.8, 137.7, 130.6, 128.4, 115.8, 113.9, 109.1, 75.8, 55.3, 53.5, 31.8, 26.9, 26.2, 22.6, 14.1; HRMS-ESI (m/z): [M+H]⁺ calcd. for C₁₉H₂₇N₂O₂: 315.2067, found 315.2058; HPLC retention time 11.41 min.

O-(4-Methoxybenzyl)-*N*-(pheneth-2-yl)-*N*-(pyridin-2-yl)hydroxylamine (30e). This compound was prepared according to general procedure **D** using compound **29e** (308.8 mg, 1.20 mmol), 2-bromopyridine (0.10 mL, 1.00 mmol), $Pd_2(dba)_3$ (18.0 mg, 0.02 mmol), (±) BINAP (25.0 mg, 0.04 mmol), and NaO^tBu (134.0 mg, 1.40 mmol) in 9 mL of toluene for 60 h. Purification (1 x 6 in silica gel column; 5%–20% EtOAc in hexanes) provided the desired

product (**30e**) in 49% yield as a clear, colorless liquid (163.8 mg, 0.49 mmol). ¹H-NMR (600 MHz, CDCl₃) δ 8.30–8.28 (m, 1H), 7.57 (ddd, *J* = 8.4, 7.2, 2.0 Hz, 1 H), 7.40–7.36 (m, 2 H), 7.31–7.24 (m, 5 H), 7.22–7.18 (m, 1 H), 7.11–7.08 (m, 1 H), 6.95–6.91 (m, 2 H), 6.81–6. 78 (m, 1 H), 4.82 (s, 2 H), 3.99–3.93 (m, 2 H), 3.84 (s, 3 H), 2.99–2.92 (m, 2 H); ¹³C-NMR (150 MHz, CDCl₃) δ 162.2, 159.7, 147.9, 139.9, 137.7, 130.7, 128.9, 128.3, 126.0, 116.0, 113.9, 109.3, 75.8, 55.3, 54.5, 32.3; HRMS-ESI (m/z): [M+H]⁺ calcd. for C₂₁H₂₃N₂O₂: 335.1754, found 335.1755; HPLC retention time 10.40 min.

N-Allyl-*O*-(4-methoxybenzyl)-*N*-(pyridin-2-yl)hydroxylamine (30f). This compound was prepared according to general procedure **D** using compound **29f** (198.8 mg, 1.03 mmol), 2-bromopyridine (130.7 mg, 0.83 mmol), Pd₂(dba)₃ (15.2 mg, 0.017 mmol), (\pm) BINAP (20.7 mg, 0.033 mmol), and NaO^tBu (111.7 mg, 1.16 mmol) in 7.5 mL of toluene for 66 h. Purification (1 x 6 in silica gel column; 5%–20% EtOAc in hexanes) provided the desired product (**30f**) in 54% yield as a clear, colorless liquid (120.8 mg, 0.45 mmol). ¹H-NMR (600 MHz, CDCl₃) δ 8.26 (ddd, *J* = 4.8, 1.9, 0.9 Hz, 1 H), 7.59–7.54 (m, 1 H), 7.39–7.36 (m, 2 H), 7.09 (dt, *J* = 8.5, 0.9 Hz, 1 H), 6.93–6.90 (m, 2 H), 6.79 (ddd, *J* = 7.3, 4.8, 1.0 Hz, 1 H), 6.05–5.97 (m, 1 H), 5.32–5.27 (m, 1 H), 5.20 (dddd, *J* = 10.3, 1.9, 1.2, 1.0 Hz, 1 H), 4.83 (s, 2 H), 4.34 (dt, *J* = 6.5, 1.2 Hz, 3 H), 3.83 (s, 3 H); ¹³C-NMR (150 MHz, CDCl₃) δ 162.2, 159.7, 147.7, 137.8, 133.7, 130.7, 128.3, 118.4, 116.2, 113.8, 109.3, 76.0, 56.0, 55.3; HRMS-ESI (m/z): [M+H]⁺ calcd. for C₁₆H₁₉N₂O₂: 271.1441, found 271.1436; HPLC retention time 8.82 min.

O-(4-Methoxybenzyl)-*N*-(3-phenoxybenzyl)-*N*-(pyridin-2-yl)hydroxylamine (30g). This compound was prepared according to general procedure **D** using compound 29g (138.7 mg, 0.41 mmol), 2-bromopyridine (54.4 mg, 0.34 mmol), Pd₂(dba)₃ (6.3 mg, 0.007 mmol), (±) BINAP (8.58 mg, 0.014 mmol), and NaO'Bu (46.4 mg, 0.48 mmol) in 3.1 mL of toluene for 70 h. Purification (1 x 8 in silica gel column; 5%–30% EtOAc in hexanes) provided the desired product (30g) in 59% yield as a clear, colorless liquid (84.2 mg, 0.20 mmol). ¹H-NMR (600 MHz, CDCl₃) δ 8.27 (ddd, J = 4.8, 1.9, 0.9 Hz, 1 H), 7.59–7.55 (m, 1 H), 7.33–7.27 (m, 3 H), 7.22–7.19 (m, 2 H), 7.18–7.16 (m, 1 H), 7.11 - 7.06 (m, 3 H), 6.99–6.96 (m, 2 H), 6.95 (ddd, J = 8.1, 2.5, 1.2 Hz, 1 H), 6.88–6.85 (m, 2 H), 6.81 (ddd, J = 7.2, 4.8, 0.9 Hz, 1 H), 4.83 (s, 2 H), 4.62 (s, 2 H), 3.82 (s, 3 H); ¹³C-NMR (150 MHz, CDCl₃) δ 162.2, 159.7, 157.2, 157.0, 147.7, 139.7, 137.9, 130.7, 129.7, 129.4, 128.0, 124.5, 123.1, 120.0, 118.8, 117.8, 116.4, 113.8, 109.2,

76.2, 57.1, 55.3; HRMS-ESI (m/z): $[M+H]^+$ calcd. for C₂₆H₂₅N₂O₃: 413.1860, found 413.1865; HPLC retention time 11.18 min.

O-(4-Methoxybenzyl)-*N*-(4-(trifluoromethyl)benzyl)-*N*-(pyridin-2-yl)hydroxylamine (30h). This compound was prepared according to general procedure **D** using compound 29h (310.0 mg, 1.00 mmol), 2-bromopyridine (131.1 mg, 0.83 mmol), Pd₂(dba)₃ (15.2 mg, 0.017 mmol), (\pm) BINAP (20.7 mg, 0.033 mmol), and NaO^tBu (111.7 mg, 1.16 mmol) in 7.5 mL of toluene for 96 h. Purification (1 x 8 in silica gel column; 5%–30% EtOAc in hexanes) provided the desired product (**30h**) in 56% yield as a clear, colorless liquid (180.0 mg, 0.46 mmol). ¹H-NMR (600 MHz, CDCl₃) δ 8.30 (ddd, *J* = 5.0, 1.8, 0.9 Hz, 1 H), 7.60 (ddd, *J* = 8.4, 7.2, 2.0 Hz, 1 H), 7.58–7.54 (m, 2 H), 7.52–7.49 (m, 2 H), 7.20–7.17 (m, 2 H), 7.12–7.09 (m, 1 H), 6.88–6.83 (m, 3 H), 4.91 (s, 2 H), 4.64 (s, 2 H), 3.81 (s, 3 H); ¹³C-NMR (150 MHz, CDCl₃) δ 162.0, 159.7, 147.8, 141.8, 138.0, 130.7, 129.6, 129.35 (q, *J_{C-F}* = 32.5 Hz), 127.9, 125.0 (q, *J_{C-F}* = 3.9 Hz), 123.3, 116.6, 113.8, 109.2, 76.2, 56.7, 55.2; HRMS-ESI (m/z): [M+H]⁺ calcd. for C₂₁H₂₀F₃N₂O₂: 389.1471, found 389.1458; HPLC retention time 10.67 min.

O-(4-Methoxybenzyl)-*N*-(4-(trifluoromethoxy)benzyl)-*N*-(pyridin-2-yl)hydroxylamine (30i). This compound was prepared according to general procedure **D** using compound 29i (290.0 mg, 0.89 mmol), 2-bromopyridine (116.7 mg, 0.74 mmol), Pd₂(dba)₃ (13.5 mg, 0.015 mmol), (±) BINAP (18.4 mg, 0.029 mmol), and NaO^tBu (99.3 mg, 1.03 mmol) in 6 mL of toluene for 96 h. Purification (1 x 8 in silica gel column; 5%–10% EtOAc in hexanes) provided the desired product (30i) in 52% yield as a clear, colorless liquid (155.0 mg, 0.04 mmol). ¹H-NMR (600 MHz, CDCl₃) δ 8.31 (ddd, *J* = 4.8, 1.9, 0.9 Hz, 1 H), 7.59 (ddd, *J* = 8.5, 7.2, 1.9 Hz, 1 H), 7.46–7.41 (m, 2 H), 7.19–7.15 (m, 4 H), 7.10 (dt, *J* = 8.3, 1.0 Hz, 1 H), 6.88–6.85 (m, 2 H), 6.84 (ddd, *J* = 7.3, 4.8, 1.0 Hz, 1 H), 4.85 (s, 2 H), 4.61 (s, 2 H), 3.82 (s, 3 H); ¹³C-NMR (150 MHz, CDCl₃) δ 162.1, 159.8, 148.4 (q, *J_{C-F}* = 1.9 Hz), 147.8, 138.0, 136.4, 130.9, 130.7, 127.9, 120.6, 120.5 (q, *J_{C-F}* = 256.9 Hz), 116.6, 113.8, 109.2, 76.2, 56.5, 55.2; HRMS-ESI (m/z): [M+H]⁺ calcd. for C₂₁H₂₀F₃N₂O₃: 405.1421, found 405.1425; HPLC retention time 10.86 min.

N-Methyl-*N*-(pyridin-2-yl)hydroxylamine (31a). This compound was prepared according to general procedure **E** using compound 30a (93.0 mg, 0.38 mmol) and triethylsilane (0.18 mL, 1.13 mmol) in 6 mL of TFA:CH₂Cl₂ (30% TFA v/v) for 7 h. Purification (0.5 x 5 in silica gel column; 17%–33% EtOAc in hexanes) provided the desired product (31a) in 55% yield as a viscous faint yellow oil (26.0 mg, 0.21 mmol). ¹H-NMR (600 MHz, CDCl₃) δ 8.24 (d, *J* = 4.1

Hz, 1 H), 7.60 (t, J = 8.2 Hz, 1 H), 7.02 (d, J = 8.5 Hz, 1 H), 6.84–6.82 (m, 1 H), 3.30 (s, 3 H); ¹³C-NMR (150 MHz, CDCl₃) δ 162.9, 146.8, 137.7, 116.1, 109.3, 42.8; HRMS-ESI (m/z): [M+H]⁺ calcd. for C₆H₉N₂O: 125.0709, found 125.0696; HPLC retention time 2.78 min.

N-(**Prop-1-yl**)-*N*-(**pyridin-2-yl**)**hydroxylamine (31b).** This compound was prepared according to general procedure **E** using compound **30b** (100.0 mg, 0.37 mmol) and triethylsilane (0.15 mL, 0.94 mmol) in 10 mL of TFA:CH₂Cl₂ (30% TFA v/v) for 5 h. Purification (0.75 in x 6 in silica gel column; 20% EtOAc in hexanes) provided the desired product (**31b**) in 75% yield as a clear, colorless oil (42.0 mg, 0.28 mmol). ¹H-NMR (600 MHz, CDCl₃) δ 8.22 (d, *J* = 4.1 Hz, 1 H), 7.57 (t, *J* = 7.2 Hz, 1 H), 7.00 (d, *J* = 8.5 Hz, 1 H), 6.81–6.76 (m, 1 H), 3.56 (t, *J* = 7.3 Hz, 2 H), 1.76 (dq, *J* = 14.7, 7.3 Hz, 2 H), 0.99 (t, *J* = 7.3 Hz, 3 H); ¹³C-NMR (150 MHz, CDCl₃) δ 162.1, 146.7, 137.6, 115.7, 109.3, 56.9, 19.6, 11.5; HRMS-ESI (m/z): $[M+H]^+$ calcd. for C₈H₁₃N₂O: 153.1022, found 153.1031. HPLC retention time 4.44 min.

N-(Hex-1-yl)-*N*-(pyridin-2-yl)hydroxylamine (31c). This compound was prepared according to general procedure **E** using compound **30c** (35.9 mg, 0.11 mmol) and triethylsilane (0.12 mL, 0.75 mmol) in 6 mL of TFA:CH₂Cl₂ (30% TFA v/v) for 5 h. Purification (0.5 x 4 in silica gel column; 20% EtOAc in hexanes) provided the desired product (**31c**) in 69% yield as a clear, faint yellow oil (15.2 mg, 0.08 mmol). ¹H-NMR (500 MHz, CDCl₃) δ 8.20 (d, J = 3.2 Hz, 1 H), 7.56 (t, J = 7.5 Hz, 1 H), 6.99 (d, J = 8.2 Hz, 1 H), 6.77 (t, J = 5.3 Hz, 1 H), 3.58 (t, J = 7.1 Hz, 2 H), 1.75–1.65 (m, 2 H), 1.41–1.24 (m, 6 H), 0.91–0.85 (m, 3 H); ¹³C-NMR (125 MHz, CDCl₃) δ 162.2, 146.7, 137.7, 115.6, 109.4, 55.2, 31.7, 26.7, 26.2, 22.6, 14.0; HRMS-ESI (m/z): [M+H]⁺ calcd. for C₁₁H₁₉N₂O: 195.1492, found 195.1473; HPLC retention time 7.82 min.

N-(**Pheneth-2-yl**)-*N*-(**pyridin-2-yl**)**hydroxylamine** (**31e**). This compound was prepared according to general procedure **E** using compound **30e** (105.0 mg, 0.31 mmol) and triethylsilane (0.10 mL, 0.63 mmol) in 10 mL of TFA:CH₂Cl₂ (30% TFA v/v) for 20 h. Purification (0.75 x 6 in silica gel column; 20%–25% EtOAc in hexanes) provided the desired product (**31e**) in 73% yield as a viscous yellow oil (49.0 mg, 0.23 mmol). ¹H-NMR (600 MHz, CDCl₃) δ 8.24 (d, *J* = 4.1 Hz, 1 H), 7.60–7.54 (m, 1 H), 7.33–7.24 (m, 5 H), 7.24–7.19 (m, 1 H), 7.00 (d, *J* = 8.2 Hz, 1 H), 6.83–6.77 (m, 1 H), 3.92–3.85 (m, 2 H), 3.06–2.99 (m, 2 H); ¹³C-NMR (150 MHz, CDCl₃) δ 161.8, 146.8, 139.6, 137.7, 128.9, 128.4, 126.2, 115.9, 109.4, 56.5, 32.5; HRMS-ESI (m/z): $[M+H]^+$ calcd. for C₁₃H₁₅N₂O: 215.1179, found 215.1192; HPLC retention time 6.95 min.

N-Allyl-*N*-(**pyridin-2-yl**)**hydroxylamine (31f).** This compound was prepared according to general procedure E using compound **30f** (80.0 mg, 0.30 mmol) and triethylsilane (0.10 mL, 0.63 mmol) in 10 mL of TFA:CH₂Cl₂ (30% TFA v/v) for 5 h. Purification (0.75 x 6 in silica gel column; 20%–25% EtOAc in hexanes) provided the desired product (**31f**) in 45% yield as a faint yellow oil (20.0 mg, 0.13 mmol). ¹H-NMR (600 MHz, CDCl₃) δ 8.25–8.23 (m, 1 H), 7.60 (ddd, J = 8.6, 7.0, 1.8 Hz, 1 H), 7.07 (dt, J = 8.5, 0.9 Hz, 1 H), 6.82 (ddd, J = 7.0, 5.0, 0.9 Hz, 1 H), 6.02–5.94 (m, 1 H), 5.34 (dq, J = 17.2, 1.5 Hz, 1 H), 5.27–5.23 (m, 1 H), 4.29 (dt, J = 6.2, 1.3 Hz, 3 H); ¹³C-NMR (150 MHz, CDCl₃) δ 161.8, 146.8, 137.8, 132.9, 118.9, 116.2, 109.7, 57.6; HRMS-ESI (m/z): [M+H]⁺ calcd. for C₈H₁₁N₂O: 151.0866, found 151.0880; HPLC retention time 4.18 min.

N-(3-Phenoxybenzyl)-*N*-(pyridin-2-yl)hydroxylamine (31g). This compound was prepared according to general procedure **E** using compound **30g** (35.6 mg, 0.086 mmol) and triethylsilane (0.05 mL, 0.31 mmol) in 6 mL of TFA:CH₂Cl₂ (17% TFA v/v) for 7 h. Purification (0.5 x 4.5 in silica gel column; 10%–20% EtOAc in hexanes) provided the desired product (**31g**) in 60% yield as a white solid (15.1 mg, 0.052 mmol). Mp 81-83 °C; ¹H-NMR (600 MHz, CDCl₃) δ 8.22 (d, *J* = 4.7 Hz, 1 H), 7.62–7.57 (m, 1 H), 7.35–7.31 (m, 2 H), 7.29 (t, *J* = 7.8 Hz, 1 H), 7.16–7.09 (m, 3 H), 7.08–7.06 (m, 1 H), 7.00–6.97 (m, 2 H), 6.93 (dd, *J* = 8.2, 2.3 Hz, 1 H), 6.83 (dd, *J* = 7.0, 5.0 Hz, 1 H), 4.81 (s, 2 H); ¹³C-NMR (150 MHz, CDCl₃) δ 162.0, 157.3, 157.0, 147.0, 139.1, 137.8, 129.7, 129.6, 123.7, 123.2, 119.2, 118.9, 117.8, 116.4, 109.7, 58.5; HRMS-ESI (m/z): [M+H]⁺ calcd. for C₁₈H₁₇N₂O₂: 293.1285, found 293.1293; HPLC retention time 8.55 min.

N-(4-(Trifluoromethyl)benzyl)-*N*-(pyridin-2-yl)hydroxylamine (31h). This compound was prepared according to general procedure **E** using compound **30h** (50.0 mg, 0.13 mmol) and triethylsilane (0.05 mL, 0.31 mmol) in 6 mL of TFA:CH₂Cl₂ (30% TFA v/v) for 7 h. The desired product (**31h**) was precipitated by trituration with cold pentanes and isolated in 81% yield as an off-white solid (28.0 mg, 0.10 mmol). Mp 101-102 °C; ¹H-NMR (600 MHz, CDCl₃) δ 8.24 (dd, *J* = 4.8, 1.0 Hz, 1 H), 7.65–7.61 (m, 1 H), 7.59 (d, *J* = 8.2 Hz, 2 H), 7.52 (d, *J* = 8.2 Hz, 2 H), 7.14 (d, *J* = 8.5 Hz, 1 H), 6.86 (dd, *J* = 6.9, 5.1 Hz, 1 H), 4.88 (s, 2 H); ¹³C-NMR (150 MHz, CDCl₃) δ 161.9, 147.0, 141.3, 138.0, 129.7 (q, *J*_{C-F} = 32.5 Hz), 129.1, 125.3 (q, *J*_{C-F} = 3.9 Hz), 123.3, 116.7, 109.6, 58.3; HRMS-ESI (m/z): [M+H]⁺ calcd. for C₁₃H₁₂F₃N₂O: 269.0896, found 269.0892; HPLC retention time 8.19 min.

N-(**4**-(**Trifluoromethoxy**)**benzy**])-*N*-(**pyridin-2-y**])**hydroxylamine** (**31i**). This compound was prepared according to general procedure **E** using compound **30i** (108.6 mg, 0.27 mmol) and triethylsilane (0.10 mL, 0.63 mmol) in 9 mL of TFA:CH₂Cl₂ (30% TFA v/v) for 19 h. Purification (0.75 x 6 in silica gel column; 10%–20% EtOAc in hexanes) provided the desired product (**31i**) in 70% yield as an off-white, crystalline solid (53.0 mg, 0.19 mmol). Mp 101.5–103.5 °C; ¹H-NMR (500 MHz, CDCl₃) δ ppm 8.20 (d, *J* = 4.8 Hz, 1 H), 7.64–7.57 (m, 1 H), 7.42 (d, *J* = 8.4 Hz, 2 H), 7.19–7.11 (m, 3 H), 6.84 (dd, *J* = 7.1, 5.1 Hz, 1 H), 4.80 (s, 2 H); ¹³C-NMR (125 MHz, CDCl₃) δ ppm 162.1, 148.5 (q, *J_{C-F}* = 1.6 Hz), 147.0, 138.0, 135.9, 130.3, 120.8, 120.4 (q, *J_{C-F}* = 256.7 Hz), 116.5, 109.7, 58.0; HRMS-ESI (m/z): [M+H]⁺ calcd. for C₁₃H₁₂F₃N₂O₂: 285.0845, found 285.0834; HPLC retention time 7.68 min.

(±) *O*-Acetyl-*N*-(5-bromopyridin-2-yl)-*N*-((1*S*/*R*,4*S*/*R*)-2-methoxycyclohex-3-enyl)hydroxylamine (**35**). Compound **7b** (22.0 mg, 0.074 mmol), Ac₂O (9.0 mg, 0.09 mmol), *i*Pr₂EtN (14.2 mg, 0.11 mmol), and catalytic DMAP (2.0 mg, 0.016 mmol) were dissolved in 4 mL of anhydrous CH₂Cl₂, respectively. After 9h, TLC (20% EtOAc in hexanes) showed complete consumption of the starting hydroxylamine compound. The CH₂Cl₂ was evaporated and the crude product was purified by silica gel column chromatography (0.5 x 6 in silica gel; 10%–25% EtOAc in hexanes) to give the desired product (**35**) in 94% yield as a clear, colorless oil (23.5 mg, 0.07 mmol). ¹H-NMR (600 MHz, CDCl₃) δ 8.33 (d, *J* = 2.0 Hz, 1 H), 7.66 (dd, *J* = 8.8, 2.3 Hz, 1 H), 6.68–6.64 (m, 1 H), 5.85–5.80 (m, 1 H), 5.78–5.70 (m, 1 H), 4.71–4.65 (m, 1 H), 4.12 (br s, 1 H), 3.39 (br s, 3 H), 2.28 (s, 3 H), 2.27–2.20 (m, 1 H), 2.19–2.12 (m, 1 H); ¹³C-NMR (150 MHz, CDCl₃) δ 169.5, 159.3, 148.5, 140.1, 129.4, 126.5, 112.0, 110.5, 75.6, 62.1, 55.5, 29.7, 25.3, 18.7; HRMS-ESI (m/z): [M+H]⁺ calcd. for C₁₄H₁₈BrN₂O₃: 341.0495, found 341.0512; IR (neat): 3028.7, 1786.6, 1577.8, 1458.7, 1371.0, 1181.8, 1098.1, 1000.6 cm⁻¹; HPLC retention time 7.93 min.

N-Benzyl-*O*-(4-methoxybenzyl)-*N*-(pyridin-3-yl)hydroxylamine (36). This compound was prepared according to general procedure **D** using compound **29d** (279.0 mg, 1.15 mmol), 3-bromopyridine (158.0 mg, 1.00 mmol), Pd₂(dba)₃ (18.0 mg, 0.02 mmol), (\pm) BINAP (25.0 mg, 0.04 mmol), and NaO^tBu (134.0 mg, 1.40 mmol) in 9 mL of toluene for 67 h. Purification (1.25 x 8 in silica gel column; 10%–50% EtOAc in hexanes) provided the desired product (**36**) in 36% yield as a clear, yellow liquid (115 mg, 0.36 mmol). ¹H-NMR (600 MHz, CDCl₃) δ 8.49 (d, *J* = 2.6 Hz, 1 H), 8.25 (dd, *J* = 4.7, 1.5 Hz, 1 H), 7.45–7.41 (m, 3 H), 7.38–7.31 (m, 3 H), 7.20 (ddd,

J = 8.4, 4.7, 0.7 Hz, 1 H), 7.13–7.10 (m, 2 H), 6.85–6.82 (m, 2 H), 4.51 (s, 2 H), 4.42 (s, 2 H), 3.80 (s, 3 H); ¹³C-NMR (150 MHz, CDCl₃) δ 159.6, 147.4, 143.7, 139.6, 136.5, 130.7, 129.4, 128.3, 128.0, 127.7, 124.0, 123.3, 113.7, 75.8, 63.2, 55.2; HRMS-ESI (m/z): [M+H]⁺ calcd. for $C_{20}H_{21}N_2O_2$: 321.1598, found 321.1618; IR (neat): 3060.7, 3031.9, 3005.0, 1611.5, 1572.5, 1513.1, 1246.8, 1030.2, 985.1 cm⁻¹; HPLC retention time 8.70 min.

N-Benzyl-*N*-(pyridin-3-yl)hydroxylamine (37). This compound was prepared according to general procedure **E** using compound **36** (49.5 mg, 0.15 mmol) and triethylsilane (0.05 mL, 0.31 mmol) in 7 mL of TFA:CH₂Cl₂ (15% TFA v/v) for 30 h. Purification (0.5 x 4 in silica gel column; 30%–50% EtOAc in hexanes) provided the desired product (**37**) in 45% yield as an off-white solid (14.0 mg, 0.07 mmol). Mp 126–130 °C; ¹H-NMR (600 MHz, CDCl₃) δ 8.49–8.45 (m, 1 H), 8.16–8.11 (m, 1 H), 7.52 (dt, *J* = 8.4, 1.2 Hz, 1 H), 7.44–7.39 (m, 2 H), 7.36 (t, *J* = 7.2 Hz, 2 H), 7.34–7.30 (m, 1 H), 7.21 (dd, *J* = 8.2, 4.7 Hz, 1 H), 6.69 (br s, N–OH, 1 H), 4.45 (s, 2 H); ¹³C-NMR (150 MHz, CDCl₃) δ 148.7, 142.7, 138.5, 136.6, 129.0, 128.5, 127.7, 123.4, 123.3, 63.3; HRMS-ESI (m/z): [M+H]⁺ calcd. for C₁₂H₁₃N₂O: 201.1022, found 201.1026; IR (neat) 3088.0 (br), 3062.3, 3033.1, 1572.5, 1487.0, 1422.5, 1232.0, 1189.8, 1062.9, 1002.8 cm⁻¹; HPLC retention time 5.32 min.

N-Benzyl-*N*-hydroxy(pyridin-2-yl)methanamine (39). This compound was prepared according to general procedure **E** using compound **38** (15.0 mg, 0.045 mmol) and triethylsilane (0.025 mL, 0.16 mmol) in 3.5 mL of TFA:CH₂Cl₂ (15% TFA v/v) for 5 h. The desired product (**39**) was precipitated by trituration with cold pentanes and isolated in 73% yield as an off-white solid (7.0 mg, 0.033 mmol). Mp 80–82 °C; ¹H-NMR (600 MHz, CDCl₃) δ 8.60–8.57 (m, 1 H), 7.69 (td, *J* = 7.6, 1.8 Hz, 1 H), 7.45–7.41 (m, 2 H), 7.38–7.33 (m, 3 H), 7.32–7.28 (m, 1 H), 7.22 (ddd, *J* = 7.6, 4.9, 1.0 Hz, 1 H), 4.09 (s, 2 H), 4.04 (s, 2 H); ¹³C-NMR (150 MHz, CDCl₃) δ 157.7, 148.9, 136.8, 129.6, 128.4, 127.5, 123.3, 122.4, 64.3, 64.0; HRMS-ESI (m/z): [M+H]⁺ calcd. for C₁₃H₁₅N₂O: 215.1179, found 215.1161; IR (neat): 3144.6 (br), 3063.9, 3031.5, 1597.7, 1435.1, 1117.4, 1031.5 cm⁻¹; HPLC retention time 5.13 min.

(±) (*E*)-6-(*N*-Hydroxy-*N*-(6-ethylpyridin-2-yl)amino)-3,7-dimethylocta-2,7-dien-1-ol (40a). This compound was prepared according to general procedure **A** using geraniol (453.2 mg, 2.94 mmol) and 6-ethyl-2-nitrosopyridine **10** (200.0 mg, 1.46 mmol) in 5 mL of CH₂Cl₂ for 25 min. Purification (1 x 6 in silica gel column; 10%–25% EtOAc in hexanes) provided a mixture of isomers (**40a:40b**; 70:30) in 75% yield as a yellow oil (321.0 mg, 1.10 mmol). Further

purification (1 x 6 in silica gel; 33%–50% EtOAc in hexanes) provided an analytically pure sample of isomer **40a** as a yellow oil (50.0 mg, 0.17 mmol). ¹H-NMR (600 MHz, DMSO-*d*₆) δ ppm 8.73 (s, 1 H), 7.46 (dd, *J* = 8.2, 7.3 Hz, 1 H), 6.82 (d, *J* = 8.2 Hz, 1 H), 6.53 (d, *J* = 7.0 Hz, 1 H), 5.27–5.23 (m, 1 H), 4.99 (t, *J* = 7.0 Hz, 1 H), 4.87–4.84 (m, 1 H), 4.80–4.78 (m, 1 H), 4.40 (t, *J* = 5.3 Hz, 1 H), 3.92 (t, *J* = 5.7 Hz, 2 H), 2.57 (q, *J* = 7.4 Hz, 2 H), 2.09–1.96 (m, 2 H), 1.93–1.72 (m, 2 H), 1.66 (s, 3 H), 1.57 (s, 3 H), 1.19–1.14 (m, 3 H); ¹³C-NMR (150 MHz, DMSO-*d*₆) δ ppm 162.7, 160.0, 144.6, 137.7, 135.7, 125.2, 112.7, 111.9, 105.2, 62.5, 57.6, 36.2, 30.5, 27.4, 21.4, 16.2, 13.5; HRMS-ESI (m/z): [M+H]⁺ calcd. for C₁₇H₂₇N₂O₂: 291.2067, found 291.2075; HPLC retention time 7.82 min.

S39

S65

VI. Copies of HPLC Chromatograms

VII. X-ray Diffraction Data for Compound 40a

Discussion

Compound **40a** crystallizes as colorless block-like crystals from a dichloromethane/hexanes solution. There are two molecules of the compound in the unit cell of the primitive, centrosymmetric space group P-1.

The structure of compound **40a** is as expected (see **Figures 4**, **S1**, and **S2**). Due to the center of symmetry present in the lattice, the compound is a racemate. The C12-C13 bond distance clearly shows the presence of a vinyl group (C12-C13 = 1.323(2) Å). The hydroxyl, O2, forms an H-bond to the pyridyl nitrogen of a neighboring molecule related by inversion symmetry, which in turn also donates an H-bond from the its hydroxyl O2' back to the pyridine nitrogen N2. These H-bonded dimers are then linked in chains along the crystallographic a-axis by hydrogen bonds from the hydroxyl O1, to the hydroxyl oxygen O2'' of a neighboring H-bonded dimer (see **Table S10** for details of Hydrogen-bonds).

The bond distances and angles within the molecule are as expected. Data were collected at the slightly elevated (with respect to routine experiments) temperature of 200 K. Below this temperature the crystals were observed to undergo a phase transition resulting in the crystal shattering.

Crystal Summary

Crystal data for C₁₇H₂₆N₂O₂; M_r = 290.40; Triclinic; space group P-1; a = 8.7695(3) Å; b = 9.2936(3) Å; c = 11.3422(4) Å; $\alpha = 102.466(2)^{\circ}$; $\beta = 108.736(2)^{\circ}$; $\gamma = 94.007(2)^{\circ}$; V = 845.03(5)

Å³; Z = 2; T = 200(2) K; λ (Mo-K α) = 0.71073 Å; μ (Mo-K α) = 0.075 mm⁻¹; d_{calc} = 1.141g.cm⁻³; 11449 reflections collected; 3470 unique (R_{int} = 0.0208); giving R₁ = 0.0435, wR₂ = 0.1137 for 2827 data with [I>2 σ (I)] and R₁ = 0.0536, wR₂ = 0.1217 for all 3470 data. Residual electron density (e⁻.Å⁻³) max/min: 0.215/-0.211.

An arbitrary sphere of data were collected on a colorless block-like crystal, having approximate dimensions of $0.65 \times 0.21 \times 0.17$ mm, on a Bruker APEX-II diffractometer using a combination of ω - and φ -scans of 0.5° . Data were corrected for absorption and polarization effects and analyzed for space group determination. The structure was solved by direct methods and expanded routinely. The model was refined by full-matrix least-squares analysis of F² against all reflections. All non-hydrogen atoms were refined with anisotropic thermal displacement parameters. Unless otherwise noted, hydrogen atoms were included in calculated positions. Thermal parameters for the hydrogens were tied to the isotropic thermal parameter of the atom to which they are bonded (1.5 × for methyl, 1.2 × for all others).

 Table S4. Crystal data and structure refinement for compound 40a.

Identification code	nd1105
Empirical formula	$C_{17}H_{26}N_2O_2$
Formula weight	290.40
Temperature	200(2) K
Wavelength	0.71073 Å
Crystal system	Triclinic
Space group	P-1
Unit cell dimensions	$a = 8.7695(3) \text{ Å}$ $\alpha = 102.466(2)^{\circ}$
	$b = 9.2936(3) \text{ Å}$ $\beta = 108.736(2)^{\circ}$
	$c = 11.3422(4) \text{ Å}$ $\gamma = 94.007(2)^{\circ}$
Volume	845.03(5) Å ³
Z	2
Density (calculated)	1.141 g.cm ⁻³
Absorption coefficient (µ)	0.075 mm ⁻¹
F(000)	316
Crystal size	$0.65 \times 0.21 \times 0.17 \text{ mm}^3$
θ range for data collection	1.96 to 26.59°
Index ranges	$-10 \le h \le 10, -11 \le k \le 11, -14 \le l \le 14$
Reflections collected	11449
Independent reflections	3470 [R _{int} = 0.0208]
Completeness to $\theta = 26.59^{\circ}$	98.2 %
Absorption correction	numerical
Max. and min. transmission	1.0000 and 0.9331
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3470 / 0 / 195

Goodness-of-fit on F^2	1.049
Final R indices $[I > 2\sigma(I)]$	$R_1 = 0.0435, wR_2 = 0.1137$
R indices (all data)	$R_1 = 0.0536$, $wR_2 = 0.1217$
Largest diff. peak and hole	$0.215 \text{ and } -0.211 \text{ e}^\text{Å}^{-3}$

Table S5. Atomic coordinates and equivalent isotropic displacement parameters ($Å^2$) for compound **40a**. U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	Х	у	Z	U(eq)
O(1)	-0.09777(12)	0.23473(11)	0.07017(10)	0.042(1)
O(2)	0.75090(12)	0.25282(12)	-0.17294(10)	0.043(1)
N(1)	0.05824(14)	0.59512(13)	0.28262(12)	0.038(1)
N(2)	0.00483(13)	0.37548(13)	0.12322(11)	0.035(1)
C(1)	0.0204(2)	0.68794(17)	0.37525(16)	0.045(1)
C(2)	-0.1116(2)	0.6493(2)	0.40998(18)	0.056(1)
C(3)	-0.2080(2)	0.5137(2)	0.34641(18)	0.056(1)
C(4)	-0.17262(18)	0.41800(18)	0.25154(16)	0.045(1)
C(5)	-0.03591(16)	0.46268(15)	0.22275(13)	0.034(1)
C(6)	0.17771(15)	0.35521(15)	0.15008(13)	0.032(1)
C(7)	0.20254(16)	0.28388(17)	0.02437(13)	0.037(1)
C(8)	0.38128(17)	0.26653(17)	0.04643(14)	0.039(1)
C(9)	0.41666(17)	0.21052(16)	-0.07533(14)	0.038(1)
C(10)	0.52519(17)	0.29203(16)	-0.10271(14)	0.039(1)
C(11)	0.57923(18)	0.25562(18)	-0.21617(15)	0.044(1)
C(12)	0.23965(17)	0.27593(18)	0.25557(14)	0.041(1)
C(13)	0.3420(2)	0.3533(2)	0.36914(16)	0.058(1)
C(14)	0.1825(3)	0.1134(2)	0.2285(2)	0.074(1)
C(15)	0.3237(3)	0.0616(2)	-0.1574(2)	0.068(1)
C(16)	0.1288(2)	0.83671(19)	0.43803(19)	0.060(1)
C(17)	0.3019(3)	0.8237(2)	0.50860(19)	0.068(1)
H(1)	-0.1519	0.2270	-0.0075	0.050
H(2)	0.7950	0.3059	-0.2078	0.051
H(2A)	-0.1350	0.7152	0.4764	0.067
H(3A)	-0.2997	0.4860	0.3683	0.067
H(4A)	-0.2390	0.3243	0.2068	0.054
H(6A)	0.2426	0.4574	0.1822	0.038
H(7A)	0.1671	0.3465	-0.0369	0.045
H(7B)	0.1342	0.1847	-0.0142	0.045
H(8A)	0.4498	0.3643	0.0936	0.047
H(8B)	0.4127	0.1965	0.1016	0.047
H(10A)	0.5744	0.3850	-0.0425	0.047
H(11A)	0.5211	0.1573	-0.2729	0.053
H(11B)	0.5534	0.3315	-0.2660	0.053
H(13A)	0.3815	0.3054	0.4366	0.070
H(13B)	0.3761	0.4568	0.3832	0.070

H(14A)	0.2466	0.0746	0.2997	0.111
H(14B)	0.1962	0.0610	0.1486	0.111
H(14C)	0.0672	0.0977	0.2194	0.111
H(15A)	0.3808	0.0178	-0.2146	0.102
H(15B)	0.2143	0.0741	-0.2090	0.102
H(15C)	0.3153	-0.0043	-0.1024	0.102
H(16A)	0.1266	0.8903	0.3711	0.071
H(16B)	0.0846	0.8970	0.4992	0.071
H(17A)	0.3683	0.9225	0.5393	0.102
H(17B)	0.3439	0.7575	0.4505	0.102
H(17C)	0.3068	0.7826	0.5821	0.102

Table S6. Anisotropic displacement parameters (\AA^2) for compound **40a**. The anisotropic displacement factor exponent takes the form: $-2\pi^2[\text{h}^2a^{*2}U_{11} + ... + 2hka^*b^*U_{12}]$

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
O(1)	0.0326(5)	0.0429(6)	0.0469(6)	0.0078(5)	0.0141(4)	-0.0043(4)
O(2)	0.0399(6)	0.0493(6)	0.0473(6)	0.0137(5)	0.0255(5)	0.0023(5)
N(1)	0.0391(6)	0.0378(6)	0.0466(7)	0.0132(5)	0.0265(5)	0.0092(5)
N(2)	0.0286(6)	0.0368(6)	0.0419(6)	0.0090(5)	0.0173(5)	0.0020(5)
C(1)	0.0511(9)	0.0424(8)	0.0549(9)	0.0146(7)	0.0323(8)	0.0155(7)
C(2)	0.0616(11)	0.0580(10)	0.0664(11)	0.0148(8)	0.0464(9)	0.0189(8)
C(3)	0.0493(9)	0.0664(11)	0.0730(12)	0.0230(9)	0.0438(9)	0.0128(8)
C(4)	0.0359(8)	0.0517(9)	0.0569(9)	0.0184(7)	0.0259(7)	0.0058(7)
C(5)	0.0309(7)	0.0394(7)	0.0413(7)	0.0174(6)	0.0185(6)	0.0103(6)
C(6)	0.0273(6)	0.0342(7)	0.0374(7)	0.0079(5)	0.0159(5)	0.0033(5)
C(7)	0.0324(7)	0.0463(8)	0.0365(7)	0.0087(6)	0.0170(6)	0.0055(6)
C(8)	0.0333(7)	0.0468(8)	0.0403(8)	0.0070(6)	0.0181(6)	0.0069(6)
C(9)	0.0348(7)	0.0429(8)	0.0398(7)	0.0060(6)	0.0196(6)	0.0055(6)
C(10)	0.0356(7)	0.0396(8)	0.0411(8)	0.0015(6)	0.0177(6)	0.0009(6)
C(11)	0.0379(8)	0.0519(9)	0.0426(8)	0.0064(7)	0.0194(6)	-0.0040(6)
C(12)	0.0360(7)	0.0533(9)	0.0446(8)	0.0189(7)	0.0239(6)	0.0143(6)
C(13)	0.0505(10)	0.0867(13)	0.0422(9)	0.0206(9)	0.0177(8)	0.0231(9)
C(14)	0.0765(14)	0.0625(12)	0.0956(16)	0.0491(12)	0.0277(12)	0.0116(10)
C(15)	0.0754(13)	0.0559(11)	0.0740(12)	-0.0130(9)	0.0516(11)	-0.0161(9)
C(16)	0.0769(13)	0.0433(9)	0.0735(12)	0.0080(8)	0.0495(10)	0.0135(8)
C(17)	0.0788(14)	0.0598(11)	0.0572(11)	-0.0066(9)	0.0287(10)	-0.0011(10)

Table S7. Bond lengths [Å] for compound 40a.

atom-atom	distance	atom-atom	distance
O(1)-N(2)	1.4250(14)	O(2)-C(11)	1.4298(18)
N(1)-C(5)	1.3397(18)	N(1)-C(1)	1.3531(18)
N(2)-C(5)	1.4013(17)	N(2)-C(6)	1.4815(16)

C(1)-C(2)	1.386(2)	C(1)-C(16)	1.510(2)
C(2)-C(3)	1.375(3)	C(3)-C(4)	1.373(2)
C(4)-C(5)	1.3988(19)	C(6)-C(12)	1.513(2)
C(6)-C(7)	1.5268(18)	C(7)-C(8)	1.5319(18)
C(8)-C(9)	1.5040(19)	C(9)-C(10)	1.329(2)
C(9)-C(15)	1.498(2)	C(10)-C(11)	1.490(2)
C(12)-C(13)	1.323(2)	C(12)-C(14)	1.491(2)
C(16)-C(17)	1.499(3)	O(1)-H(1)	0.8400
O(2)-H(2)	0.8400	C(2)-H(2A)	0.9500
C(3)-H(3A)	0.9500	C(4)-H(4A)	0.9500
C(6)-H(6A)	1.0000	C(7)-H(7A)	0.9900
C(7)-H(7B)	0.9900	C(8)-H(8A)	0.9900
C(8)-H(8B)	0.9900	C(10)-H(10A)	0.9500
C(11)-H(11A)	0.9900	C(11)-H(11B)	0.9900
C(13)-H(13A)	0.9500	C(13)-H(13B)	0.9500
C(14)-H(14A)	0.9800	C(14)-H(14B)	0.9800
C(14)-H(14C)	0.9800	C(15)-H(15A)	0.9800
C(15)-H(15B)	0.9800	C(15)-H(15C)	0.9800
C(16)-H(16A)	0.9900	C(16)-H(16B)	0.9900
C(17)-H(17A)	0.9800	C(17)-H(17B)	0.9800
C(17)-H(17C)	0.9800		

Symmetry transformations used to generate equivalent atoms:

Table S8. Bond angles [°] for compound 40a.

atom-atom-atom	angle	atom-atom-atom	angle
C(5)-N(1)-C(1)	118.61(12)	C(5)-N(2)-O(1)	111.08(10)
C(5)-N(2)-C(6)	117.64(11)	O(1)-N(2)-C(6)	110.28(10)
N(1)-C(1)-C(2)	121.89(15)	N(1)-C(1)-C(16)	116.41(13)
C(2)-C(1)-C(16)	121.69(14)	C(3)-C(2)-C(1)	118.67(15)
C(4)-C(3)-C(2)	120.51(14)	C(3)-C(4)-C(5)	117.94(15)
N(1)-C(5)-C(4)	122.37(13)	N(1)-C(5)-N(2)	115.66(11)
C(4)-C(5)-N(2)	121.85(13)	N(2)-C(6)-C(12)	112.93(11)
N(2)-C(6)-C(7)	109.42(11)	C(12)-C(6)-C(7)	114.38(11)
C(6)-C(7)-C(8)	111.39(11)	C(9)-C(8)-C(7)	113.96(12)
C(10)-C(9)-C(15)	124.80(13)	C(10)-C(9)-C(8)	119.75(13)
C(15)-C(9)-C(8)	115.44(12)	C(9)-C(10)-C(11)	128.02(13)
O(2)-C(11)-C(10)	109.29(12)	C(13)-C(12)-C(14)	122.11(16)
C(13)-C(12)-C(6)	118.92(15)	C(14)-C(12)-C(6)	118.97(14)
C(17)-C(16)-C(1)	113.32(15)	N(2)-O(1)-H(1)	109.5
C(11)-O(2)-H(2)	109.5	C(3)-C(2)-H(2A)	120.7
C(1)-C(2)-H(2A)	120.7	C(4)-C(3)-H(3A)	119.7
C(2)-C(3)-H(3A)	119.7	C(3)-C(4)-H(4A)	121.0
C(5)-C(4)-H(4A)	121.0	N(2)-C(6)-H(6A)	106.5

106.5	C(7)-C(6)-H(6A)	106.5
109.3	C(8)-C(7)-H(7A)	109.3
109.3	C(8)-C(7)-H(7B)	109.3
108.0	C(9)-C(8)-H(8A)	108.8
108.8	C(9)-C(8)-H(8B)	108.8
108.8	H(8A)-C(8)-H(8B)	107.7
116.0	C(11)-C(10)-H(10A)	116.0
109.8	C(10)-C(11)-H(11A)	109.8
109.8	C(10)-C(11)-H(11B)	109.8
108.3	C(12)-C(13)-H(13A)	120.0
120.0	H(13A)-C(13)-H(13B)	120.0
109.5	C(12)-C(14)-H(14B)	109.5
109.5	C(12)-C(14)-H(14C)	109.5
109.5	H(14B)-C(14)-H(14C)	109.5
109.5	C(9)-C(15)-H(15B)	109.5
109.5	C(9)-C(15)-H(15C)	109.5
109.5	H(15B)-C(15)-H(15C)	109.5
108.9	C(1)-C(16)-H(16A)	108.9
108.9	C(1)-C(16)-H(16B)	108.9
107.7	C(16)-C(17)-H(17A)	109.5
109.5	H(17A)-C(17)-H(17B)	109.5
109.5	H(17A)-C(17)-H(17C)	109.5
109.5		
	106.5 109.3 109.3 108.0 108.8 108.8 116.0 109.8 109.8 109.8 109.5	106.5 $C(7)-C(6)-H(6A)$ 109.3 $C(8)-C(7)-H(7A)$ 109.3 $C(8)-C(7)-H(7B)$ 108.0 $C(9)-C(8)-H(8A)$ 108.8 $C(9)-C(8)-H(8B)$ 108.8 $H(8A)-C(8)-H(8B)$ 108.8 $H(8A)-C(8)-H(8B)$ 108.8 $H(8A)-C(8)-H(8B)$ 109.8 $C(10)-C(11)-H(10A)$ 109.8 $C(10)-C(11)-H(11A)$ 109.8 $C(10)-C(11)-H(11B)$ 108.3 $C(12)-C(13)-H(13A)$ 120.0 $H(13A)-C(13)-H(13B)$ 109.5 $C(12)-C(14)-H(14C)$ 109.5 $C(12)-C(14)-H(14C)$ 109.5 $C(9)-C(15)-H(15C)$ 109.5 $C(9)-C(15)-H(15C)$ 109.5 $H(15B)-C(15)-H(15C)$ 109.5 $H(15B)-C(15)-H(15C)$ 108.9 $C(1)-C(16)-H(16A)$ 108.9 $C(1)-C(16)-H(16B)$ 107.7 $C(16)-C(17)-H(17A)$ 109.5 $H(17A)-C(17)-H(17B)$ 109.5 $H(17A)-C(17)-H(17C)$ 109.5 $H(17A)-C(17)-H(17C)$

Symmetry transformations used to generate equivalent atoms:

Table S9. Torsion angles [°] for compound 40a.

atom-atom-atom-atom	angle	atom-atom-atom-atom	angle
C(5)-N(1)-C(1)-C(2)	0.4(2)	C(5)-N(1)-C(1)-C(16)	-179.02(14)
N(1)-C(1)-C(2)-C(3)	-1.2(3)	C(16)-C(1)-C(2)-C(3)	178.21(17)
C(1)-C(2)-C(3)-C(4)	0.8(3)	C(2)-C(3)-C(4)-C(5)	0.4(3)
C(1)-N(1)-C(5)-C(4)	0.8(2)	C(1)-N(1)-C(5)-N(2)	176.68(13)
C(3)-C(4)-C(5)-N(1)	-1.2(2)	C(3)-C(4)-C(5)-N(2)	-176.83(14)
O(1)-N(2)-C(5)-N(1)	177.34(11)	C(6)-N(2)-C(5)-N(1)	48.93(16)
O(1)-N(2)-C(5)-C(4)	-6.74(18)	C(6)-N(2)-C(5)-C(4)	-135.14(14)
C(5)-N(2)-C(6)-C(12)	62.28(15)	O(1)-N(2)-C(6)-C(12)	-66.50(14)
C(5)-N(2)-C(6)-C(7)	-169.07(11)	O(1)-N(2)-C(6)-C(7)	62.14(13)
N(2)-C(6)-C(7)-C(8)	177.64(11)	C(12)-C(6)-C(7)-C(8)	-54.53(16)
C(6)-C(7)-C(8)-C(9)	-174.44(12)	C(7)-C(8)-C(9)-C(10)	121.23(16)
C(7)-C(8)-C(9)-C(15)	-59.22(19)	C(15)-C(9)-C(10)-C(11)	-0.6(3)
C(8)-C(9)-C(10)-C(11)	178.85(14)	C(9)-C(10)-C(11)-O(2)	-120.37(17)
N(2)-C(6)-C(12)-C(13)	-107.49(15)	C(7)-C(6)-C(12)-C(13)	126.48(15)
N(2)-C(6)-C(12)-C(14)	72.10(17)	C(7)-C(6)-C(12)-C(14)	-53.92(18)
N(1)-C(1)-C(16)-C(17)	-62.6(2)	C(2)-C(1)-C(16)-C(17)	117.94(19)

Symmetry transformations used to generate equivalent atoms:

Table S10. Hydrogen bonds for compound 40a [Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
O(1)-H(1)O(2)#1	0.84	1.87	2.6969(15)	167.3
O(2)-H(2)N(1)#2	0.84	2.02	2.8482(15)	167.0

Symmetry transformations used to generate equivalent atoms: #1 x-1,y,z ; #2 -x+1,-y+1,-z

Figure S1. Dimer of compound **40a** displayed with 50% probability ellipsoids. Hydrogen atoms (except those involved in H-bonding) omitted for clarity.

Figure S2. Stacking of dimers of compound **40a** displayed with 50% probability ellipsoids. Hydrogen atoms (except those involved in H-bonding) omitted for clarity.

VIII. References

1. Yang, B.; Miller, M. J. Regio- and Stereoselective Indium Triflate-Mediated Nucleophilic Ring-Opening Reactions of 3-Aza-2-oxabicylco[2.2.1]hept-5-ene and –[2.2.2]oct-5-ene Systems. *J. Org. Chem.* **2009**, *74*, 7990-7993.

2. Yang, B.; Miller, M. J. Iminonitroso Ene Reactions: Experimental Studies on Reactivity, Regioselectivity, and Enantioselectivity. *Tetrahedron Lett.* **2010**, *51*, 328-331.

3. Yang, B.; Miller, M. J. Regio- and Stereochemically Controlled Formation of Hydroxamic Acids From Indium Triflate-Mediated Nucleophilic Ring-Opening Reactions With Acylnitroso-Diels-Alder Adducts. *Tetrahedron Lett.* **2010**, *51*, 889-891.

4. Yang, B. New Synthetic Applications of Nitroso Diels-Alder and Ene Chemistry. Ph.D. Dissertation, The University of Notre Dame, Notre Dame, IN, 2010.

5. For a brief description of the cancer cell growth inhibition assay performed at UND see the supporting information in: Stefely, J. A.; Palchaudhuri, R.; Miller, P. A.; Peterson, R. J.; Moraski, G. C.; Hergenrother, P. J.; Miller, M. J. *N*-((1-Benzyl-1*H*-1,2,3-triazol-4-yl)methyl)arylamide as a New Scaffold that Provides Rapid Access to Antimicrotubule Agents: Synthesis and Evaluation of Antiproliferative Activity Against Select Cancer Cell Lines. *J. Med. Chem.* **2010**, *53*, 3389-3395.

6. Witte, W.; Cuny, C.; Braulke, C.; Heuck, D. Clonal Dissemination of two MRSA Strains in Germany. *Epidemiol. Infect.* **1994**, *113*, 67-73.

7. Klare, I.; Heier, H.; Claus, H.; Reissbrodt, R.; Witte, W. VanA-Mediated High-Level Glycopeptides Resistance in *Enterococcus faecium* from Animal Husbandry. *FEMS Microbiol. Lett.* **1995**, *125*, 165-172.

8. Zimmermann, W. Penetration of β -Lactam Antibiotics into their Target Enzymes in *Pseudomonas aeruginosa*: Comparison of a Highly Sensitive Mutant with its Parent Strain. *Antimicrob. Agents Chemother.* **1980**, *18*, 94-100.

9. Richmond, M. H.; Clark, D. C.; Wotton, S. Indirect Method for Assessing the Penetration of beta-Lactamase-Nonsusceptible Penicillins and Cephalosporins in *Eschericia coli*. *Antimicrob*. *Agents Chemother*. **1976**, *10*, 215-218.

10. Soule, H. D.; Vazquez, J.; Long, A.; Albert, S.; Brennan, M. A Human Cell Line from a Pleural Effusion Derived from a Breast Carcinoma. *J. Natl. Cancer Inst.* **1973**, *51*, 1409-1416.

11. Alimurah, F.; Chen, J.; Basrawala, Z.; Xin, H.; Choubey, D. DU-145 and PC-3 Human Prostate Cancer Cell Lines Express Androgen Receptor: Implications for the Androgen Receptor Functions and Regulation. *FEBS Lett.* **2006**, *580*, 2294-2300.

12. Rahbari, R.; Sheahan, T.; Modes, V.; Collier, P.; Macfarlane, C.; Badge, R. M. A Novel L1 Retrotransposon Marker for HeLa Cell Line Identification. *BioTechniques* **2009**, *46*, 277-284.

13. Wagaw, S.; Buchwald, S. L. The Synthesis of Aminopyridines: A Method Employing Palladium-Catalyzed Carbon-Nitrogen Bond Formation. *J. Org. Chem.* **1996**, *61*, 7240-7241.