Supplemental Data

HIGHLY EFFICIENT AND MORE GENERAL CIS- AND TRANS-SPLICING INTEINS THROUGH SEQUENTIAL DIRECTED EVOLUTION

Julia H. Appleby-Tagoe^{a,*}, Ilka V. Thiel^{b,*}, Yi Wang^a, Yanfei Wang^a, Henning D. Mootz^{b,#}, and Xiang-Qin Liu^{a,#}

^a Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, B3H 1X5, Canada

^b University of Muenster, Institute of Biochemistry, Wilhelm-Klemm-Str. 2, 48149 Muenster, Germany

* These authors contributed equally

[#] To whom correspondence should be addressed: E-mail: <u>Paul.Liu@Dal.Ca, Henning.Mootz@uni-</u> <u>muenster.de</u>

Table of contents

Figure S1:	Structural presentation of selected insertion sites in the KanR protein.	S-2
Figure S2:	C-terminal cleavage activity of inteins with mutated N-terminal splice junction.	S-3
Table S1:	Contributions of individual mutations to the splicing efficiency at the insertion site 1 in the KanR protein.	S-4

Supplemental Data

FIGURE S1: Structural presentation of selected insertion sites in the KanR protein. The ribbon structure is adapted from the crystal structure (32) of APH(3')-IIa, which is homologous to the APH(3')-I KanR protein used in this study. The selected insertion sites are numbered 1 through 10 and marked with arrows.

Figure S2

FIGURE S2: C-terminal cleavage activity of inteins with mutated N-terminal splice junction. The peptide containing an alanine at the position of the catalytic Cys1 (pep3, 75 μ M) was incubated with constructs 1 (wild-type, 15 μ M) and 2 (M86 mutant, 15 μ M) for 24 h at 25°C. Aliquots were withdrawn at the indicated time points and the reaction mixtures were separated by SDS-PAGE and analyzed using Coomassie Brilliant Blue staining (left) and UV-illumination (right). See Fig. 3 for the numbering of the proteins and for the calculated molecular weights. The asterisk denotes contaminant impurity protein bands.

Table S1: Contributions of individual mutations to the splicing efficiency at the insertion site	e 1 in the
KanR protein.	

Mutant Inteins	Mutations ^a			Splicing Efficiency (%) At Insertion Site 1
WT				<5
M1	K20R	D24G	I58T	73
M1-1	K20R			8
M3-1		D24G		11
M3-2			I58T	30
M1-2	K20R	D24G		24
M3		D24G	I58T	36

^a All mutations are relative to the wild-type sequence of the *Ssp* DnaB mini-intein.