
Supporting Information
Brookes et al. 10.1073/pnas.1112685108
SI Materials and Methods
Beamformer Application, Hilbert Envelope Computation, and In-
dependent Component Analysis: Examples in a Two-Back Working
Memory Experiment. In this section, the algebraic formulations
of beamformer application,Hilbert envelope computation, and ICA
are given. Examples of Hilbert envelope time courses from net-
work nodes of interest, along with temporal independent com-
ponent time courses, are also given. All results shown are derived
from resting state data presented in SI Materials and Methods.
Beamforming. Using a beamformer spatial filter, an estimate of
electrical source strength bQθðtÞ, made at time t and a pre-
determined location in the brain, is given by a weighted sum of
sensor measurements; thus

bQθðtÞ ¼ WT
θmðtÞ; [S1]

(1–3), where m(t) is a vector of magnetic field measurements
made at time t, and Wθ is a vector of weighting parameters tuned
to a predefined source space location and current orientation.
Location and orientation are represented here by a six-element
vector θ. The superscript T indicates a matrix transpose.
The weighting parameters (Wθ) are derived on the basis of

power minimization. The overall power in the output signal bQθðtÞ
is minimized with the linear constraint that power originating
from the location/orientation of interest (θ) remains. Mathe-
matically the beamformer problem is formulated as

minWθ

hbQ2
θ

i
subject to WT

θLθ ¼ 1; [S2]

where bQ2
θ represents source power and is given by bQ2

θ ¼ WT
θCWθ.

C represents the data covariance matrix calculated over a time-
frequency window of interest, and Lθ is the lead field vector,
which is a vector containing the magnetic fields that would be
measured at each of the MEG sensors in response to a source of
unit amplitude with location and orientation specified by θ.
Throughout SI Materials and Methods, Lθ is based on a dipolar
model of neuronal current (4). The solution to Eq. S2 is found
analytically and given by

WT
θ ¼ ½LT

θ fCþ μΣg− 1Lθ�− 1LT
θ fCþ μΣg− 1: [S3]

Σ is a diagonal matrix representing the white noise at each of the
MEG channels and μ is a Backus–Gilbert regularization pa-
rameter and is used to adjust the trade-off between the full width
at half maximum of the point spread function of the final
beamformer image (i.e., spatial resolution) and the magnitude of
uncorrelated noise in the time-course reconstruction. In this
work we set μ = 4 to ensure high SNR in reconstructed time
courses and thus give us the best opportunity to observe tem-
poral correlation. This method also increased spatial smoothness
before concatenation across subjects to lessen the effect of spatial
misregistration. More specifically, the value of 4 was taken from
previously published work (5).
Here, time series bQθðtÞ were reconstructed for a set of loca-

tions placed at the vertices of a regular 5-mm grid spanning the
entire brain. The orientation of each source was based on
a nonlinear search for the orientation of maximum signal to
noise ratio, �Zopt such that mathematically we compute

�Zopt ¼ max
δ

�
WT

θCWθ

WT
θ ΣWθ

�
; 08 ≤ δ≤ 1808; [S4]

where δ is the angle of the source orientation in the tangential
plane with respect to the azimuthal direction and we assume
that θ = (r, δ). This process is equivalent to the scalar beam-
former implementation, also known as synthetic aperture mag-
netometry (SAM).
Hilbert envelope computation. Having computed beamformer
reconstructed time series, bQθðtÞ, for each source space voxel, the
corresponding analytic signal zθðtÞ is given by

zθðtÞ ¼ QθðtÞ þ iHðQθðtÞÞ; [S5]

where HðQθðtÞÞ represents the Hilbert transform of QθðtÞ and is
given by

H½QθðtÞ� ¼ P
�
1
π

ð∞
−∞

QθðuÞ
t− u

du
�
; [S6]

where P denotes the Cauchy principal value of the integral and is
used to take account of the singularity at t ¼ u. This integral
effectively represents a convolution of QθðtÞ with 1=πt. The
magnitude of the analytic signal is defined in Eq. S7, and this
signal yields the envelope of the measured oscillatory activity
in QθðtÞ:

EðQθðtÞÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðQθðtÞÞ2þðHðQθðtÞÞÞ2

q
: [S7]

Throughout SI Materials and Methods, EðQθðtÞÞ is referred to
as the Hilbert envelope signal. Hilbert envelopes were tempo-
rally down-sampled to an effective sampling resolution of 1 s
before ICA.
Fig. S1 shows example temporally down-sampled Hilbert en-

velope signals, extracted from locations of interest in three
separate networks, motor, visual, and left and right frontoparietal
(FP). Locations were defined on the basis of fMRI data presented
in the main text. Results are shown for a single subject. Because
these Hilbert envelope time courses represent resting state data,
no temporal features of interest are distinguishable. However,
note reasonable temporal correlation between time courses from
spatially separate nodes of the same network. These temporal
data form the basis of the results shown in Fig. 2 of the main text.
Independent component analysis. Before ICA, Hilbert envelope
signals from all spatial locations within the brain were temporally
down-sampled to an effective time resolution of 1 s. The resulting
spatiotemporal data were transformed to standard (MNI) space
using FLIRT in FSL, and the voxel size was resampled to an 8-mm
grid. A matrix was formed in which each row represented the
down-sampled Hilbert envelope time course, from a separate
voxel in the brain, concatenated across subjects. Mathematically,

X ¼

2
6664
E
�
Qðsubject 1Þ

r1 ðtÞ
�
; E

�
Qðsubject 2Þ

r1 ðtÞ
�
; . . .

E
�
Qðsubject 1Þ

r2 ðtÞ
�
; E

�
Qðsubject 2Þ

r2 ðtÞ
�
; . . .

. . .

E
�
Qðsubject 1Þ

rN ðtÞ
�
; E

�
Qðsubject 2Þ

rN ðtÞ
�
; . . .

3
7775; [S8]

where r1, r2, etc. represent the different brain space locations, N
is the total number of voxels, and the superscripts (in paren-
theses) indicate subject number. Before concatenation time
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courses were mean corrected and variance normalized. Tempo-
ral ICA was then applied such that the measurements, X, were
defined as linear mixtures of temporally independent signals S,

X ¼ AS; [S9]

where A is the mixing matrix that defines the contribution of
each independent temporal signal to each voxel time course. The
unmixing matrix, W, was estimated giving the contribution of
each voxel time course to each independent component:

bS ¼ WX: [S10]

Temporal independent components were estimated using the
fastICA algorithm in matlab [research.ics.tkk.fi/ica/fastica]. Be-
fore ICA, prewhitening was applied to reduce the dataset to 30
principal components. Twenty-five independent components
were derived. The spatial signature of each tIC (i.e., the maps
shown in Fig. 1) was measured by Pearson correlation between
the tIC and the time course of each voxel in the concatenated
dataset. This process was implemented independently for each
frequency band of interest.
Fig. S2 shows examples of temporal independent components

from four brain networks extracted using ICA: motor (Fig. S2A),
visual (Fig. S2B), left FP (Fig. S2C), and right FP (Fig. S2D).
The temporal independent component (IC) signal is shown in
green. The raw Hilbert envelope signals, extracted from separate
nodes of those networks (i.e., those signals presented in Fig. S1)
are shown in black. Time courses have been mean corrected and
normalized by their maximal value for display. Again, because
these signals represent resting state data, no temporal features
are apparent. However, note reasonable temporal agreement
between raw signals and the tICs.

Other Independent Components Extracted from Resting State Data.
The main text shows ICs that were found to spatially match those
observed in fMRI; however, this number comprised only 7 of 25
components computed in the β-band. Here, 11 further compo-
nents are shown. As in the main text the overlay represents
correlation between the IC time course and time courses for
each voxel, thresholded at a Pearson correlation coefficient of
0.3. Components not shown did not correlate with any voxel
above the threshold.
Fig. S3 shows the spatial structure of the remaining β-band–

independent components. Some of these patterns implicate only
a single brain region, whereas others highlight plausible brain
networks. It is interesting to note cross-hemisphere symmetry
across multiple components; for example, left and right insula
cortices are observed spread across two components (Fig. S3 B
and C, respectively). Likewise left and right sensorimotor areas
are spread across components in Fig. S3 E and F. However, the
direct functional relevance of these components remains unclear
and if such patterns are consistent across MEG datasets, they
may warrant further investigation.

Statistical Significance of Spatial Correlation. Fig. 1 of the main text
shows spatial similarity in RSNs identified independently using
MEG and fMRI. Spatial matching of these maps across mo-
dalities was achieved quantitatively using a spatial Pearson cor-
relation coefficient measure. Here, 3D maps were reshaped into
1D vectors, elements representing spatial locations outside the
brain were removed, and the correlation coefficient between
MEG- and fMRI-derived vectors was computed to give a nu-
merical estimate of spatial similarity. Maps with the largest
correlation coefficients were paired.
The statistical significance of spatial correlations was assessed

using a Monte Carlo approach. Initially 10 MEG measurements
were made, each comprising 300 s of data (recorded using the

third-order gradiometer configuration of the 275-channel system
at a sampling rate of 600 Hz) with no subject in the scanner. These
“empty room” data were filtered into the appropriate frequency
bands and projected into brain space using the same spatial filters
as those used to project real MEG data. (Each of the 10 empty
room measurements was projected using spatial filters derived
from a different individual). This process ensured that any spa-
tial structure introduced to the real data by the spatial filters was
also introduced to the empty room data. Following projection,
Hilbert envelopes were computed and down-sampled to a 1-s
time resolution, and data were smoothed spatially, transformed
to MNI space, and concatenated, yielding a noise dataset
equivalent to the real data used to generate Fig. 1. Following
this, a Monte Carlo approach was adopted. On each iteration of
the algorithm, independent component analysis was applied to
the noise dataset, yielding 25 spatial maps, equivalent to those in
Fig. 1 but whose spatial signature was independent of recorded
brain activity. The spatial Pearson correlation coefficient be-
tween each of these 25 “fake” maps and the eight RSNs iden-
tified using fMRI and shown in Fig. 1 was computed. The
maximum correlation across all 25 independent components was
also logged. Four hundred iterations of this algorithm were run,
across which data segments were randomly switched in time.
This process yielded a total of 10,000 fake correlation co-
efficients and 400 “maximum” correlation coefficients repre-
senting the best spatial match to each of the fMRI-derived RSNs
for each ICA computation. To enable a direct comparison of the
fake spatial correlation coefficient distributions for each net-
work, with equivalent spatial correlation coefficients derived
from the real data, the spatial Pearson correlation coefficients
were also computed between the fMRI- and MEG-derived
RSNs. This procedure was done for 20 repeats of ICA applied to
real data.
Fig. S4 shows the results. The blue curve shows the statistical

distribution of fake spatial correlation coefficients. The green
curve shows the distribution of the highest correlation coefficient
for each ICA iteration. The red line shows the mean spatial
correlation coefficient derived from real data; the gray shaded
area shows SD across 20 ICA iterations for real data. Results for
DMN, left lateral FP network, right lateral FP network, motor
network, medial parietal regions, visual network, frontal lobes,
and cerebellum are shown. Note that because the spatial sig-
natures of the networks are different, the statistical test was
applied to each network individually. This approach was expected
to be more conservative. Statistical values were derived empiri-
cally from the distributions of the maximal correlation (i.e., the
green curves) as this method eliminates the need to correct for
multiple comparisons. Spatial correlation was significant (P <
0.05) for all networks apart from the cerebellum for which there
was generally high correlation between the ICs derived from
empty room data and the fMRI-derived network. However, the
real spatial correlation between modalities for this network is
confounded because limited coverage in fMRI meant a “cutoff”
in the lower half of the cerebellum. This result can be seen
clearly in Fig. 1.

Connectivity Spectra in the Motor and Visual Networks. Fig. 3 of the
main text show envelope correlation measurements applied be-
tween nodes of the default mode and left/right lateralized
frontoparietal networks. For completeness here we show equiv-
alent measurements in the motor network and the visual network.
Fig. S5 shows that significant connectivity is observed between

the left and right primary sensorimotor areas and this observation
is in agreement with previously published results. Connectivity is
mediated by β-band oscillations. Hilbert envelope correlation
between the left and right primary visual areas did not reach
significance according to our simulation approach. This result is
due to crosstalk between spatial filters for those two locations.
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The left and right visual areas were separated by just 32 mm.
Significant signal leakage between these two locations is evi-
denced by high levels of Hilbert envelope correlation in the
simulated data (green line) and we should therefore conclude
that any real connectivity that exists between these two locations
is being masked by crosstalk between spatial filters. This con-
clusion exemplifies the principal limitation of MEG connectivity
metrics and the importance of testing for spurious correlation.

Resting State Neural Oscillatory Power Spectra. Here, for a number
of nodes of interest in the networks presented, we compute
resting state spectra showing the distribution of oscillatory am-
plitude as a function of frequency. For each band, the amplitude
spectrum value is computed as the mean value of the Hilbert
envelope in that frequency band over the entire 5-min resting
state recording. Values are averaged over subjects and mean± SE
is reported.
In general, there is similarity across spectra derived from

different locations with the largest amplitudes in the α- and
β-bands. However, note the subtle differences in the spectra:
Neural oscillations in the frontal areas are characterized by
a bimodal spectrum with clearly separate peaks in the θ- and the
high–β-frequency bands. Oscillations in the motor areas are
strongest in the β-band; this result is not surprising given the
well-characterized role of β-oscillations in motor tasks. Parietal
cortices exhibit strong oscillatory activity in both the α- and low
β-bands whereas visual cortex exhibits an α-band peak as would
be expected (6). Finally, note the demarcation between the
primary visual cortex and the cerebellum, suggesting that activity
in cerebellum is not a result of signal leakage from the occipital
regions but genuinely represents a separate pattern of activity
from this region.
Of most interest is the difference between amplitude spectra

and correlation spectra shown in Fig. 3 and Fig. S6A. In the left
and right FP networks (Fig. S6 D and E) and the default mode
network (Fig. S6A) clear θ-band components are observed in the
amplitude spectra, but not the correlation spectra (Fig. 3), in-
dicating that despite the prevalence of θ-oscillations, they are not
involved in frontoparietal or default mode connectivity. Likewise
note the demarcation between the connectivity spectrum and the
power spectra shown for the motor network (compare Figs. S5A
and S6B). Despite the prevalence of 8- to 13-Hz oscillatory ac-
tivity in both primary sensorimotor regions, no significant cor-
relation is observed between the Hilbert envelopes in this
frequency band.

Consistency of Resting State Networks. To test the consistency of
the spatial structure of the networks identified in Fig. 1, a sep-
arate MEG dataset was used. The new dataset comprised 300-s
resting state recordings made in 14 subjects. In 7 subjects,
resting state data were recorded before a motor task; in the
remaining 7, resting state data were recorded before our
working memory (two-back) task. In both cases the 300-s rest
and the task-positive data were contiguous. As before, MEG
data were recorded using the third-order synthetic gradiometer
configuration of a 275-channel CTF system at a sampling rate of
600 Hz with a 150-Hz low-pass anti-aliasing hardware filter.
Localization of the subject’s head within the MEG helmet and
coregistration of sensor locations to the brain anatomy were
achieved as described in the main text. Processing of MEG data
was also equivalent to that described in Materials and Methods:
Data were projected to source space using a beamformer; for

each voxel the Hilbert envelope was computed and temporally
down-sampled to a 1-s resolution; and data for all subjects were
smoothed spatially (FWHM 5 mm), transformed to MNI space,
and concatenated temporally. Temporal ICA was applied using
fastICA: Prewhitening was applied before ICA to reduce the
dataset to 30 principal components. Twenty-five independent
components were derived. Because results in Fig. 1 used only α-
and β-band–filtered MEG data, only these two frequency bands
were analyzed.
Results of ICA on the 14-subject dataset are compared with

those generated from the original 10-subject dataset in Fig. S7.
Fig. S7 A–H shows the default mode network, the left lateral
frontoparietal network, the right lateral frontoparietal network,
the motor network, medial parietal regions, the visual network,
frontal lobes, and cerebellum, respectively. Fig. S7 A–H, Upper
shows the original result and Fig. S7 A–H, Lower shows the best
spatial match in the comparison dataset. Note that the default
mode network (Fig. S7A) was found in the α-band whereas all
other networks shown were in the β-band. In general we note
qualitative agreement between networks observed using both
datasets. Whereas the quality of the spatial match differed across
components, the brain areas implicated were unambiguously
matched for all eight independent components shown in Fig. 1.
Differences between datasets could be the result of artifacts in
MEG data including environmental interference and bio-
magnetic sources of no interest. Alternatively, they could reflect
genuine differences induced by experimental method; because in
the comparison dataset resting data were recorded contiguously
with task-positive data, subjects were anticipating the start of
a task during the 300-s rest. This observation could conceivably
bring about changes in network measurements.
Fig. S8 shows temporal correlation measurements made be-

tween the IC time course of the DMN (α-band) and that of all of
the other networks (identified in the β-band). Fig. S8, Upper
shows the result for the original data (equivalent to Fig. 3C in the
main text); Fig. S8, Lower shows an equivalent result derived
from the comparison dataset. Once again a degree of synergy is
observed between these two results and both exhibit some
agreement with the equivalent result derived from fMRI data
shown in Fig. 3C. Specifically, for both MEG datasets (and for
fMRI) the largest temporal agreement is observed between
DMN and the left frontoparietal, right frontoparietal, and me-
dial frontal networks. Once again, differences between meas-
urements could be the result of artifacts in MEG data or reflect
genuine differences brought about by experimental method. This
is an area for future study.
This paper has reported the application of beamformer spatial

filtering and independent component analysis to MEG data to
extract the spatiotemporal signature of electrophysiological
resting state brain networks. The results presented, in particular
the agreement between MEG- and fMRI-based RSN measure-
ments, make the paper compelling. Also, this method is a unique
use of ICA in combination with beamformer spatial filtering.
Our work paves the way for further studies to explore this
method, in particular the large parameter space that is impli-
cated. The impacts of changing parameters such as beamformer
regularization, noise normalization, temporal down-sampling,
spatial smoothing, and ICA methodology are, as yet, unknown.
In addition, it is likely that the beamformer/ICA technique will
find application in task-positive studies. This initial work there-
fore opens up hitherto unexplored avenues of research.
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Fig. S1. Examples of Hilbert envelope time courses extracted from four networks: motor (A), visual (B), left FP (C), and right FP (D). Signals have been mean
corrected.

Fig. S2. Temporal signature of four resting state networks: motor (A), visual (B), Left FP (C), and right FP (D).
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Fig. S3. A–K show 11 separate independent components found in the β-band that were not found to spatially match fMRI-based networks.
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Fig. S4. Assessment of the statistical significance of spatial correlation. The blue line shows the statistical distribution of spatial correlation coefficients derived
from 400 iterations of the ICA algorithm applied to MEG noise data. The green line shows the highest correlation for each iteration of ICA. The red line shows
the mean spatial correlation coefficient derived from 20 iterations of ICA applied to the real data; the gray shaded area shows SD across these 20 iterations. A–
H show results for the default mode network, the left lateral frontoparietal network, the right lateral frontoparietal network, the motor network, medial
parietal regions, the visual network, frontal lobes, and cerebellum, respectively.

Fig. S5. Connectivity spectra in (A) the motor network and (B) the visual system.
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Fig. S6. Neural oscillatory amplitude spectra from selected resting state networks of interest: (A) the default mode network, (B) the motor network, (C) visual
areas, (D) the left frontoparietal network, (E) the right frontoparietal network, (F) medial frontal cortex, and (G) cerebellum.
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Fig. S7. Consistency of resting state networks in two multisubject MEG resting state datasets. A–H show spatial maps representing each of the networks
depicted in Fig. 1 of the main text. A–H, Upper show the spatial structure of the RSN identified in the original 10-subject dataset (dataset 1, equivalent to those
shown in Fig. 1). In A–H, Lower the results are derived from a separate dataset comprising 5-min resting state recordings in 14 subjects (dataset 2). (A) Default
mode network (α); (B) left lateral frontoparietal network (β); (C) right lateral frontoparietal network (β); (D) motor network (β); (E) medial parietal regions (β);
(F) visual network (β); (G) frontal lobes including anterior cingulate cortex (β); (H) cerebellum (β).
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Fig. S8. Correlation measurements made between the time course of the DMN (α-band) and all of the other networks (identified in the β-band). Upper, the
result for the original data (equivalent to Fig. 3C in the main text); Lower, the result for the comparison dataset.

Brookes et al. www.pnas.org/cgi/content/short/1112685108 9 of 9

www.pnas.org/cgi/content/short/1112685108

