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1. Electrophysiology

For our simulations, we used the monodomain model of electrical propagation Equation (1) with zero flux bound-
ary conditions. We use an operator splitting fully implicit collocation finite element method in which we alternate the
solve of ODEs and then PDEs at each half PDE time step. The ODEs are integrated using a single iteration backwards
Euler scheme, solved on a graphics processing unit (GPU). The PDE step size was set as 0.1 ms. The PDE solve is
done with a direct solver, SuperLU.
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Cm
(1)

The electrophysiology mesh used 5120 tri-cubic Hermite elements (51,456 degrees of freedom). Activation times
were calculated at the zero crossing of the action potential at every node. Activation times at every node of the
electrophysiology mesh were fitted to the nodes at of the Biomechanics mesh using tri-cubic basis functions.

2. Biomechanics

For the biomechanics (BM) simulations, we used a mesh with 128 tri-cubic Hermite elements (1672 DOF). The
fitted activation time at every BM mesh node is the input to the mechanics model to initiate myofiber contraction. The
material properties of the mechanics model consisted of passive and active material properties.

2.1. Boundary Conditions

Figure 1 shows the nodes where the fixed boundary conditions were applied for the biomechanics simulations.
The yellow nodes on the base were constrained from moving along the long axis direction. The green and the red
epicardial nodes were fixed from rotation with respect the long axis of the heart. Finally, the derivatives at the apical
nodes were constrained to maintain symmetry about the long axis.

Figure 1: Nodes that were fixed during the biomechanics simulations.
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2.2. Passive Material Model
The passive material was assumed to be transversely isotropic, slightly compressible. We employed the strain

energy law shown in Equation (2).

Wpas =
1
2

Cpas · (eQ − 1) + Ccomp(det(F)ln(det(F) − det(F) + 1) (2)

Were F is the deformation gradient tensor.
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In Equation (3), E f f is strain in the fiber direction, Err is the transmural radial strain transverse to the fiber, Ecc is
cross-fiber strain perpendicular to the former two, and the remaining are associated shear strains. Cpas, Ccomp, b f , bt

and b f r are material parameters. See Table 1.

Table 1: Passive material properties of the mechanics model.

Parameter and unit Description Value
Cpas [kPa] Passive stress scaling constant 0.44
b f [-] Parameter associated with fiber strain 18.5
bt [-] Parameter associated with strain transmural to fiber and shear strain in 3.58

radial-crossfiber plane
b f r [-] Parameter associated with shear strains in fiber-radial and fiber-crossfiber plane 1.63
Ccomp [kPa] Bulk modulus 350

2.3. Active Material Model
The generation of active stress in the fiber direction was calculated by the Arts model of sarcomere mechanics

[Lumens et al., 2009], in which the length of the contractile element (Lsc) and a time-variant contractility parameter (C)
were state variables. The normalized length of the series elastic element (LsNorm) was calculated using Equation (4).

LsNorm =
(Ls − Lsc)

LS erEl
(4)

where Ls is the sarcomere length and LS erEl length of the series elastic element during isometric contraction. The
contractile element velocity dLsc

dt is calculated using Equation (5).

dLsc

dt
=

 LsNorm−1
bHill·LsNorm+1 vmax LsNorm ≤ 1

LsNorm−1
bHill·LsNorm+1 vmax · eaHill(LsNorm−1) LsNorm > 1

(5)

This contractile element velocity is a modification from Lumens et al [Lumens et al., 2009], which yields a
hyperbolic Hill-relation between shortening velocity and force. Contractility C is described by

dC
dt

=
1
τr
·CL · frise +

1
τd
·

Crest −C

1 + e
(T−t)
τd

(6)

where t is time elapsed since the electrical activation;

CL = tanh(20(Lsc − Ls0)2) (7)

CL regulates the contractility dependence on contractile element length.

frise = 0.02(8 − x)2x3e−x (8)
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with x = min(8,max(0, t
τr

)) we regulate the rise of contractility.

T = τsc(0.29 + 0.3Lsc) (9)

Equation (9) regulates twitch duration as a function of the contractile element length. The active fiber stress σ f ,a is
calculated by

σ f ,a = σact ·C · (Lsc − Ls0) · LsNorm (10)

Active stress is also generated transverse of the myofibers, , and was about 40% of active stress generated in the
myofiber direction [Lin and Yin, 1998]. Table 2 lists the values of the contractile material parameters.

Table 2: Active material properties of the mechanics model.

Parameter and unit Description Value
aHill [-] Parameter that determines curvature of Hill relation during stretching 1.5
Crest [-] Diastolic contractility level 0.0
bHill [-] Parameter that determines curvature of Hill relation during shortening 1.5
Ls0 [µm] Contractile element length at zero active stress 1.51
LS erEl [µm] Length of series elastic element during isometric contraction 0.04
vmax [ µm

sec ] Unloaded sarcomere shortening velocity 5.0
τd [ms] Relaxation time scaling factor 33.8
τr [ms] Contraction rise time scaling factor 28.1
τsc [ms] Twitch duration time scaling factor (prolonged relaxation) 292.5
σact [kPa] Active stress scaling factor failing (reduced inotropy) 58.4

3. Hemodynamics

The finite element models of each of the ventricles were coupled to a three-element Windkessel model. The
parameters used for LV and RV Windkessel models as well as the Windkessel models for the closed-loop circulation
are shown in Table 3.

Table 3: Circulation Model

Systemic Circulation
Parameter and unit Value
arterial impedance [kPa · sec/lit] 0.1
arterial compliance[ml/kPa] 5.0
peripheral resistance [kPa · sec/lit] 80.0
venous compliance [ml/kPa] 350.0
venous resistance [kPa · sec/lit] 6.0

Pulmonary Circulation
Parameter and unit Value
pulmonary artery impedance[kPa · sec/lit] 0.2
pulmonary artery compliance [ml/kPa] 15.0
pulmonary resistance [kPa · sec/lit] 20.0
venous compliance [ml/kPa] 20.0
venous resistance [kPa · sec/lit] 6.0
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4. Database

All models were constructed and solved using the Continuity software, publicly available at
www.Continuity.ucsd.edu/Continuity/Download. All of the models used in this paper are available in the Continuity
Library with Number ID 998 and 999, titled ”Patient-Specific Modeling of Dyssynchronous Heart Failure: A Case
Study”.
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