Supplementary Information

LEGENDS FOR SUPPLEMENTAL FIGURES

Supplemental Figure S1. (P_{GASI})Wsc1* and (P_{PRCI})Wsc1* are degraded and processed similarly. (A-B) The turnover rate of (A) (P_{PRCI})Wsc1* or (B) (P_{GASI})Wsc1* in wild type and $\Delta pep4$ cells were pulse-labeled at 30°C with [³⁵S]methionine/cysteine for 10 min followed by a cold chase for times indicated. Immunoprecipitated proteins using anti-HA monoclonal antibody were resolved by SDS-PAGE and quantified by phosphorimager analysis. The data plotted reflect three independent experiments with the mean ± SD indicated. The arrowhead denotes the position of a non-specific band that is recognized by anti-HA antibody. (C-E) Western blotting analysis of wild type, $\Delta pep4$, $\Delta vps27$, rsp5-1, $\Delta pep4$ rsp5-1, $\Delta doa4$ and $\Delta pep4\Delta doa4$ cells expressing (P_{GASI})Wsc1*. (F) Cell lysates from wild type and $\Delta pep4$ strains expressing (P_{GASI})Wsc1* or (P_{GASI})Wsc1*-6R were prepared and subject to western blotting.

Supplemental Figure S2. ESCRT mutants disrupt Wsc1*-GFP trafficking to the vacuolar lumen. (A) Pulse-chase analysis was performed in wild type and $\Delta pep4$ cells expressing Wsc1*-GFP as described in supplemental Fig. S1A and B. Anti-GFP monoclonal antibody was used for immunoprecipitation. (B) Wild type (BY4741 background) and various ESCRT mutants (BY4741 background) expressing Wsc1*-GFP were grown to log phase at 30°C and analyzed by confocal and DIC microscopy. Scale bar, 5 µm.

Supplemental Figure S3. Wsc1*-GFP is localized to PVCs and the vacuolar limiting membrane in $\Delta vps27$ and $\Delta pep4\Delta vps27$ cells. Wild type, $\Delta pep4$, $\Delta vps27$ and $\Delta pep4\Delta vps27$ expressing Wsc1*-GFP were incubated with FM4-64 and analyzed by confocal and DIC microscopy. Scale bar, 5 µm.

Supplemental Figure S4. Wsc1* is not degraded via the microautophagy pathway. (A) Cycloheximide chase analysis of wild type, $\Delta pep4$ and microautophagy mutants (BY4741 background) expressing Wsc1* was performed as described in Fig. 5A. The arrowhead denotes the position of a non-specific band that is recognized by anti-HA antibody. (B) Confocal and DIC microscopy of wild type, $\Delta pep4$ and microautophagy mutants expressing Wsc1*-GFP. Scale bar, 5 µm.

Supplemental Figure S5. Entry of Wsc1* into the MVB pathway requires lysine residues in the cytoplasmic domain. Indirect immunofluorescence micrographs of wild type and $\Delta pep4$ expressing Wsc1*-6R. Scale bar, 5 µm.

Supplemental Figure S6. Toxicity of Wsc1*-6R is dosage dependent. (A) Wild type and $\Delta pep4$ cells containing vector control, (P_{PRC1})Wsc1*, (P_{PRC1})Wsc1*-6R, (P_{GAS1})Wsc1* or (P_{GAS1})Wsc1*-6R were grown in selective synthetic media to log phase and diluted to 0.1 OD/mL. OD₆₀₀ readings were monitored at indicated intervals over 10 hours. The data plotted reflect three independent experiments with the mean \pm SD indicated. *p < 0.01. (B) Wild type and $\Delta pep4$ cells containing vector control, (P_{GAL1})Wsc1* or (P_{GAL1})Wsc1*-6R were grown in synthetic complete media containing 3% raffinose to log phase. Cells were harvested and innoculated in synthetic complete media containing 2% galactose at 0.1 OD/mL. Growth was monitored by OD₆₀₀ for 32 hours. **p < 0.002. (C-E) Cell lysates prepared from wild type and $\Delta pep4$ cells expressing Wsc1* or Wsc1*-6R driven by the *PRC1*, *GAS1* or *GAL1* promoters at 8 h were prepared and analyzed by western blotting. Membranes were probed with anti-HA and anti-Sec61p antibodies. Protein levels were visualized and quantified using the Odyssey infrared imaging system. Sec61p was used as a control for loading and normalization. The data reflect three independent experiments with mean \pm SD indicated. ***p < 0.001. (F) Wild type and $\Delta pep4$ cells containing

the control vector, $(P_{GAL1})Wsc1^*$ or $(P_{GAL1})Wsc1^*-6R$ grown in raffinose media were spotted as 10-fold serial dilutions onto glucose and galactose media plates and incubated at 30°C for 2 days and 3 days, respectively.

Supplemental Figure S7. Electron microscopy reveals disrupted internal membranes in the wild type strain expressing (P_{GASI})Wsc1*-6R. Log phase cells were processed for TEM analysis as described in materials and methods. Shown are micrographs of (A) wild type cells with the empty vector (pRS315), (B) wild type cells expressing (P_{GASI})Wsc1*, (C) $\Delta pep4$ cells expressing (P_{GASI})Wsc1*, (D) wild type cells expressing (P_{GASI})Wsc1*-6R and (E) $\Delta pep4$ cells expressing (P_{GASI})Wsc1*-6R. For all panels, a 5,000 magnification micrograph and individual insets at 20,000 magnification are shown. N, nucleus. V, vacuole. Scale bars, 1 µm.

Supplemental Figure S8. The wild type strain expressing (P_{GASI})Wsc1*-6R displays an accumulation of lipid droplet. Wild type cells with an empty vector (pRS315), (P_{GASI})Wsc1* or (P_{GASI})Wsc1*-6R and $\Delta pep4$ cells expressing (P_{GASI})Wsc1* or (P_{GASI})Wsc1*-6R were grown to log phase. They were stained with LD540 and imaged for confocal and DIC microscopy. Scale bar, 5 µm.

Strain	Genotype	Source
W303	Mata, leu2-3, 112, his3-11, trp1-1, ura3-1, can1-100, ade2-1	P. Walter (UCSF)
BY4741	Mat a , $leu2\Delta 0$, $his3\Delta 1$, $met15\Delta 0$, $ura3\Delta 0$	Research Genetics
SWY300	Mata, pRS315, W303 background	This study
SWY342	Mata, pSW104, W303 background	This study
SWY345	Mata, pep4::HIS3, pSW104, W303 background	This study

Supplemental Table S1 Strains used in this study

Strain	Genotype	Source
SWY791	Mata, vps27::KANMX, pSW104, W303 background	This study
SWY792	Mata, pep4::HIS3, vps27::KANMX, pSW104, W303 background	This study
SWY236	Mata, rsp5-1, pSW104, W303 background	This study
SWY1058	Mata, pep4::HIS3, rsp5-1, pSW104, W303 background	This study
SWY1016	Mata, doa4::KANMX, pSW104, W303 background	This study
SWY1018	Mata, pep4::HIS3, doa4::KANMX, pSW104, W303 background	This study
SWY450	Mata, pSW104, BY4741 background	This study
SWY1098	Mata, pep4::KANMX, pSW104, BY4741 background	This study
SWY1099	Mata, ego1::KANMX, pSW104, BY4741 background	This study
SWY1100	Mata, gtr2::KANMX, pSW104, BY4741 background	This study
SWY1101	Mata, ego3::KANMX, pSW104, BY4741 background	This study
SWY552	Mata, pSW148, W303 background	This study
SWY553	Mata, pep4::HIS3, pSW148, W303 background	This study
SWY806	Mata, vps27::KANMX, pSW148, W303 background	This study
SWY807	Mata, pep4::HIS3, vps27::KANMX, pSW148, W303 background	This study
SWY280	Mata, rsp5-1, pSW148, W303 background	This study
SWY1062	Mata, pep4::HIS3, rsp5-1, pSW148, W303 background	This study
SWY292	Mata, rsp5-1, pSW148, W303 background	This study
SWY1063	Mata, pep4::HIS3, rsp5-1, pSW148, W303 background	This study
SWY753	Mata, pSW177, W303 background	This study
SWY754	Mata, pep4::HIS3, pSW177, W303 background	This study
SWY1036	Mata, rsp5-1, pSW177, W303 background	This study
SWY1061	Mata, pep4::HIS3, rsp5-1, pSW177, W303 background	This study
SWY747	Mata, pSW177, BY4741 background	This study

Strain	Genotype	Source
SWY748	Mata, vps27::KANMX, pSW177, BY4741 background	This study
SWY748	Mata, vps27::KANMX, pSW177, BY4741 background	This study
SWY702	Mata, hse1::KANMX, pSW177, BY4741 background	This study
SWY704	Mata, vps23::KANMX, pSW177, BY4741 background	This study
SWY706	Mata, vps28::KANMX, pSW177, BY4741 background	This study
SWY708	Mata, vps37::KANMX, pSW177, BY4741 background	This study
SWY738	Mata, mvb12::KANMX, pSW177, BY4741 background	This study
SWY710	Mata, vps36::KANMX, pSW177, BY4741 background	This study
SWY712	Mata, vps22::KANMX, pSW177, BY4741 background	This study
SWY714	Mata, vps25::KANMX, pSW177, BY4741 background	This study
SWY716	Mata, snf7::KANMX, pSW177, BY4741 background	This study
SWY718	Mata, vps20::KANMX, pSW177, BY4741 background	This study
SWY720	Mata, vps2::KANMX, pSW177, BY4741 background	This study
SWY722	Mata, vps24::KANMX, pSW177, BY4741 background	This study
SWY672	Mata, vps4::KANMX, pSW177, BY4741 background	This study
SWY724	Mata, bro1::KANMX, pSW177, BY4741 background	This study
SWY728	Mata, did2::KANMX, pSW177, BY4741 background	This study
SWY1073	Mata, ist1::KANMX, pSW177, BY4741 background	This study
SWY730	Mata, vps60::KANMX, pSW177, BY4741 background	This study
SWY732	Mata, vta1::KANMX, pSW177, BY4741 background	This study
SWY1093	Mata, tul1::KANMX, pSW177, BY4741 background	This study
SWY233	Mata, pSW252, W303 background	This study
SWY234	Mata, pep4::HIS3, pSW252, W303 background	This study
SWY1066	Mata, pSW257, W303 background	This study

Strain	Genotype	Source
SWY1067	Mata, pep4::HIS3, pSW257, W303 background	This study
ESY342	Mata, pES67, W303 background	(1)
ESY349	Mata, pep4::HIS3, pES67, W303 background	(1)
SWY837	Mata, vps27::KANMX, pES67, W303 background	This study
SWY819	Mata, pSW182, W303 background	This study
SWY820	Mata, pep4::HIS3, pSW182, W303 background	This study
SWY821	Mata, vps27::KANMX, pSW182, W303 background	This study
SWY1115	Mata, pSW263, W303 background	This study
SWY1116	Mata, pep4::HIS3, pSW263, W303 background	This study

Supplemental Table S2 Oligonucleotide primers used in this study

Primer	Construct	Sequence $(5' \rightarrow 3')$
SWN5	pSW177	GCCCATCGATATCAGCTTCGTCTGGATTGACC
SWN38	pSW177	CAGAATTCTTTCCACTCCTCC
SWN39	pSW177	CTAGTCTAGATTATTTGTATAGTTCATCCATGCCA
SWN87	pSW257	ATAAGAATGCGGCCGCGGAAGGCACCCTTTTCGAAGG
SWN88	pSW257	ACATGGATCCTGTTGAGATTTAGCTGTGTTTGTTG
SWN99	pSW177	ATAAGAATGCGGCCGCCGTATATGATGATACATATGTTAGG
SWN100	pSW182	ATAAGAATGCGGCCGCACGGATTAGAAGCCGCCGAGCGGGTG
SWN101	pSW182	CGCGGATCCGGTTTTTTCTCCTTGACGTTAAAGTATAGAGG
SWN103	pSW252	GTTGATTGTCAGACACATTAATATGAGACGGGAACAAGACAGG
		ATGGAAAAGG
SWN104	pSW252	GAAGCGGGAACAAGACAGGATGGAAAGAGAATACCAAGAGGC

Primer	Construct	Sequence (5'→3')
		GATAAAACCAG
SWN105	pSW252	GGAAAAGGAATACCAAGAGGCGATAAGACCAGTTGAGTACCCT
		GATAAACTAT
SWN106	pSW252	GATAAAACCAGTTGAGTACCCTGATAGACTATACGCCTCTTCAT
		ТТТСАТСТА
SWN107	pSW252	GGTAGCTTCGAGGAGGAGCACACCAGAGGGGCAAACTGATATTA
		ACCCTTTC
SWN108	pSW252	CATTCATAAATGGCGGACCAGGAGGAGAAACAACGTTTTAAC
		AGTGGTCAATCC

SUPPLEMENTAL REFERENCES

1. Spear, E. D., and Ng, D. T. (2003) *Mol Biol Cell* **14**(7), 2756-2767

Figure S3

10

Α

В

А

D

∆pep4 + (P_{GAS1})Wsc1*-6R

в

∆pep4 + (P_{GAS1})Wsc1*

С

WT + empty vector

WT + (P_{GAS1})Wsc1*

WT + (PGAS1)Wsc1*-6R

∆pep4 + (P_{GAS1})Wsc1*

∆*pep4* + (P_{GAS1})Wsc1*-6R