Supplemental material

OXIME-ASSISTED ACETYLCHOLINESTERASE CATALYTIC SCAVENGERS OF ORGANOPHOSPHATES THAT RESIST AGING

Rory Cochran¹, Jarosław Kalisiak², Tuba Kucukkilinc¹, Zoran Radić¹, Edzna Garcia¹, Limin Zhang¹, Kwok-Yiu Ho¹, Gabriel Amitai³, Zrinka Kovarik⁴, Valery V. Fokin², K. Barry Sharpless², and Palmer Taylor¹

 ¹Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA 92093-0650
²Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037
³Division of Medicinal Chemistry, Israel Institute for Biological Research, P.O. Box 19, Ness Ziona 74100, Israel
⁴Institute for Medical Research and Occupational Health, P.O. Box 291, HR-10001 Zagreb, Croatia Running Title: Aging resistant AChE based OP bio-scavengers
Address correspondence to: Palmer Taylor, SSPPS, UCSD, 9500 Gilman Drive, La Jolla, CA 92093-0657; Tel: 858-534-44028; Fax:858-534-8248; E-mail:pwtaylor@ucsd.edu

Figure S1. Structures of organophosphate inhibitors and oxime reactivators used in this study.

A) structures of the four Flu-MP nerve agent analogues (sarin, soman, cyclosarin, and VX) and paraoxon, the oxon form of the pesticide, parathion, and B) structures of the oximes 2-PAM and HI-6.

List of used alkynes

	Α	В	С	D	E	F
1	N ₃	N ₃ S	HO N3	N ₃ H O H O		N ₃ O ^S NH ₂
2	N ₃	N N H N ₃	HON ₃	N ₃ N _{\$N} /NH	N ₃	N ₃
3	z ,	0 ₂ N-\N ₃	FN-N	N ₃ N ₂ N ₂ NH	HON3	
4	N ₃	Br — N ₃	O N O	HO N ₃ N _N NH	NHTs	N ₃ ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
5	F ₃ C-	Me Me Me	O HN N3	N ₃	H ₂ N N ₃	N N3
6	NC-	O N H N N N N N N N N N	HOOC N ₃			N N N N O
7	N ₃ MeO		° ° °	×	NH ₂	H ₂ N N ₃
8	Me-	NN3	O N N N O N N O	O N ₃	H ₂ N ^N 3	O2N N N3
9	F ₃ C-	N ₃	N ₃ N HN	BrN3	F ₃ C	O ₂ N N ₃
10	Br	Eto N ₃			⟨⊃¬₀¬ _{N₃}	HO-V-N3 OH

A) List of used azides with alkynes B - K

	Α	В	С	D	E	F
1	HON	NOH N CI N CI	°N ∧ NOH Ci ^ρ N ₃		O NH2 O C ^P	\mathbf{N}
2	СР Noh N ₃	CI [®] NoH	CP N	NOH N CI ^P N ₃	HON CI [°] N3	

Figure S2: Library of novel click-chemistry oximes used in this study.

Figure S3. Schematic of the oxime screening procedure. A) oxime capacity for reactivation was assayed initially in a 96-well format. Oximes were aliquoted into two columns (48 oximes screened/96-well plate) for detecting both oxime inhibitory and reactivating properties. B) auspicious oximes were better characterized in a more rigorous format; screening five at a time to obtain k_{obs} . C) best reactivators were characterized to determine their k_r , k_{max} , K_{ox} .

Figure S4. pS curves of enzyme activity for wt hAChE (circles) and mutants F338A (triangles), and Y337A/F338A (squares) in 0.1M phosphate buffer pH 7.4 at 22°C. Curves are obtained by nonlinear regression and resulting constants are given in Table 1.

Figure S5. Semi-log representation of reactivation kinetics of soman inhibited human AChE mutants refractory to aging, by HI-6, presented in Figure 2. Reactivation constants determined by nonlinear regression of data for human AChE mutants F338A (squares), E202Q/Y337A (black circles), F295L/F338A (triangles) and Y337A/F338A (white circles) in 0.1M phosphate buffer pH 7.4 at 22°C are given in Table 3.

Figure S6. Reactivation kinetics for OP inhibited human AChE wild-type (black symbols) and Y337A/F338A mutant (white symbols) with HI-6 in 0.1M phosphate buffer pH 7.4 at 22°C. Enzymes were inhibited by paraoxon (circles), VX (inverted triangles), sarin (squares), cyclosarin (diamonds) and soman (triangles). Reactivation constants obtained by nonlinear regression are given in Table 4. Inset: Expanded Y –axis representation of paraoxon inhibited hAChE reactivation kinetics.

Table S1. Three top-ranked oxime candidates for reactivation of hAChE Y337A/F338A mutant inhibited with paraoxon. Reactivation was carried out in 0.1 M phosphate buffer pH 7.4 at 37 0 C with 0.67 μ M oxime concentration.

