

Association of Maternal Age with Infant Mortality, Child Anthropometric Failure, Diarrhoea, and Anaemia for First Births in Low- and Middle-Income Countries

Journal:	BMJ Open
Manuscript ID:	bmjopen-2011-000226
Article Type:	Research
Date Submitted by the Author:	17-Jun-2011
Complete List of Authors:	Finlay, Jocelyn; Harvard School of Public Health, Global Health and Population Ozaltin, Emre; Harvard School of Public Health, Global Health and Population Canning, David; Harvard School of Public Health, Global Health and Population
Primary Subject Heading :	Public health
Keywords:	PUBLIC HEALTH, PREVENTIVE MEDICINE, Community child health < PAEDIATRICS

BMJ Open

1	
2	Title
3 4	
- 5 6	Association of Maternal Age with Infant Mortality, Child Anthropometric Failure, Diarrhoea, and Anaemia for First Births
7 8	in Low- and Middle-Income Countries
9 10	Author, Degrees and Affiliation
11 12 13	Jocelyn E. Finlay, PhD, Department of Global Health and Population, Harvard School of Public Health, USA
13 14 15	Emre Özaltin, MSc, Department of Global Health and Population, Harvard School of Public Health, USA
16 17	David Canning, PhD, Department of Global Health and Population, Harvard School of Public Health, USA
18 19	Corresponding Author
20 21 22	Jocelyn E. Finlay, Research Associate, Harvard Centre for Population and Development Studies, 9 Bow St, Cambridge, MA
23 24	02138, USA. Tel: 617-372-735; Email: jfinlay@hsph.harvard.edu
25 26 27	Running head: Maternal Age and Child Health
28	
29	
30	
31	
32	
33	
34	
35 36	
30 37	
38	
39	
40	
41	
42	
43	
44 45	
45 46	
40 47	
48	
49	
50	
51	
52	
53	
54	

Objective: To examine the association between maternal age at first birth and infant mortality, stunting, underweight, wasting, diarrhoea and anaemia of children in low- middle-income countries.

Design: Cross-sectional analysis of nationally representative household samples. A modified Poisson regression model is used to estimate relative risk ratios. Unadjusted relative risk ratios by country and pooled across countries are presented as are ratios after adjusting for maternal, paternal, household and social covariates for the pooled sample.

Setting: Low- and middle-income countries

Population: First births to women aged 12-35 and where this birth occurred 12-60 months prior to the interview. Information on infant mortality in the last five years and current child health was obtained from a personal interview and anthropometric measurement. The sample for analyzing infant mortality is comprised of 176,583 children in 55 lowand middle-income countries across 118 Demographic and Health Surveys conducted between 1990 and 2008. Main Outcome Measures: In under 12 months: infant mortality. In under 5s: stunting, underweight, wasting, diarrhoea

and anaemia.

Results: The majority of women have their first birth before the age of 24 (83.1%; 146,578/176,583). In adjusted models, the relative risk of infant mortality is minimized if the first birth is between the ages of 18-32, and is higher when the first birth is between the ages of 12-17, and 33-35 (RRR 1.307, 95% Cl 1.160 to 1.474 for 15-17 year old mothers compared to the reference group of women aged 27-29). Women who have their first birth aged 12-26 face a higher risk of having a child who is stunted than women who have their first birth age 27-35. For underweight, the risk is lowest for women aged 21-35 (RRR 1.218, 95% Cl 1.131 to 1.313 for risk of underweight for 15-17 year old mothers). For child health outcomes of diarrhoea and anaemia the risk is lowest for women aged 27-35 at first birth. Adjusted RRR is 1.357, 95% Cl 1.222 to 1.507 for risk of a first born child with moderate or strong anaemia for 15-17 year old mothers compared to the reference group. For wasting, the risk is equal across the age of mother at first birth. Young maternal age worsens child health outcomes. The effects are largest for very young mothers, but child health outcomes continue to improve if first birth is delayed until age 27 (for example, RRR 1.239, 95% Cl 1.114 to 1.378 for risk of a first born child with moderate or strong anaemia for risk of a first born child with moderate or strong anaemia for risk of a first born child with moderate or strong anaemia for risk of a first born child with moderate or strong anaemia for risk of a first born child with moderate or strong anaemia for risk of a first born child with moderate or strong anaemia for risk of a first born child with moderate or strong anaemia for risk of a first born child with moderate or strong anaemia for mothers age 24-26).

Conclusions: Adolescent mothers are the most vulnerable to infant mortality and poor child health outcomes.

Additionally, first time mothers up to the age of 27 have higher risk of having a child who suffers from stunting,

BMJ Open

diarrhoea and moderate or strong anaemia. Maternal and child health programs should take account of this increased risk even for mothers in their twenties. Increasing age as first birth in developing countries may have large benefits in terms of child health.

Article summary

Article focus

In this article we used data from 118 Demographic and Health Surveys covering 55 low- to middle- income countries to investigate the effect of age of mother at first birth on infant mortality and child health outcomes.

Using this data, we explore the relative risk of infant mortality and child health by age of mother at birth; the role of biological and socio-economic factors that are captured in the effect of age of mother on child health; and whether high socio-economic status compensates for poor health outcomes of children to young mothers.

Key messages

- In a global sample of women who had their first birth between the ages of 12 and 35, we found the risk of poor child health outcome is lowest for women who have their first birth between the ages of 27-29.

We attempt to separate out the biological and social mechanisms associated with young age at first birth. The biological mechanism is grounded in the fact that younger women are biologically immature. The social mechanism draws on the hypothesis that younger mothers are more likely to be socio-economically disadvantaged. We find that both biological and social mechanisms play an equal role in explaining why children of young mothers have poorer outcomes in terms of infant mortality, underweight, wasting and anaemia. For the other two outcomes we explore in the paper, stunting and diarrhoea, we find that the biological mechanism is stronger than the social mechanism.
We find that while the absolute risk of poor child health outcomes is lower for children of high SES mothers than that of children to low SES mothers, the relative risk of a poor child health outcomes to young mothers is higher for high SES mothers.

Strengths and limitations of this study

- A large sample representing 176,583 first births across 55 low- to middle- income countries is used.

- A large number of covariates that enable the separation of biological and socio-economic influences on child health are

applied.

Strengths

- A range of child health outcomes rather than just one indicator are explored.

Weaknesses

- Age reporting of mother and child can be inaccurate, especially in low- to middle-income countries.

<text> - Measures for income included in the Demographic and Health Surveys may not represent full income of the household.

BMJ Open

Introduction

Progress towards reaching Millennium Development Goal 4 (child health) focuses on the measurable reduction in under-5 mortality. In low- to middle-income countries, this also means "revitalizing efforts against...diarrhoea, while bolstering nutrition...".¹ The risk of under-5 mortality, and the prevalence of diarrheal disease and nutritional deficiencies that manifest themselves in outcomes such as stunting, wasting, underweight and anaemia in young children, underscore the need to understand the basic determinants of these poor child health outcomes. In India alone, 6.0% (95% CI 5.7-6.3) children die before their fifth birthday. In the same population, for children under-5, 42.2% are underweight, 47.8% are stunted, 19.7% are wasted, and 69.1% are anaemic.² Cross-country studies highlight that these prevalence percentages are the norm throughout low- to middle-income countries.³ A report on adolescent girls in lowto middle-income countries by the Centre for Global Development⁴ highlighted the risk to child health associated with young motherhood. When considering child health, the report draws on the intergenerational influence on child health outcomes, rather than a cross sectional observation of children alone. The effect of the age of mother at birth on child health outcomes has been explored in a few country studies in low- to middle-income context. ⁵⁻¹⁴ In the case of India, Raj *et al*¹³ show that children to mothers who were married as minors were at a higher risk of stunting and underweight compared to children of women who had married at majority age. In another study, using the World Fertility Survey Trussell and Hammerslough¹⁴ also found that mothers' age at first birth was a significant risk factors of infant mortality in Sri Lanka. In low- to middle-income countries, 26.5% of women have their first birth before the age of 18, and 83.1% have it before age 24. Much debate, particularly with US population samples, concerns the social versus physiological influence of young motherhood on child health outcomes.¹⁵⁻²¹ Young age can proxy for "short stature, low body weight in relation to height, and greater likelihood of inadequate weight gain during pregnancy along with difficulty of delivery"²² These physiological factors point to vulnerability for poor child health outcomes. Women in low- to middleincome countries who have children at a young age are also more likely to be, and remain, poor and uneducated.⁴ These social factors also disadvantage young mothers in terms of their child's health outcome. Analysis that generalizes across and within countries, rather than focusing on a sample from a single country, provides standardized analyses and results to assess age as a proxy for physiological immaturity and social disadvantage and the effect on child health outcomes.

Early work by Hobcraft¹² in 1992 examines the effect of age at first birth on child survival in a number of countries using Demographic and Health Surveys available at that time. Given the prevalence of poor child health outcomes in low- to middle-income countries, and not just high infant mortality, studies that extend the monitoring of child health beyond infant mortality provide valuable information regarding health disparities and progress in achieving MDG4, and its sub-goals relating to child health.

The purpose of the current study to assess the association between maternal age at first birth and child health outcomes: infant mortality, stunting, underweight, wasting, diarrhoea, and moderate or strong anaemia. Taking account of confounding socio-economic factors, the physiological effect of young motherhood on child health can be parsed out from the social disadvantage that young mothers are also likely to face. The findings could critically inform family planning policies and programs aimed at delaying first birth beyond the teenage years.

Methods

Data Source

Information from 118 Demographic and Health Surveys (DHS) conducted in 55 countries between 1990 and 2008 provided the data for the analysis in this study.²³ The DHS are nationally representative household sample surveys that measure population, health, socio-economic, and anthropometric indicators, emphasizing maternal and child health.²⁴ The DHS are important data source for studying population health across developing countries due to extensive coverage, comparability, and data quality.²⁵⁻²⁷ To ensure standardization and comparability across diverse sites and time, DHS research employs intense interviewer training, standardized measurement tools and techniques, an identical core questionnaire, and instrument pretesting.²⁸ Country reports detail pretesting and quality assurance measures by survey (see <u>www.measuredhs.com/pubs/search/search_results.cfm?Type=5&srchTp=type&newSrch=1</u>). The DHS is modular in structure, and in addition to the core questionnaire, a set of country-relevant sections, and country-specific variables. The DHS provides data with standardized variables across surveys (see www.measuredhs.com/pubs/odf/DHSG4/Recode4DHS.pdf).

Sampling Plan

Page 7 of 40

BMJ Open

The DHS involves stratified cluster randomized samples of households.²⁹ Every survey population is stratified by urban and rural status and additionally by country-specific geographic or administrative regions. Within each stratified area random clusters of households are drawn from a list of all enumeration areas taken from a population census. In the second stage of sampling, all private households within the cluster were listed (institutions excluded) and an average of 25 houses within a cluster are selected by equal probability systematic sampling to be surveyed. Detailed sampling plans are available from survey final reports at

www.measuredhs.com/pubs/search/search_results.cfm?Type=5&srchTp=type&newSrch=1.

Within each sampled household a household questionnaire is administered and women eligible for a more detailed women's survey are identified. In most surveys all women between the ages of 15-49 are interviewed. In a limited number of surveys the target group it is women aged 10-49, or 15-45, or ever-married women. The child anthropometry module was conducted in a selection of the Standard Demographic and Health Surveys http://www.measuredhs.com/aboutsurveys/biomarkers/surveys.cfm. The DHS provides weights that can be used to make the sample nationally representative.

Study Population and Sample Size

Our sample consists of children born to women who have had their first birth in the period 12-60 months before the survey. The lower bound of 12 months is applied so that each child has equal exposure to one year of life and we can accurately calculate the infant mortality (children who die within the first year of life). Detailed child health measures are only taken for children up to 60 months which establishes our upper bound. Note the upper bound is to 60 months rather than 59 to conform to the World Health Organization norm. Only the first birth is in the sample for each woman, for multiply births we only use data from the first recorded birth, though we control for this being a part of a multiple birth. The initial sample is 288,752 children across 72 countries from 181 surveys. Infant mortality status is not available for 5,313 of these children reducing the sample to 283,439. Not all mothers' age at the first birth is recorded (1,564 missing) reducing the sample to 280,146 children. The age of mother is restricted to 12-35 as only 13 of the mothers had their children at age less than 12 and 1716 had their first birth at 36 or older. This leaves the sample at 280,146. We lose a significant number of observations due to missing covariates since not all surveys collect data on all

our covariate (103,563 observations lost), yielding the final sample of 176,583 children across 55 countries and 118 surveys for our mortality study. Details of the samples for the child health outcomes are given in the appendix Table A1, these samples are smaller due to child anthropometric module not conducted in a number of surveys. The stunting data set is based on 119,018 children, the wasting data set is based on 120,246 children, the underweight data set is based on 122,680 children, the diarrhoea data set is based on 135,121 children, and the anaemia data set is based on 31,520 children.

Outcome Measures

 In this study, we focus on six outcomes: infant mortality, child stunting, underweight, wasting, diarrhoea, and moderate anaemia. All measures are for children born 12-60 months prior to the interview. Infant mortality is a measure of whether or not the child survived to age 1 year. We also measure anthropometric failure. First, we calculate a z-score given by the child's height minus the median height for that child's age and sex in a reference population divided by the standard deviation of this group in the reference population. We use the World Health Organization reference population of health children in developing countries.³⁰ Stunting is defined as a height z-score of less than minus two. Similarly, underweight is defined as a z-score less than minus two for weight relative to children of the same sex and age in the reference population. Wasting is defined as a z-score less than minus two for weight-to-height relative to children of the same sex and age in the reference population. Biologically impossible values are defined by the WHO for height (stunting) as z-scores <-6 or >6; for weight (underweight) as <-6 or >5; and for weight for height (wasting) as <-5 or >5. These observations with biologically impossible values are dropped from our samples.

The outcome of child diarrhoea is based on the mother's recall of whether their child has had diarrhoea within the two weeks prior to interview. Anaemia is measured by a fingerstick blood test from the child at the time of interview. The first two drops of blood were discarded and the third drop was taken as a sample. The blood drop was analyzed using the HemoCue system. Adjustments for altitude are taken into account, and children with a haemoglobin concentration less than 11 grams per decilitre are considered has having moderate anaemia.

Exposure and Covariates

Page 9 of 40

BMJ Open

In this study we classify the covariates into four different categories: child characteristics, maternal characteristics and finally household and social factors. The child characteristics are child sex, singleton or multiple births, and the age of child in months. The covariate for the age of child is not included in the infant mortality model (which depends only on survival to age one year) but is included in all other models. Children's age in months is categorized into four groups: 12-23, 24-35, 36-47, and 48-60.

The maternal factors that we include in this study are mother's age, her height, and her educational attainment. Our exposure of interest in mother's age at the first birth. Age is categorized into three-year intervals: ages 12-14, 15-17, 18-20, 21-23, 24-26, 27-29, 30-32 and 33-35. Not all surveys measure women's height. In our main results, we do not control for height but, since maternal height has been shown to be a predictor of child health, ³¹ we do perform a sensitivity analysis where we see the effect of adding maternal height as a covariate and restrict the sample to observations where mother's height is available. The height of the mother is in five categories: 100-144cm, 145-149cm, 150-154cm, 155-159cm and 160-200cm. Maternal education is classified into three categories: no education or less than completed primary, completed primary, and completed secondary or higher. Paternal covariates are whether the women has a partner and if so the partner's age and education level. Partners are typically older than the women are and partner's age is split into six categories: 12-17, 18-23, 24-29, 30-35, 36-41, 42-59. Partner's education follows the same groupings as coded for mother's education: no education or less than completed primary, completed primary, and completed secondary or higher.

Household and social factors include the wealth quintile of the household and whether the household is in a rural or an urban location. The wealth quintile is a within-country measure of the wealth of the household relative to other households in that survey based on its ownership of household assets. We also include indicators for piped water to the house, and a flush toilet in household. In addition to these household measures, we include a cluster level measure: the percentage of living children aged 12-60 months who have received measles vaccination in the cluster. We do not have vaccination data for children who have died and the cluster level measles vaccination percentage allows us to control for neighbourhood health system inputs.

Statistical Analysis

To measure the relative risk of a given outcome we applied a modified Poisson regression following Zou's⁹ methodology. We estimate the unadjusted model only controlling for country fixed effects and survey-year dummies to account for the uneven repeated cross section. We then estimate the adjusted model and include the covariates. While summary statistics are weighted to take into account the multistage sampling design, the regressions are not weighted.³²

Results

Results: Summary Statistics

In the infant mortality model (n=176,583 children) 23.9% of the women are between the ages of 15 and 17 at first birth and 35.2% are between the ages of 18 and 20 (Table 1). The reference group in the regression analysis is children whose mothers were aged 27-29 year old at first birth. This group represents 4.3% of the population with 7,648 children. Children of multiple births are rare (0.8%), most women (92.9%) have partners, 60% of the children were born in rural areas, 43.6% have piped water to the house the remainder has to leave the house to collect water, and 30.9% of the children have a flush toilet at the house. Distributions of covariates are similar across the different outcome models (Table 1).

In **Figure 1** we plot the prevalence of the child health outcome against the age of the mother at first birth. The weighted fraction of child health outcomes by age is an extension of the statistics reported in **Table 1** of child health outcomes by age band. We see that, in general, the prevalence of poor child health outcomes declines with mother's age to about age 27. The decline in poor child health outcomes with maternal age is particularly obvious for stunting, anaemia, and underweight, but is also evident for diarrhoea, infant mortality and wasting.

BMJ Open

	Infant N Population	1ortality Weighted Fraction	Stun Population	iting Weighted Fraction	Underw Population	eight Weighted Fraction	Was Population	ting Weighted Fraction	Diarr Population	hoea Weighted Fraction	Moderate Population	Anaemia Weighted Fraction
	n=17		n=11		n=122,		n=120		n=13!		n=31	
Age Band of the Mother at First Birth												
12-14	4,497	0.026	2,301	0.020	2443	0.020	2,379	0.020	2,851	0.021	514	0.016
15-17	42,233	0.239	25,882	0.219	26839	0.220	26,335	0.220	30,011	0.222	6,531	0.203
18-20	62,091	0.352	41,492	0.351	42868	0.352	42,054	0.352	47,425	0.351	11,753	0.366
21-23	37,757	0.214	26,427	0.224	27127	0.223	26,594	0.223	29,927	0.222	7,563	0.236
24-26	17,383	0.099	12,669	0.107	12936	0.106	12,690	0.106	14,258	0.106	3,355	0.105
27-29	7,648	0.043	5,722	0.048	5883	0.048	5,771	0.048	6,480	0.048	1,481	0.046
30-32	3,377	0.019	2,566	0.022	2616	0.022	2,547	0.021	2,884	0.021	650	0.020
33-35	1,399	0.008	1,075	0.009	1085	0.009	1,075	0.009	1,203	0.009	249	0.008
Sex of Child												
Male	90,302	0.512	59,709	0.505	61867	0.508	60,577	0.507	68,501	0.507	16,438	0.51
Female	86,083	0.488	58,424	0.495	59929	0.492	58,867	0.493	66,539	0.493	15,658	0.48
Type of Birth						•						
Singleton	174,947	0.992	117,235	0.992	120853	0.992	118,515	0.992	134,004	0.992	31,850	0.99
Twin	1,438	0.008	898	0.008	944	0.008	930	0.008	1,036	0.008	247	0.00
Age of Child in Months	44 5 4 2	0.050	24 472	0.007	24700	0.202	24.252	0.204	27.012	0.200	7 550	0.00
48-60 months	44,542	0.253	24,472	0.207	24780	0.203	24,353	0.204	27,013	0.200	7,552	0.23
36-47 months 24-35 months	42,793	0.243 0.244	26,908	0.228	27694	0.227 0.268	27,210	0.228	31,330	0.232	7,867 7,961	0.24 0.24
12-23 months	43,082	0.244	31,485	0.267 0.299	32603		31,950 35,932	0.267	36,595	0.271 0.297	8,717	
12-23 months	45,968	0.201	35,268	0.299	36718	0.301	35,932	0.301	40,101	0.297	8,717	0.27
Education Level of the Mother at Time	of Interview											
Secondary or higher	36,152	0.205	27,729	0.235	28308	0.232	27,757	0.232	31,177	0.231	6,562	0.20
Completed primary	57,645	0.203	40,543	0.343	41341	0.339	40,673	0.341	45,720	0.339	12,739	0.39
No education or incomplete primary	82,589	0.468	49,862	0.422	52147	0.428	51,015	0.427	58,142	0.431	12,796	0.39
	02,303	0.100	15,002	0.122	52117	0.120	51,015	0.127	50,112	0.151	12,750	0.55
Mother has a Partner												
Yes	163,858	0.929	109,350	0.926	112890	0.927	110,666	0.927	125,468	0.929	30,192	0.94
No	12,527	0.071	8,784	0.074	8906	0.073	8,779	0.074	9,572	0.071	1,904	0.05
-	,3_/	0.071	0,701	5.67.1	2200	0.075	0,0	0.07	5,572	0.071	2,001	0.00
Education Level of the Mother's Partne	er at the Time o	of Interview										
Completed Secondary or Higher	54,943	0.311	39,434	0.334	40422	0.332	39,640	0.332	44,409	0.329	8,891	0.27
Completed primary	56,655	0.321	38,884	0.329	39920	0.328	39,216	0.328	44,217	0.327	12,180	0.379
No education or incomplete primary	64,787	0.367	39,815	0.337	41455	0.340	40,589	0.340	46,414	0.344	11,025	0.344

Table 1: Weighted Frequency and Distribution of First Born Children within Five Years of the Survey Aged 12-60 months Across Age of Mother at Birth and Other

Age Band of the Mother's Partner	at the Birth of the M	other's First B	irth									
12-17	2,104	0.012	1,224	0.010	1236	0.010	1,211	0.010	1,409	0.010	373	0.012
18-23	40,271	0.228	27,180	0.230	28018	0.230	27,483	0.230	30,594	0.227	9,132	0.285
24-29	101,722	0.577	66,806	0.566	68828	0.565	67,569	0.566	77,555	0.574	15,792	0.492
30-35	22,072	0.125	15,954	0.135	16483	0.135	16,125	0.135	17,661	0.131	4,797	0.149
36-41	6,768	0.038	4,685	0.040	4846	0.040	4,724	0.040	5,266	0.039	1,342	0.042
42-59	3,448	0.020	2,284	0.019	2385	0.020	2,332	0.020	2,555	0.019	660	0.021
Wealth Quintile of the Child's Hous	sehold											
Richest	36,825	0.209	24,886	0.211	25377	0.208	24,876	0.208	28,741	0.213	6,550	0.204
Rich	37,749	0.214	25,955	0.220	26597	0.218	26,150	0.219	29,413	0.218	6,961	0.217
Middle	36,203	0.205	24,554	0.208	25319	0.208	24,853	0.208	27,932	0.207	6,795	0.212
Poorer	34,324	0.195	22,705	0.192	23517	0.193	23,053	0.193	25,834	0.191	6,138	0.191
Poorest	31,285	0.177	20,035	0.170	20986	0.172	20,512	0.172	23,120	0.171	5,653	0.176
Residence of the Child's Household	l at the Time of Inter	view										
Urban	70,395	0.399	50,428	0.427	51491	0.423	50,597	0.424	57,358	0.425	12,301	0.383
Rural	105,990	0.601	67,706	0.573	70305	0.577	68,848	0.576	77,682	0.575	19,796	0.617
Water Piped to Child's House												
Piped to House	76,844	0.436	55,481	0.470	56699	0.466	55,714	0.466	62,499	0.463	14,306	0.446
Water not piped to house	99,542	0.564	62,653	0.530	65097	0.534	63,731	0.534	72,542	0.537	17,790	0.554
Flush Toilet at Child's House												
Flush Toilet at House	54,418	0.309	41,542	0.352	42402	0.348	41,686	0.349	46,955	0.348	10,511	0.327
No Flush Toilet at House	121,968	0.691	76,592	0.648	79394	0.652	77,759	0.651	88,085	0.652	21,586	0.673
Child Measles Vaccination												
Cluster Weighted Mean		0.234		0.204		0.208		0.208		0.214		0.211
		0.251		0.201		0.200		0.200		0.211		0.211
								7				

BMJ Open

Older women are more likely to have multiple births, although the event is rare across all age groups. Young mothers are less likely to have a partner: 8.6% of 15-17 year olds mothers do not have a partner compared to 5.8% of women in the 27-29 year old category (Table 2). Young mothers have lower education than older mothers do: 64.6% of mothers aged 15-17 had incomplete primary or no schooling, whereas 23.1% of women who had their first birth between the ages of 27-29 had only incomplete primary or no schooling (Table 2). Older mothers tend to be in a higher wealth quintile: 42.9% of women who had their first birth between the ages of 27-29 are in the richest quintile (Table 2). 71.2% of mothers who had their first birth between the ages of 15 and 17 live in rural areas, while 35% of women who have their first birth between the ages of 27-29 live in rural areas (Table 2). Delaying first birth is more likely in urban areas. Women who have their first birth between the ages of 27-29 live in conditions that are more sanitary: 57.3% of women who have their first birth between the ages of 27 and 29 have a flush toilet at the house compared to 16.4% of 15-17 year old first time mothers (Table 2).

Women who delay their first birth are more educated, more likely to have a partner, are richer, more likely to live in an urban area, and more likely to live in better sanitary conditions. Young mothers tend to have lower educational socio-economic characteristics. In the following analysis, we present both unadjusted results and results that control for these covariates (Table 2).

Table 2: Weighted Frequency and Distribution Covariates Across Age of Mother at Birth

Age Band	12-14 Pop. W'ted Frac. n=4,322	15-17 Pop. W'ted Frac. n=41,384	18-20 Pop. W'ted Frac. n=61,491	21-23 Pop. W'ted Frac. n=38,300	24-26 Pop. W'ted Frac. n=18,211	27-29 Pop. W'ted Frac. n=7,939	30-32 Pop. W'ted Frac. n=3,493	33-35 Pop. W'ted Fra n=1,443
Sex of Child								
Male	2,323 0.517	21,627 0.512	31,995 0.515	19,017 0.504	8,941 0.514	3,964 0.518	1,731 0.513	705 0.504
Female	2,173 0.483	20,607 0.488	30,096 0.485	18,741 0.496	8,443 0.486	3,685 0.482	1,646 0.487	694 0.496
Type of Birth								
Singleton	4,477 0.996	42,003 0.995	61,701 0.994	37,376 0.990	17,173 0.988	7,532 0.985	3,317 0.982	1,369 0.979
Twin	19 0.004	230 0.005	390 0.006	382 0.010	211 0.012	116 0.015	60 0.018	30 0.021
Age of Child in Months								
48-60 months	1,380 0.307	11,154 0.264	15,402 0.248	9,272 0.246	4,269 0.246	1,841 0.241	890 0.263	335 0.240
36-47 months	1,260 0.280	10,537 0.249	14,491 0.233	9,378 0.248	4,176 0.240	1,822 0.238	822 0.243	307 0.219
24-35 months	995 0.221	10,125 0.240	15,252 0.246	9,419 0.249	4,191 0.241	1,885 0.246	839 0.248	376 0.269
12-23 months	862 0.192	10,418 0.247	16,946 0.273	9,687 0.257	4,748 0.273	2,100 0.275	827 0.245	381 0.272
Education Level of the Mother at Time of	Interview							
Secondary or higher	30 0.007	1,518 0.036	9,263 0.149	11,213 0.297	7,607 0.438	3,979 0.520	1,836 0.544	705 0.504
Completed primary	957 0.213	13,415 0.318	22,837 0.368	12,459 0.330	4,961 0.285	1,899 0.248	781 0.231	336 0.241
No education or incomplete primary	3,509 0.780	27,300 0.646	29,991 0.483	14,085 0.373	4,816 0.277	1,770 0.231	760 0.225	357 0.256
Mother has a Partner								
Yes	4,101 0.912	38,606 0.914	57,623 0.928	35,469 0.939	16,378 0.942	7,208 0.942	3,181 0.942	1,291 0.923
No	395 0.088	3,627 0.086	4,468 0.072	2,288 0.061	1,006 0.058	440 0.058	196 0.058	108 0.077
Education Level of the Mother's Partner a	t the Time of Interview							
Completed Secondary or Higher	669 0.149	8,265 0.196	17,087 0.275	14,040 0.372	8,148 0.469	4,113 0.538	1,876 0.556	746 0.533
Completed primary	1,107 0.246	12,977 0.307	21,683 0.349	12,533 0.332	5,193 0.299	2,031 0.266	802 0.238	328 0.235
No education or incomplete primary	2,721 0.605	20,992 0.497	23,321 0.376	11,184 0.296	4,042 0.233	1,504 0.197	699 0.207	325 0.232
Age Band of the Mother's Partner at the	Birth of the Mother's Fir	st Birth						
12-17	313 0.070	1,250 0.030	407 0.007	109 0.003	20 0.001	4 0.001	1 0.000	1 0.000
18-23	1,587 0.353	14,655 0.347	17,407 0.280	5,426 0.144	898 0.052	227 0.030	55 0.016	17 0.012
24-29	2,256 0.502	22,157 0.525	36,519 0.588	24,543 0.650	10,869 0.625	3,671 0.480	1,220 0.361	487 0.348
30-35	214 0.048	2,756 0.065	5,480 0.088	5,634 0.149	3,981 0.229	2,491 0.326	1,203 0.356	313 0.223
36-41	83 0.019	896 0.021	1,467 0.024	1,319 0.035	1,155 0.066	848 0.111	631 0.187	371 0.265
42-59	44 0.010	520 0.012	812 0.013	727 0.019	461 0.027	407 0.053	267 0.079	211 0.151
Wealth Quintile of the Child's Household								
Richest	366 0.081	4,937 0.117	10,572 0.170	9,490 0.251	6,196 0.356	3,283 0.429	1,423 0.421	557 0.398
Rich	710 0.158	7,659 0.181	13,466 0.217	9,088 0.241	3,972 0.228	1,700 0.222	815 0.241	340 0.243
Middle	950 0.211	9,159 0.217	13,772 0.222	7,453 0.197	2,950 0.170	1,185 0.155	517 0.153	216 0.154
Poorer	1,194 0.265	10,329 0.245	12,770 0.206	6,330 0.168	2,354 0.135	838 0.110	350 0.103	160 0.114
Poorest	1,277 0.284	10,148 0.240	11,511 0.185	5,397 0.143	1,911 0.110	642 0.084	273 0.081	126 0.090
								1
	Ear no	er review only -	http://hmianan.h	micom/oito/oho	ut/auidalinaa yk	Loop L		-

BMJ Open

1	Residence of the Child's Household a	at the Time of Interview							
2	Urban	1,033 0.230	12,159 0.288	22,251 0.358	16,999 0.450	9,721 0.559	4,969 0.650	2,315 0.686	949 0.678
3	Rural	3,463 0.770	30,074 0.712	39,840 0.642	20,759 0.550	7,663 0.441	2,679 0.350	1,062 0.314	450 0.322
4									
5	Water Piped to Child's House								
6	Piped to House	1,082 0.241	13,530 0.320	25,731 0.414	18,816 0.498	9,906 0.570	4,736 0.619	2,149 0.636	896 0.640
7	Water not piped to house	3,415 0.759	28,704 0.680	36,360 0.586	18,942 0.502	7,478 0.430	2,912 0.381	1,228 0.364	503 0.360
8									
9	Flush Toilet at Child's House								
10	Flush Toilet at House	434 0.097	6,908 0.164	16,700 0.269	14,506 0.384	8,551 0.492	4,380 0.573	2,080 0.616	859 0.614
11	No Flush Toilet at House	4,062 0.903	35,325 0.836	45,390 0.731	23,251 0.616	8,832 0.508	3,269 0.427	1,297 0.384	540 0.386
12									
13	Child Measles Vaccination								
14	Cluster Weighted Mean	0.359	0.298	0.238	0.202	0.166	0.145	0.125	0.139
15									
16									
17									
18									
19									
20									
21									
22									
23									
24									
25									
26									
27									
28									
29									
30									
31									
32									
33									
34									
35									
36					0.202				

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Results: Unadjusted and Adjusted Models

The unadjusted pooled results indicate that the risk of infant mortality is lowest for women who have their first birth between the ages of 27-29 (Table A2). The relative risk ratio declines as age increases between the ages of 12 and 26, and comes to a minimum for 27-29 year olds (Table A2). The relative risk ratio then increases for women who have their first birth at 33-35 (Table A2). This same U-shape is exhibited in many of the country specific unadjusted regressions. Benin, Bolivia, India, Senegal and Tanzania are examples where the child survival is maximized if the first birth is delayed to the ages of 27-29, and most countries follow this pattern (Table A2).

Age of the mother at first birth is a risk factor for infant mortality and adverse child health outcomes even when we control for maternal, paternal, and household and social characteristics (Table 3). The relative risk ratios of each age group (relative to 27-29 year olds who are the reference group) and 95% confidence intervals are plotted in **Figure 2**. Child health outcomes improve in age of the mother at first birth through to age 27-29 and in some cases 30-32 (except for wasting) even after controlling for maternal, paternal, household and social factor covariates (Table 3, Figure 2).

Maternal and paternal age have different effects on child health outcomes (Table 3). If being a young mother is associated with low socioeconomic status in ways we have not controlled for, maternal age at first birth may simply be a proxy for socioeconomic status. However if this were true, we would expect the effect of young fathers to be similar to that of mothers (Subramanian *et al.*³³ put forward this idea of looking at the differential effects of maternal and paternal indicators on child health as a method of distinguishing between biological and social mechanisms). In the cases of infant mortality, underweight, wasting, and anaemia, maternal and paternal age have approximately equal relative risk indicating the role of social mechanisms (Table 3). In the case of stunting and diarrhoea, while having a very young father increases the relative risk of poor child health outcomes, the effect is significantly smaller than that of the mother's age strengthening the case that the effect has a biological component for these two child health outcomes (Table 3).

Page 17 of 40

1 2

BMJ Open

Table 3: Adjusted Relative Risk of Infant Mortality and Child Health Outcome	by Age of Mother at First Birth

	Infant Mortality	Stunting	Underweight	Wasting	Diarrhoea	Moderat Anaemia
Age Band of the Mother at First Birth		Stutting	Onderweight	wasting	Diarritoea	Andenna
27-29 (Reference)	1.00	1.00	1.00	1.00	1.00	1.00
12-14	1.703	1.507	1.351	1.027	1.365	1.315
12-14	(1.478 - 1.962)	(1.416 - 1.603)	(1.236 - 1.477)	(0.870 - 1.211)	(1.216 - 1.533)	(1.131 - 1.5
15-17	1.307			1.040	1.326	-
13-17		1.341	1.218			1.357
10.20	(1.160 - 1.474)	(1.274 - 1.412)	(1.131 - 1.313)	(0.923 - 1.170)	(1.224 - 1.436)	(1.222 - 1.5
18-20	1.083	1.272	1.122	1.007	1.244	1.327
	(0.963 - 1.219)	(1.210 - 1.338)	(1.043 - 1.207)	(0.899 - 1.129)	(1.151 - 1.343)	(1.200 - 1.4
21-23	1.018	1.191	1.052	1.018	1.227	1.349
	(0.903 - 1.148)	(1.132 - 1.254)	(0.976 - 1.132)	(0.908 - 1.141)	(1.135 - 1.326)	(1.219 - 1.4
24-26	1.079	1.087	0.989	1.004	1.108	1.239
	(0.948 - 1.228)	(1.028 - 1.148)	(0.912 - 1.071)	(0.889 - 1.135)	(1.019 - 1.203)	(1.114 - 1.3
30-32	1.191	0.925	0.824	0.915	0.979	1.117
	(0.981 - 1.445)	(0.845 - 1.013)	(0.717 - 0.947)	(0.749 - 1.119)	(0.860 - 1.115)	(0.947 - 1.3
33-35	1.340	1.025	0.872	0.976	0.831	1.079
	(1.041 - 1.725)	(0.908 - 1.156)	(0.715 - 1.062)	(0.733 - 1.299)	(0.687 - 1.006)	(0.854 - 1.3
Sex of Child						
Male (Reference)	1.00	1.00	1.00	1.00	1.00	1.00
Female	0.787	0.900	0.915	0.854	0.927	0.956
	(0.759 - 0.815)	(0.888 - 0.913)	(0.895 - 0.935)	(0.821 - 0.889)	(0.903 - 0.951)	(0.927 - 0.9
Type of Birth						
Singleton (Reference)	1.00	1.00	1.00	1.00	1.00	1.00
Twin	4.998	1.302	1.627	1.264	0.918	1.135
	(4.609 - 5.421)	(1.207 - 1.404)	(1.459 - 1.814)	(1.018 - 1.570)	(0.782 - 1.077)	(0.963 - 1.3
Age of Child in Months						
48-59 months (Reference)		1.00	1.00	1.00	1.00	1.00
36-47 months		1.146	1.023	0.986	1.392	1.219
		(1.119 - 1.174)	(0.986 - 1.062)	(0.916 - 1.060)	(1.311 - 1.477)	(1.147 - 1.2
24-35 months		1.246	1.123	1.145	2.446	1.609
		(1.217 - 1.275)	(1.083 - 1.164)	(1.066 - 1.229)	(2.316 - 2.582)	(1.513 - 1.7
12-23 months		1.169	1.114	1.572	3.818	2.240
12-25 months		(1.141 - 1.198)	(1.073 - 1.156)	(1.466 - 1.686)	(3.625 - 4.021)	(2.102 - 2.3
Education Louis of the Mother at Time of Ir	taniou	(1.141 - 1.198)	(1.073 - 1.130)	(1.400 - 1.080)	(3.023 - 4.021)	(2.102 - 2.3
Education Level of the Mother at Time of In		1.00	1.00	1.00	1.00	1.00
Secondary or Higher (Reference)	1.00	1.00	1.00	1.00	1.00	1.00
Completed Primary	1.266	1.286	1.282	1.022	1.143	1.079
	(1.160 - 1.382)	(1.243 - 1.329)	(1.214 - 1.354)	(0.945 - 1.105)	(1.092 - 1.196)	(1.009 - 1.1
No education or incomplete primary	1.626	1.482	1.586	1.243	1.192	1.159
	(1.480 - 1.786)	(1.429 - 1.536)	(1.495 - 1.681)	(1.141 - 1.355)	(1.131 - 1.256)	(1.075 - 1.2
Mother has a Partner						
Yes (Reference)	1.00	1.00	1.00	1.00	1.00	1.00
No	0.977	1.148	1.237	1.232	1.105	1.110
	(0.881 - 1.084)	(1.106 - 1.193)	(1.158 - 1.322)	(1.101 - 1.379)	(1.043 - 1.170)	(1.022 - 1.2
Education Level of the Mother's Partner at	the Time of Interview					
Higher (Reference)	1.00	1.00	1.00	1.00	1.00	1.00
Completed primary	1.099	1.068	1.097	1.037	1.059	1.053
	(1.027 - 1.176)	(1.040 - 1.097)	(1.052 - 1.144)	(0.969 - 1.109)	(1.015 - 1.104)	(0.993 - 1.1
No education or incomplete primary	1.232	1.131	1.233	1.151	1.068	1.098
	(1.147 - 1.324)	(1.099 - 1.163)	(1.180 - 1.288)	(1.070 - 1.238)	(1.019 - 1.120)	(1.029 - 1.1
Age Band of the Mother's Partner at the Bi			·			
24-29 (Reference)	1.00	1.00	1.00	1.00	1.00	1.00
12-17	1.410	1.148	1.125	1.008	1.049	1.090
	(1.237 - 1.606)	(1.081 - 1.219)	(1.017 - 1.245)	(0.801 - 1.269)	(0.932 - 1.181)	(0.937 - 1.2
18-73	1.077	1.054	1.026	0.979	1.032	1.050
18-23						
20.25	(1.026 - 1.130)	(1.035 - 1.073)	(0.997 - 1.056)	(0.927 - 1.034)	(0.997 - 1.068)	(1.010 - 1.0
30-35	0.942	0.964	0.953	0.941	0.958	0.997
	(0.884 - 1.005)	(0.939 - 0.990)	(0.918 - 0.990)	(0.882 - 1.004)	(0.915 - 1.002)	(0.949 - 1.04
36-41	0.996	0.986	0.932	0.929	1.032	1.069

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

		(0.904 - 1.097)	(0.945 - 1.028)	(0.875 - 0.992)	(0.835 - 1.034)	(0.960 - 1.108)	(0.994 - 1.149)
1	42-59	1.046	1.036	1.030	0.977	1.101	0.962
2		(0.932 - 1.173)	(0.983 - 1.093)	(0.954 - 1.111)	(0.855 - 1.118)	(1.004 - 1.207)	(0.874 - 1.060)
3	Wealth Quintile of the Child's Household	(0.552 1.175)	(0.505 1.055)	(0.551 1.111)	(0.055 1.110)	(1.001 1.207)	(0.071 1.000)
4	Richest (Reference)	1.00	1.00	1.00	1.00	1.00	1.00
5	Rich	1.138	1.182	1.272	1.110	1.171	1.157
6		(1.063 - 1.219)	(1.148 - 1.216)	(1.216 - 1.331)	(1.032 - 1.194)	(1.117 - 1.227)	(1.093 - 1.224)
7	Middle	1.223	1.257	1.416	1.276	1.209	1.246
8		(1.136 - 1.316)	(1.218 - 1.297)	(1.348 - 1.486)	(1.176 - 1.384)	(1.149 - 1.272)	(1.170 - 1.326)
9	Poorer	1.268	1.332	1.524	1.344	1.244	1.287
10		(1.173 - 1.371)	(1.289 - 1.376)	(1.448 - 1.604)	(1.233 - 1.466)	(1.177 - 1.314)	(1.203 - 1.378)
11	Poorest	1.289	1.445	1.671	1.458	1.289	1.338
12		(1.187 - 1.399)	(1.397 - 1.496)	(1.585 - 1.762)	(1.331 - 1.598)	(1.213 - 1.369)	(1.245 - 1.438)
13	Residence of the Child's Household at the Time	of Interview	. , ,	. ,	. ,	. , ,	. ,
14	Urban (Reference)	1.00	1.00	1.00	1.00	1.00	1.00
15	Rural	1.043	1.082	1.029	0.943	0.939	0.981
16		(0.991 - 1.099)	(1.059 - 1.106)	(0.996 - 1.064)	(0.891 - 0.998)	(0.905 - 0.974)	(0.937 - 1.026)
17	Water Piped to the Child's House						
18	Piped to house (Reference)	1.00	1.00	1.00	1.00	1.00	1.00
19	Water not piped to house	1.100	0.956	1.031	1.034	1.002	0.988
20		(1.047 - 1.156)	(0.938 - 0.975)	(1.000 - 1.063)	(0.980 - 1.092)	(0.969 - 1.037)	(0.950 - 1.029)
20 21	Flush Toilet at Child's House						
22	Flush toilet at house (Reference)	1.00	1.00	1.00	1.00	1.00	1.00
22	No flush toilet at house	1.137	1.224	1.137	1.045	1.041	1.035
		(1.062 - 1. <mark>217</mark>)	(1.191 - 1.259)	(1.091 - 1.184)	(0.978 - 1.116)	(0.997 - 1.087)	(0.982 - 1.090)
24	Child Measles Vaccination						
25	Vaccinated (Reference)	1.00	1.00	1.00	1.00	1.00	1.00
26	Not vaccinated	1.108	1.070	1.164	1.195	1.072	1.109
27		(1.038 - 1.183)	(1.042 - 1.100)	(1.120 - 1.209)	(1.113 - 1.284)	(1.020 - 1.127)	(1.051 - 1.170)
28							
29	Observations	176,583	119,018	122,680	120,246	135,121	31,520
30							
31							

Viewed another way, the social and biological mechanisms can be disentangled by stratifying regressions by socio-economic status. For the high SES group we select children who have mothers who have at least completed primary school, in households that are in one of the top two wealth guintiles and who live in an urban area (Table 4). We contrast this group of children with mothers who have not completed primary school, are in households that are in the bottom two wealth quintiles and live in a rural area. At the top of **Table 4** we report the absolute prevalence of the child health outcome by this stratification. In the high SES group 2.99% of the infants die, while in the low SES households 10.4% of the infants die (Table 4). Stunting, underweight, wasting diarrhoea and anaemia are all much more prevalent in low SES households than in the high SES households (Table 4). However, when considering the relative risk ratios across the age groups for outcomes of stunting, underweight and diarrhoea, the relative risk of a poor health outcome for young mothers is higher in the high SES households than in the low SES households (Table 4). The difference in the relative risk of age on these child health outcomes across the two groups indicates that early childbearing is not just a problem in lower socioeconomic groups.

BMJ Open

Table 4: Adjusted Relative Risk Ratios in High SES and Low SES Households

	Infant N	lortality	Stur	iting	Under	weight	Was	sting	Diarr	hoea	Moderate	e Anaemia
	High SES	Low SES	High SES	Low SES	High SES	Low SES	High SES	Low SES	High SES	Low SES	High SES	Low SE
Prevalence (Weighted %)	2.99	10.4	18.6	54.2	7.92	33.6	4.46	11.7	11	15.4	21.4	42.2
Age Band of the Mother at First Birth												
27-29 (Reference)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
12-14	1.757	1.747	1.899	1.244	1.750	1.167	0.875	1.062	1.792	1.342	0.388	1.438
	(1.015 -	(1.338 -	(1.473 -	(1.118 -	(1.169 -	(1.004 -	(0.358 -	(0.776 -	(1.229 -	(1.057 -	(0.108 -	(1.047
	3.040)	2.283)	2.449)	1.385)	2.619)	1.355)	2.140)	1.452)	2.612)	1.702)	1.400)	1.974
15-17	1.297	1.315	1.474	1.143	1.377	1.066	1.234	0.968	1.377	1.181	1.234	1.50
	(0.984 -	(1.029 -	(1.313 -	(1.040 -	(1.147 -	(0.935 -	(0.950 -	(0.744 -	(1.172 -	(0.964 -	(1.001 -	(1.14
	1.710)	1.681)	1.655)	1.257)	1.654)	1.215)	1.602)	1.258)	1.618)	1.446)	1.521)	1.978
18-20	1.087	1.104	1.308	1.085	1.260	0.984	1.181	0.964	1.395	1.107	1.154	1.43
	(0.846 -	(0.865 -	(1.179 -	(0.987 -	(1.071 -	(0.863 -	(0.951 -	(0.743 -	(1.214 -	(0.905 -	(0.964 -	(1.09)
	1.398)	1.409)	1.452)	1.192)	1.482)	1.121)	1.467)	1.250)	1.603)	1.354)	1.381)	1.88
21-23	1.020	1.016	1.221	1.065	1.156	0.948	1.198	0.990	1.318	1.126	1.203	1.50
	(0.800 -	(0.790 -	(1.102 -	(0.968 -	(0.985 -	(0.830 -	(0.976 -	(0.759 -	(1.152 -	(0.917 -	(1.008 -	(1.14
	1.300)	1.307)	1.352)	1.171)	1.357)	1.084)	1.472)	1.292)	1.508)	1.382)	1.437)	1.97
24-26	1.015	1.116	1.083	0.989	1.028	0.941	1.207	1.076	1.206	1.139	1.105	1.42
	(0.783 -	(0.848 -	(0.972 -	(0.890 -	(0.871 -	(0.811 -	(0.979 -	(0.811 -	(1.048 -	(0.911 -	(0.925 -	(1.06
	1.315)	1.470)	1.208)	1.100)	1.215)	1.091)	1.489)	1.428)	1.388)	1.425)	1.320)	1.90
30-32	1.647	0.710	0.918	0.911	0.875	0.827	0.971	0.832	0.940	1.111	1.151	1.27
	(1.183 -	(0.414 -	(0.771 -	(0.760 -	(0.666 -	(0.624 -	(0.697 -	(0.488 -	(0.757 -	(0.777 -	(0.886 -	(0.82
	2.291)	1.216)	1.093)	1.093)	1.150)	1.097)	1.351)	1.418)	1.167)	1.590)	1.496)	1.96
33-35	1.407	0.956	1.049	1.222	0.743	0.860	1.128	0.650	0.769	0.821	1.036	1.43
	(0.846 -	(0.525 -	(0.822 -	(1.013 -	(0.471 -	(0.594 -	(0.713 -	(0.287 -	(0.555 -	(0.488 -	(0.686 -	(0.82
	2.341)	1.740)	1.338)	1.473)	1.170)	1.245)	1.785)	1.473)	1.065)	1.379)	1.565)	2.50
Sex of Child		,		,	,	,		,			,	
Male (Reference)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
Female	0.700	0.829	0.850	0.929	0.911	0.921	0.886	0.843	0.913	0.959	0.942	0.96
	(0.627 -	(0.781 -	(0.814 -	(0.908 -	(0.850 -	(0.890 -	(0.802 -	(0.786 -	(0.859 -	(0.910 -	(0.868 -	(0.91
	0.782)	0.881)	0.888)	0.951)	0.977)	0.954)	0.979)	0.905)	0.969)	1.011)	1.021)	1.01
Type of Birth	/	,	,	,	/	,	/	,		- /	- /	
Singleton (Reference)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
rwin	5.439	4.557	1.212	1.271	1.704	1.448	1.365	1.392	0.768	1.015	1.061	1.18
	(4.278 -	(3.932 -	(0.991 -	(1.111 -	(1.290 -	(1.179 -	(0.898 -	(0.917 -	(0.533 -	(0.716 -	(0.733 -	(0.86
	6.916)	5.281)	1.482)	1.454)	2.251)	1.778)	2.074)	2.112)	1.106)	1.437)	1.534)	1.62
Age of Child in Months	,	,	,	,	,	,	,	,	,	,	,	
18-59 months (Reference)			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
36-47 months			1.239	1.118	1.037	1.037	0.877	0.994	1.410	1.453	1.258	1.21
			(1.145 -	(1.076 -	(0.919 -	(0.976 -	(0.741 -	(0.868 -	(1.229 -	(1.289 -	(1.064 -	(1.09
			1.341)	1.162)	1.170)	1.102)	1.039)	1.138)	1.617)	1.638)	1.487)	1.35
24-35 months			1.415	1.172	1.182	1.142	0.956	1.236	2.466	2.507	1.763	1.46
			(1.310 -	(1.129 -	(1.049 -	(1.077 -	(0.806 -	(1.086 -	(2.174 -	(2.246 -	(1.493 -	(1.31
			1.528)	1.216)	1.331)	1.211)	1.133)	1.408)	2.796)	2.799)	2.081)	1.63
			,	/	,	,	,	,	,	/	,	

	12-23 months			1.392	1.081	1.107	1.151	1.156	1.853	3.891	3.720	2.585	1.927
1				(1.287 -	(1.040 -	(0.977 -	(1.084 -	(0.974 -	(1.632 -	(3.449 -	(3.347 -	(2.163 -	(1.727 -
2				1.506)	1.124)	1.254)	1.222)	1.371)	2.104)	4.389)	4.135)	3.090)	2.149)
3	Education Level of the Mother at Time of Inte												
4	Secondary or Higher (Reference)	1.00		1.00		1.00				1.00		1.00	
5	Completed Primary	1.220		1.266		1.208		1.103		1.177		1.099	
6 7		(1.049 - 1.420)		(1.191 - 1.346)		(1.101 - 1.325)		(0.969 - 1.255)		(1.085 - 1.277)		(0.987 - 1.223)	
8	Mother has a Partner												
9	Yes (Reference)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
10	No	1.012	0.960	1.215	1.038	1.333	1.180	1.249	1.608	1.038	1.223	1.100	1.063
11		(0.811 -	(0.739 -	(1.108 -	(0.949 -	(1.127 -	(1.012 -	(0.985 -	(1.179 -	(0.926 -	(1.030 -	(0.930 -	(0.814 -
12		1.263)	1.246)	1.332)	1.135)	1.577)	1.377)	1.583)	2.193)	1.163)	1.451)	1.301)	1.388)
13	Education Level of the Mother's Partner at the												
14	Higher (Reference)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
15	Completed primary	1.046	1.100	1.115	0.997	1.137	1.056	0.910	1.266	1.071	0.989	1.087	0.987
16		(0.911 -	(0.902 -	(1.052 -	(0.926 -	(1.041 -	(0.940 -	(0.807 -	(0.994 -	(0.989 -	(0.852 -	(0.979 -	(0.782 -
17	No education or incomplete primary	1.201)	1.341)	1.182)	1.074)	1.242)	1.187)	1.027)	1.613)	1.159)	1.148)	1.208)	1.246)
18	No education or incomplete primary	1.303	1.277	1.206	1.039	1.381	1.224	1.180	1.452	1.209	1.002	1.221	0.974
19		(1.059 - 1.602)	(1.059 - 1.540)	(1.109 - 1.312)	(0.968 - 1.116)	(1.218 - 1.566)	(1.094 - 1.370)	(0.981 - 1.420)	(1.149 - 1.834)	(1.069 - 1.368)	(0.869 - 1.156)	(1.043 - 1.428)	(0.777 - 1.222)
20	Age Band of the Mother's Partner at the Birth	,		1.512)	1.110,	1.500,	1.5707	1.120)	1.05 17	1.500)	1.150)	1.120)	1.222)
21	24-29 (Reference)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
22	12-17	1.284	1.528	1.010	1.087	1.106	1.085	0.551	0.959	1.206	1.091	1.124	1.005
23		(0.668 -	(1.261 -	(0.697 -	(0.996 -	(0.627 -	(0.937 -	(0.141 -	(0.672 -	(0.847 -	(0.883 -	(0.664 -	(0.785 -
24		2.470)	1.851)	1.466)	1.186)	1.952)	1.256)	2.147)	1.368)	1.715)	1.349)	1.901)	1.285)
25	18-23	1.122	1.090	1.141	1.036	1.072	1.015	1.028	0.977	0.967	1.076	1.069	1.061
26 27		(0.948 -	(1.008 -	(1.070 -	(1.006 -	(0.970 -	(0.970 -	(0.872 -	(0.889 -	(0.881 -	(1.006 -	(0.954 -	(0.989 -
		1.327)	1.178)	1.217)	1.068)	1.186)	1.063)	1.211)	1.073)	1.061)	1.149)	1.198)	1.138)
28 29	30-35	0.907	0.970	0.937	0.964	0.917	0.960	1.012	0.878	0.911	0.990	0.892	1.122
30		(0.770 -	(0.863 -	(0.875 -	(0.919 -	(0.825 -	(0.898 -	(0.880 -	(0.767 -	(0.831 -	(0.895 -	(0.795 -	(1.027 -
31	36-41	1.069) 0.784	1.090)	1.004) 0.962	1.012) 1.030	1.019) 0.760	1.026) 0.970	1.163) 1.070	1.004) 0.851	1.000) 0.994	1.094) 0.993	1.000)	1.226) 1.180
32	30-41		0.950									0.876	
33		(0.587 - 1.048)	(0.797 - 1.132)	(0.852 - 1.086)	(0.963 - 1.101)	(0.614 - 0.940)	(0.880 - 1.069)	(0.842 - 1.360)	(0.701 - 1.034)	(0.851 - 1.160)	(0.855 - 1.152)	(0.715 - 1.074)	(1.044 - 1.334)
34	42-59	0.698	1.100	1.106	1.054	1.119	0.960	1.388	0.885	0.949	1.078	0.910	1.012
35		(0.413 -	(0.912 -	(0.907 -	(0.973 -	(0.807 -	(0.854 -	(0.940 -	(0.711 -	(0.731 -	(0.909 -	(0.656 -	(0.869 -
36		1.178)	1.327)	1.349)	1.141)	1.550)	1.079)	2.052)	1.103)	1.233)	1.280)	1.263)	1.178)
37	Wealth Quintile of the Child's Household												
38	Richest (Reference)	1.00		1.00		1.00		1.00		1.00		1.00	
39	Rich	1.267		1.223		1.288		1.045		1.143		1.121	
40		(1.111 - 1.445)		(1.161 - 1.290)		(1.187 - 1.398)		(0.926 - 1.180)		(1.065 - 1.226)		(1.023 - 1.228)	
41	Poorer	1.440)	0.996	1.2301	0.936	1.550	0.923	1.1007	0.937	1.2201	0.957	1.2201	0.977
42			(0.938 -		(0.913 -		(0.891 -		(0.870 -		(0.905 -		(0.922 -
43 44			1.057)		0.959)		0.956)		1.008)		1.012)		1.037)
44 45			,		,		,		'		,		,
45 46		Γ-	-		http://h	ionen ha	nj.com/sit	alahautia	uidalinea	vhtml			
40		FO	n peer rev	iew only -	nav://bn	ijopen.pr	nj.com/sit		Juidelines	IIIIIIX.			

	Water Piped to the Child's House												
1	Piped to house (Reference)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
2	Water not piped to house	1.066	1.138	0.936	0.964	1.001	1.066	0.991	1.163	0.966	1.065	0.976	1.028
3		(0.924 -	(1.017 -	(0.883 -	(0.925 -	(0.919 -	(0.995 -	(0.874 -	(1.015 -	(0.884 -	(0.979 -	(0.886 -	(0.933 -
4		1.229)	1.273)	0.993)	1.004)	1.089)	1.142)	1.123)	1.333)	1.055)	1.159)	1.076)	1.133)
5	Flush Toilet at Child's House												
6	Flush toilet at house (Reference)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
7	No flush toilet at house	0.948	1.369	1.158	1.173	1.082	1.239	1.011	0.996	1.088	1.057	0.984	0.982
8		(0.818 -	(1.075 -	(1.089 -	(1.064 -	(0.988 -	(1.037 -	(0.879 -	(0.753 -	(0.994 -	(0.889 -	(0.872 -	(0.797 -
9		1.098)	1.745)	1.232)	1.294)	1.185)	1.481)	1.164)	1.318)	1.191)	1.257)	1.110)	1.209)
10	Child Measles Vaccination												
11	Vaccinated (Reference)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
12	Not vaccinated	1.653	1.000	1.190	1.066	1.211	1.200	1.229	1.185	1.045	1.030	1.299	1.127
13		(1.309 -	(0.905 -	(1.072 -	(1.022 -	(1.037 -	(1.130 -	(0.969 -	(1.050 -	(0.907 -	(0.940 -	(1.101 -	(1.035 -
14		2.088)	1.106)	1.320)	1.111)	1.414)	1.275)	1.559)	1.337)	1.204)	1.129)	1.531)	1.228)
15													
16	Observations	40,299	38,612	28,797	23,657	29,345	24,846	28,783	24,251	32,809	27,435	8,027	6,026
17													

Note: High SES includes children who are in households that are in the rich or richest wealth guintiles, have mothers with completed primary school or higher,

and live in an urban area. Low SES includes children who are in households that are in the poor and poorest wealth guintiles, have mothers with incomplete primary or no education, and live in a rural area.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Results: Sensitivity Analysis

Recent work by Subramanian et al² and Ozaltin et al³¹ indicates that maternal height is a significant predictor of infant mortality, anthropometric failure and anaemia. At the cost of a smaller sample (n=101,054) height is included as a control variable in the regression to examine whether in the sub-set of countries for which the Demographic and Health Surveys have data on women's height, the age effect that we observe confounded by maternal height. Household religion is also included as a control variable. Even after controlling for height and religion, the age of the mother is a significant risk factor for infant mortality, anthropometric failure and child health outcomes (Table 5). Controlling for height, which is an additional biological indicator, and religion, which is an additional social indicator, the general relationship between the age of mother at first birth and child health outcomes does not change (Table 5).

Table 5: Sensitivity Analysis: Adjusted Relative Risk Ratios including Height and Religion as Covariates

	Infant Mortality	Stunting	Underweight	Wasting	Diarrhoea	Moderate Anaen
Age Band of the Mother at First Birth						
27-29 (Reference)	1.00	1.00	1.00	1.00	1.00	1.00
12-14	1.654	1.356	1.293	1.005	1.270	1.217
	(1.379 - 1.983)	(1.259 - 1.460)	(1.167 - 1.434)	(0.832 - 1.212)	(1.091 - 1.480)	(1.031 - 1.436)
15-17	1.283	1.276	1.187	1.014	1.227	1.316
	(1.096 - 1.502)	(1.198 - 1.358)	(1.087 - 1.296)	(0.881 - 1.166)	(1.102 - 1.367)	(1.169 - 1.482)
18-20	1.064	1.216	1.110	0.995	1.202	1.306
	(0.911 - 1.243)	(1.144 - 1.293)	(1.018 - 1.210)	(0.869 - 1.139)	(1.083 - 1.335)	(1.165 - 1.463)
21-23	1.015	1.154	1.058	1.018	1.189	1.343
	(0.867 - 1.187)	(1.085 - 1.228)	(0.970 - 1.154)	(0.890 - 1.165)	(1.070 - 1.321)	(1.198 - 1.505
24-26	1.101	1.044	1.016	1.042	1.058	1.226
	(0.930 - 1.303)	(0.976 - 1.117)	(0.925 - 1.116)	(0.903 - 1.203)	(0.945 - 1.185)	(1.087 - 1.383
30-32	1.252	0.925	0.810	0.918	0.878	1.118
30 32	(0.973 - 1.611)	(0.829 - 1.033)	(0.688 - 0.952)	(0.723 - 1.166)	(0.726 - 1.062)	(0.927 - 1.349
33-35	1.482	1.006				
55-55			0.875	1.064	0.804	1.095
	(1.070 - 2.052)	(0.861 - 1.175)	(0.689 - 1.110)	(0.757 - 1.497)	(0.607 - 1.064)	(0.838 - 1.430
Say of Child						
Sex of Child	1.00	1.00	1.00	1.00	1.00	1.00
Male (Reference)	1.00	1.00	1.00	1.00	1.00	1.00
Female	0.803	0.907	0.919	0.865	0.926	0.965
	(0.768 - 0.839)	(0.893 - 0.922)	(0.897 - 0.942)	(0.828 - 0.905)	(0.896 - 0.957)	(0.933 - 0.997
Type of Birth						
Singleton (Reference)	1.00	1.00	1.00	1.00	1.00	1.00
Twin	4.794	1.311	1.561	1.205	0.943	1.023
	(4.325 - 5.315)	(1.201 - 1.430)	(1.378 - 1.768)	(0.934 - 1.554)	(0.771 - 1.153)	(0.841 - 1.244
Age of Child in Months						
48-59 months (Reference)		1.00	1.00	1.00	1.00	1.00
36-47 months		1.154	1.021	0.972	1.466	1.240
		(1.122 - 1.187)	(0.981 - 1.064)	(0.896 - 1.055)	(1.351 - 1.590)	(1.160 - 1.326
24-35 months		1.253			2.651	1.603
24-35 1101015			1.135	1.167		
		(1.219 - 1.288)	(1.090 - 1.181)	(1.078 - 1.263)	(2.460 - 2.857)	(1.496 - 1.718
12-23 months		1.168	1.133	1.633	4.261	2.109
		(1.134 - 1.202)	(1.087 - 1.182)	(1.508 - 1.768)	(3.962 - 4.581)	(1.963 - 2.265
Education Level of the Mother at Time o	fInterview					
Secondary or Higher (Reference)	1.00	1.00	1.00	1.00	1.00	1.00
Completed Primary	1.268	1.173	1.186	0.990	1.143	1.106
	(1.132 - 1.420)	(1.126 - 1.221)	(1.115 - 1.261)	(0.905 - 1.083)	(1.068 - 1.224)	(1.022 - 1.197
No education or incomplete primary	1.605	1.287	1.389	1.155	1.201	1.180
	(1.423 - 1.810)	(1.232 - 1.344)	(1.301 - 1.484)	(1.047 - 1.273)	(1.115 - 1.295)	(1.082 - 1.287
					i i i	
Mother has a Partner						
Yes (Reference)	1.00	1.00	1.00	1.00	1.00	1.00
No	0.952	1.115	1.214	1.277	1.127	1.122
	(0.835 - 1.084)	(1.065 - 1.168)	(1.125 - 1.310)		(1.040 - 1.222)	(1.017 - 1.239
	(0.055 - 1.084)	(2003 - 1.108)	(1.123 - 1.310)	(1.123 - 1.451)	(1.040 - 1.222)	(1.017 - 1.235
Education Local of the March educe	at the Time of Lateral					
Education Level of the Mother's Partner		4.05			4.00	
Higher (Reference)	1.00	1.00	1.00	1.00	1.00	1.00
Completed primary	1.109	1.069	1.122	1.069	1.022	1.091
	(1.019 - 1.208)	(1.035 - 1.105)	(1.069 - 1.178)	(0.989 - 1.157)	(0.964 - 1.083)	(1.020 - 1.166
No education or incomplete primary	1.229	1.136	1.238	1.169	1.051	1.121
	(1.122 - 1.345)	(1.098 - 1.175)	(1.176 - 1.304)	(1.073 - 1.273)	(0.986 - 1.119)	(1.041 - 1.207
Age Band of the Mother's Partner at the	Birth of the Mother's Firs	st Birth				
24-29 (Reference)	1.00	1.00	1.00	1.00	1.00	1.00
12-17	1.388	1.071	1.138	0.987	1.161	1.104
	(1.182 - 1.631)	(1.000 - 1.148)	(1.024 - 1.266)	(0.764 - 1.274)	(0.986 - 1.366)	(0.932 - 1.307
	((1.000 1.140)	((0	(0.000 ±.000)	(0.002 1.007

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

18-23	1.067	1.043	1.036	1.016	1.060	1.061
	(1.007 - 1.129)	(1.023 - 1.065)	(1.006 - 1.067)	(0.959 - 1.076)	(1.014 - 1.107)	(1.017 - 1.108
30-35	0.923	0.952	0.943	0.929	0.965	0.984
	(0.857 - 0.994)	(0.925 - 0.979)	(0.907 - 0.980)	(0.868 - 0.995)	(0.913 - 1.020)	(0.934 - 1.037
36-41	1.007	0.973	0.925	0.912	1.045	1.091
	(0.903 - 1.122)	(0.930 - 1.018)	(0.867 - 0.988)	(0.814 - 1.021)	(0.958 - 1.140)	(1.010 - 1.179
42-59	1.034	1.037	1.022	0.927	1.112	0.966
	(0.906 - 1.180)	(0.980 - 1.097)	(0.945 - 1.107)	(0.805 - 1.069)	(0.998 - 1.239)	(0.875 - 1.067
	· · · ·	, , , , , , , , , , , , , , , , , , ,	,	, , , , , , , , , , , , , , , , , , ,	, ,	,
Wealth Quintile of the Child's Househol	d					
Richest (Reference)	1.00	1.00	1.00	1.00	1.00	1.00
	1.167	1.203	1.294	1.132	1.157	
Rich						1.134
	(1.072 - 1.269)	(1.164 - 1.244)	(1.230 - 1.361)	(1.042 - 1.229)	(1.091 - 1.226)	(1.067 - 1.204
Middle	1.258	1.263	1.420	1.274	1.152	1.196
	(1.148 - 1.378)	(1.218 - 1.310)	(1.345 - 1.500)	(1.162 - 1.397)	(1.078 - 1.230)	(1.118 - 1.280
Poorer	1.273	1.297	1.487	1.348	1.174	1.224
	(1.156 - 1.403)	(1.249 - 1.348)	(1.403 - 1.575)	(1.222 - 1.487)	(1.094 - 1.259)	(1.137 - 1.318
Poorest	1.299	1.334	1.585	1.444	1.207	1.299
	(1.174 - 1.437)	(1.282 - 1.388)	(1.493 - 1.682)	(1.303 - 1.601)	(1.120 - 1.301)	(1.202 - 1.403
		,	. ,	. /	. ,	
Residence of the Child's Household at th	e Time of Interview					
Urban (Reference)	1.00	1.00	1.00	1.00	1.00	1.00
Rural	1.050	1.066	1.037	0.949	0.963	0.987
	(0.983 - 1.121)	(1.040 - 1.094)	(1.000 - 1.076)	(0.891 - 1.012)	(0.917 - 1.011)	(0.939 - 1.037
Water Piped to the Child's House						
Piped to house (Reference)	1.00	1.00	1.00	1.00	1.00	1.00
Water not piped to house	1.105	0.983	1.043	1.023	0.984	0.993
	(1.036 - 1.180)	(0.960 - 1.007)	(1.006 - 1.082)	(0.961 - 1.089)	(0.940 - 1.030)	(0.949 - 1.039
Flush Toilet at Child's House						
Flush toilet at house (Reference)	1.00	1.00	1.00	1.00	1.00	1.00
No flush toilet at house	1.106	1.177	1.123	1.090	1.037	1.056
No hush tollet at house		(1.138 - 1.217)				(0.996 - 1.119
	(1.012 - 1.210)	(1.136 - 1.217)	(1.071 - 1.176)	(1.010 - 1.178)	(0.976 - 1.102)	(0.990 - 1.115
Child Measles Vaccination						
Vaccinated (Reference)	1.00	1.00	1.00	1.00	1.00	1.00
Not vaccinated	1.076	1.083	1.152	1.145	1.167	1.108
	(0.990 - 1.170)	(1.050 - 1.118)	(1.102 - 1.204)	(1.053 - 1.245)	(1.095 - 1.242)	(1.047 - 1.173
Religion						
Christian (Reference)	1.00	1.00	1.00	1.00	1.00	1.00
Muslim	1.025	1.042	1.283	1.385	1.066	1.060
	(0.951 - 1.104)	(1.012 - 1.073)	(1.227 - 1.341)	(1.277 - 1.501)	(1.004 - 1.131)	(0.996 - 1.128
Othor	1.096			1.290		-
Other		1.032	1.242		0.988	1.158
	(1.017 - 1.181)	(1.003 - 1.061)	(1.187 - 1.299)	(1.186 - 1.402)	(0.929 - 1.050)	(1.090 - 1.230
Height of respondent (metres)						
160-200cm (Reference)	1.00	1.00	1.00	1.00	1.00	1.00
155-159cm	1.128	1.249	1.267	1.007	1.002	1.008
	(1.062 - 1.199)	(1.216 - 1.282)	(1.217 - 1.319)	(0.942 - 1.076)	(0.959 - 1.047)	(0.963 - 1.055
150-154cm	1.172	1.456	1.512	1.096	1.044	0.994
	(1.097 - 1.252)	(1.417 - 1.495)	(1.452 - 1.574)	(1.024 - 1.174)	(0.996 - 1.094)	(0.946 - 1.045
145-149cm	1.289	1.698	1.807	1.180	1.023	0.971
T-2- T-2011						
100 444	(1.191 - 1.396)	(1.648 - 1.749)	(1.728 - 1.890)	(1.090 - 1.278)	(0.962 - 1.087)	(0.914 - 1.031
100-144cm	1.586	2.013	2.123	1.248	1.002	1.100
	(1.433 - 1.754)	(1.944 - 2.085)	(2.015 - 2.236)	(1.127 - 1.382)	(0.915 - 1.098)	(1.016 - 1.190

BMJ Open

Discussion

Principal Findings

In this paper we show that there is an improvement in child health outcomes as the age of mother at first birth rises up to ages 27, controlling for maternal, paternal and household and social factors. This is a much higher age than usually found in the literature, where teen pregnancy is emphasized as a risk factor. In the adjusted model, infant mortality shows an elevated risk for mother's below age 27, though the effect is only statistically significant for women below age 18. However, the lack of significance may be because infant mortality is relatively rare and when we turn to models for stunting, diarrhoea, and anaemia outcomes, we find all of these have elevated risk for all mothers below age 27, and this higher risk is statistically significant.

Our results indicate that children to mothers below age 27 are at higher risk of poor health outcomes. In our sample of low- to middle-income countries only 7% of women delay their first birth until the age of 27 or older. The United States has seen a steady rise in the average age at first birth from 21 in 1970 to 25 in 2000.³⁴ Age at first birth is increasing in some of our sample countries, but still lags behind the level seen in United States. For example, in the 1993 Bangladesh DHS the mean age for first births in the last five years was 18.2, but in 2007 had risen to 18.5. In Ghana age for first births increased from a mean of 19.8 in 1988 to 21.2 in 2008. In Tanzania mean age at first birth increased from 19.2 in 1991 to 19.6 in 2004. Bongaarts found that family planning programs can reduce the child mortality rate by delaying the age at first birth, preventing high parity births, and improving birth spacing.³⁵ The results in this paper indicate that there are benefits to reducing infant mortality and improving child health by delaying the age at first birth even for women in their early twenties.

Comparisons to other studies

Consistent with country studies, in this paper we show that delaying first birth beyond the teen years and into the twenties has a positive impact on child survival. Unlike the Raj *et al.*¹³ study that focused on the case of India, in the current study that applies 55 low- to middle-income countries we find that in general in the low- to middle-income countries young maternal age has a significant effect of reducing infant mortality, stunting, underweight, diarrhoea and moderate to strong anaemia. In the 2005-6 India sample, Raj *et al.*¹³ find that maternal age only has a significant effect on stunting and underweight. The broadening of the significant results to include other child health outcomes can stem

from the inclusion of a greater number of countries, and also from a wider time horizon. As the 2005-6 India National Family Health Survey-3 is one of the 118 surveys within our current study, the comparison between our study and the Raj *et al* ¹³ study highlights that generalizing across countries is not mirrored in each country experience. Thus we include the country specific examples in the appendix (Table A2). Even so, for the case of India in our sample there are three National Family Health Surveys (1992, 1998, 2005-6) and not just the one. Thus, even the country specific results can differ from the survey specific results. Taking a broad view, however, the two papers yield the same fundamental conclusion and that is, delaying first birth beyond the teen years is beneficial for child health outcomes. Changing the date range and countries within the study creates subtle differences in the finer points of the results, but the fundamental result remains consistent.

Limitations of the study

Although this study provides important insights in the benefits to child health of delaying first birth to age 27-29, there are certain limitations that should be considered when interpreting the results. The primary variable of interest, age of mother, is subject to measurement error as collection of this variable relies on recall by the respondent. The same holds true for identifying the population of children within a 0-11 and 12-60 month age range. We already include the 60 month old children (which would normally be restricted to 12-59 months) as it is common for the mother to round up in their recall of the child's age. The result is that a larger fraction of children are reported to be 60 months than 59 months. As this inconsistency is attributed to recall error, we follow the World Health Organization guidelines and include the 60 month olds in the child group. For the women's age, we assume that measurement error increases with actual age. Given our concern over young mothers, then the measurement error on the age will be minimized for this group of interest.

A further limitation of the model is that the socio-economic measures of male and female education, along with the wealth index, may not fully capture the socio-economic status of the woman and her child. While we include information about location of residence, piped water to the house, and flush toilet, these all serve as proxies for actual SES. Any unobserved wealth captured in the residual will confound the current results. Factors such as actual household income and education quality are such variables that we are unable to control for in the regression and may significantly influence child health outcomes and shape our understanding of the role of SES factors.

BMJ Open

Conclusions and implications

The current study documents that for the first born child who is born to a woman aged less than 27-29 in low- to middleincome countries, it is at a higher risk of infant mortality, stunting, underweight, diarrhoea, and moderate to strong anaemia, but at no significantly different risk of wasting. Children born to women aged 12-14 or 15-17 are significantly more likely to suffer mortality in their first year of life than children born to women aged 27-29. For children born to women aged 19-26, the risk of mortality declines as she ages each year, but this risk is not significantly different from the risk to children born to women aged 27-29. The risk of stunting, diarrhoea, and anaemia diminishes significantly as a woman delays her first birth through to age 27-29 when the risk is minimized. The risk of underweight decreases significantly as a woman delays her first birth and is minimized by age 21. These results offer support to the evidence of the benefits to offspring of delaying first birth. Importantly, the results in this study show that it is optimal to delay first birth until age 27-29, and not just avoiding teen pregnancy. The results reveal that interventions designed to target adolescents potentially omit an group of women in their early twenties who are also at risk of having children with poor health outcomes. Development of programs targeting women in general, and not just targeting teen mothers, should provide women and families with tools to make informed decisions over the timing of their first birth and the benefits of delaying the birth. Highlighting the benefits of delaying first birth to the child's health, provides a mechanism for young female family members have time to build their own education and skills to empower their autonomy and to better care for their children.

Our results indicated that while the absolute risk of poor child health outcomes is lower when the mother is in a high-SES household, there remains a high relative risk of poor child health outcomes for young mothers even in high-SES households. The persistence of the age gradient across the SES groups highlights that child and maternal health issues associated with age of the mother cut across SES lines and the children of young-rich women are not shielded from the relative risk of a poor health outcome.

Encouraging women to delay their first birth, and encouraging families to permit the delay when the woman is not granted autonomy over her reproductive health decisions, come through providing women with viable and valuable alternatives. Education programs to encourage women to stay in school, take on meaningful employment opportunities, and provide service to the community, relieves the immediacy of child bearing. It also provides empowerment to

women in illustrating to herself and her family that her contribution to society need not only be defined by her reproductive life. By delaying a few years and engaging in other activities she contributes to society as well as broadening her skills and knowledge to go on to be a more informed and more highly educated mother. These benefits to the women, then trickle through the generations and benefit her offspring. In this paper, we showed that those benefits are in terms of health, but future studies may highlight the educational and social benefits for a child if a woman delays her first birth.

<text><text>

Page 29 of 40

BMJ Open

4	References
1 2	
3	
4 5	1. We Can End Poverty 2015: Millennium Development Goals. 2011. (Accessed June 15 2011, at http://www.un.org/millenniumgoals/childhealth.shtml.)
6 7	 Subramanian SV, Ackerson LK, Davey Smith G, John NA. Association of Maternal Height With Child Mortality, Anthropometric Failure, and Anemia in India. JAMA 2009;301:1691-701.
8 9	3. Ozaltin E, Hill K, Subramanian SV. Association of maternal stature with offspring mortality, underweight, and stunting in low- to middle-income countries. JAMA 2010;303:1507-16.
10 11	4. Temin M, Levine R. Start with a Girl: A New Agenda for Global Health. Washington D.C.: Center for
12 13	Global Development; 2009.5. Kembo J, Van Ginneken JK. Determinants of Infant and Child Mortality in Zimbabwe: Results of
14 15	Multivariate Hazard Analysis. Demographic Research 2009;21:367-84.
16 17	6. Knodel J, Herman AT. Effects of birth rank, maternal age, birth interval and sibship on infant and child mortality: Evidence from 18th and 19th Century Reproductive Histories. American Journal of Public Health
18 19	1984;74:1098-106.7. Manda SOM. Birth intervals, breastfeeding and determinants of childhood mortality in Malawi. Social
20 21	Science & Medicine 1999;48:301-12.
22 23	8. Reynolds HW, Wong EL, Tucker H. Adolescents' Use of Maternal and Child Health Services In Developing Countries. International Family Planning Perspectives 2006;32:6-16.
24 25	9. Villar J, Belizan J. The relative contribution of prematurity and fetal growth retardation to low birth weight in developing and developed societies. American Journal of Obstetrics and Gynecology 1982;143:793-8.
26 27 28	10. Vitolo MR, Gama CM, Bortolini GA, Campagnolo PD, Drachler ML. Some risk factors associated with overweight, stunting and wasting among children under 5 years old. J Pediatr (Rio J) 2008;84:251-7.
29 30	 Wang SC, Lee SH, Lee MC, Wang L. The effects of age and aboriginality on the incidence of low birth weight in mountain townships of Taiwan. Journal of Public Health 2009;31:406-12. Hobcraft J. Fertility patterns and child survival: a comparative analysis. Population Bullitin of the
31 32	12. Hobcraft J. Fertility patterns and child survival: a comparative analysis. Population Bullitin of the United Nations 1992;33:1-31.
33 34 35	13. Raj A, Saggurti N, Winter M, et al. The effect of maternal child marriage on morbidity and mortality of children under 5 in India: cross sectional study of a nationally representative sample. Br Med J (Clin Res Ed)
36 37	2010;340.14. Trussell J, Hammerslough C. A hazards-model analysis of the covariates of infant and child mortality in
38	Sri Lanka. Demography 1983;20:1-26.
39 40	15. Cooper LG, Leeland NL, Alexander G. Effect of maternal age on birth outcomes among young adolescents. Social Biology 1995;42:22-35.
41 42 43	16. Fraser AM, Brockert JE, Ward RH. Association of Young Maternal Age with Adverse Reproductive Outcomes. N Engl J Med 1995;332:1113-8.
43 44 45	17. Geronimus AT. On Teenage Childbearing and Neonatal Mortality in the United States. Population and
46	 Development Review 1987;13:245-79. 18. Geronimus AT, Korenman S, Hillemeier MM. Does Young Maternal Age Adversely Affect Child
47 48 49	Development? Evidence from Cousin Comparisons in the United States. Population and Development Review 1994;20:585-609.
50	19. Horon IL, Strobino DM, MacDonald HM. Birth weights among infants born to adolescent and young
51 52	 adult women. American Journal of Obstetrics and Gynecology 1983;146:444-9. 20. Trussell J. Teenage pregnancy in the United States. Family Planning Perspectives 1988;20:262-72.
53 54	21. Ventura SJ, Mathews TJ, Hamilton BE. Births to teenagers in the United States, 1940-2000. National
55	Vital Statistics Report 2001;49.
56 57	22. Alam N. Teenage motherhood and infant mortality in Bangladesh: Maternal age-dependent effect of parity one. Journal of biosocial science 2000;32:229-36.
58 59	23. Demographic and Health Surveys. MEASURE DHS, 2009. (Accessed October 3, 2009, 2009, at
59 60	http://www.measuredhs.com/start.cfm.)

1	24. 2003.	Rutstein SO, Rojas G. Guide to DHS Statistics. Calverton, Maryland: ORC Macro, MEASURE DHS+;
2 3	25.	Wirth ME, Wirth E, Delamonica E, Sacks D, Balk A, Minujin A. Monitoring health equity in the A practical guide. New York: CIESIN/UNICEF; 2006.
4 5 6	26.	Vaessen M. The potential of the demographic and health surveys (DHS) for the evaluation and oring of maternal and child health indicators. In: Khlat M, ed. Demographic evaluation of health
6 7 8 9		mmes (Proceedings). Paris: CICRED/UNFPA; 1996. Pullum TW. An Assessment of the Quality of Data on Health and Nutrition in the DHS Surveys, 1993-
9 10 11		Calverton, Maryland, USA: Macro International Inc; 2008. Macro O. Demographic and Health Survey Interviewer's Manual. Calverton, Maryland, U.S.A.: : ORC
12 13	Macro 29.	
14 15	30.	Borghi E, de Onis M, Garza C, et al. Construction of the World Health Organization child growth rds: selection of methods for attained growth curves. Statistics in Medicine 2006;25:247-65.
16 17 18	31.	Ozaltin E, Hill K, Subramanian SV. Association of Maternal Stature with Offspring Mortality, weight, and Stunting in Low- to Middle-Income Countries. JAMA 2010;303:1507-16.
19 20	32.	Deaton A. The Analysis of Household Surveys: A Microeconometric Approach to Development Policy. Jore: World Bank; 1997.
21 22 23	33.	Subramanian SV, Ackerson LK, Smith GD. Parental BMI and Childhood Undernutrition in India: An sment of Intrauterine Influence. Pediatrics 2010;126:663-71.
23 24 25	34. 35.	Mathews TJ, Hamilton BE. Mean age of mother, 1970-2000. National Vital Statistics Report 2002;51.
26 27		Bongaarts J. Does Family Planning Reduce Infant Mortality Rates? Population and Development v 1987;13:323-34.
28 29		
30		

Appendix Table A1: Sample Deduction

		Infant Lost	Mortality Cumulative Total	St Lost	unting Cumulative Total	Und Lost	erweight Cumulative Total	W Lost	'asting Cumulative Total	Dia Lost	nrhoea Cumulative Total	Aı Lost	naemia Cumulative Total
Starting	countries		72		57		57		57		57		33
	surveys		181		140		140		140		139		46
	children		288,752		232,676		232,676		232,676		231,211		81,706
Missing Data on Outcome Variable		5,313	283,439	84,445	148,231	84,445	148,231	84,445	148,231	66,033	165,178	45,585	36,121
Mis-coded Data on Outcome Varia	bles			6,365	141,866	1,780	146,451	4,701	143,530	2,242	162,936	0	36,121
Missing Data on Mother's Age at Fi	rst Birth	1,564	281,875	0	141,866	0	146,451	0	143,530	0	162,936	352	35,769
Mother's Age at First Birth <12		13	281,862	4	141,862	4	146,447	4	143,526	5	162,931	1	35,768
Mother's Age at First Birth >35		1,716	280,146	848	141,014	857	145,590	840	142,686	974	161,957	248	35,520
Lost Due to Missing Covariates		103,563	176,583	21,996	119,018	22,910	122,680	22,440	120,246	26,836	135,121	4,000	31,520
Final Total	Countries		55		55		55		55		55		30
	Surveys		118		118		118		118		118		38
	Children		176,583		119,018		122,680		120,246		135,121		31,520
	Years		1990-2008		1990-2008		1990-2008		1990-2008		1990-2008		2000-2008
							1990-2008						

	Age Band	12-14	15-17	18-20	21-23	24-26	27-29	30-32	33-35
Country Name	N								
Pooled	176,583	4,322 0.128 2.557 (2.227 - 2.935)	41,384 0.087 1.814 (1.613 - 2.039)	61,491 0.061 1.375 (1.224 - 1.544)	38,300 0.048 1.168 (1.037 - 1.316)	18,211 0.044 1.126 (0.988 - 1.282)	7939 0.037	3,493 0.040 1.185 (0.975 - 1.440)	1,443 0.047 1.408 (1.092 - 1.817)
Armenia	1,014	68 0	387 0.012 2.02e-07 (2.10e-08 - 1.94e-06)	338 0.014 0.642 (0.0611 - 6.754)	137 0.007 0.758 (0.0782 - 7.336)	20 0.05 0.392 (0.0215 - 7.151)	50 0.02	14 0.071 3.194 (0.181 - 56.26)	2.907 (0.145 58.34)
Azerbaijan	719	36 0.111	214 0.023	233 0.025	127 0.023	29 0	58 0	22 0.136	
Bangladesh	6,175	589 0.108 1.282 (0.652 - 2.521)	2520 0.092 1.137 (0.600 - 2.155)	1863 0.074 0.946 (0.492 - 1.818)	750 0.062 0.780 (0.396 - 1.535)	285 0.077 0.972 (0.464 - 2.037)	114 0.078	37 0.054 0.723 (0.164 - 3.187)	17 0.176 2.334 (0.723 7.541)
Benin	3,487	55 0.145 3.343 (1.190 - 9.391)	704 0.117 2.715 (1.216 - 6.062)	1,262 0.061 1.474 (0.652 - 3.333)	934 0.072 1.749 (0.783 - 3.904)	332 0.078 1.945 (0.827 - 4.578)	141 0.042	41 0.097 2.398 (0.721 - 7.971)	18 0 9.00e-07 (3.61e- 2.24e-0
Bolivia	4,024	65 0.076 2.448 (0.795 - 7.534)	829 0.059 1.937 (0.884 - 4.242)	1,402 0.042 1.400 (0.647 - 3.031)	855 0.031 1.031 (0.458 - 2.324)	493 0.022 0.709 (0.278 - 1.810)	223 0.031	102 0.039 1.252 (0.379 - 4.133)	55 0 2.04e-06 (8.92e- 4.69e-0
Brazil	1,280	23 0.130 6.770 (1.640 - 27.95)	280 0.032 1.698 (0.371 - 7.759)	361 0.024 1.305 (0.291 - 5.858)	260 0.023 1.211 (0.247 - 5.946)	178 0.016 0.884 (0.145 - 5.374)	106 0.018	55 0.018 0.952 (0.0866 - 10.47)	17 0 8.75e-06 (2.07e- 3.69e-0
Burkina Faso	2,915	47 0.234 1.430 (0.623 - 3.278)	789 0.125 0.788 (0.401 - 1.551)	1349 0.107 0.671 (0.345 - 1.305)	510 0.082 0.513 (0.257 - 1.022)	145 0.096 0.607 (0.263 - 1.399)	51 0.156	18 0.055 0.351 (0.0491 - 2.512)	6 0.333 2.095 (0.605 7.254)
Cameroon	2,186	91 0.054 0.399 (0.131 - 1.212)	742 0.091 0.723 (0.325 - 1.605)	789 0.045 0.365 (0.159 - 0.834)	343 0.072 0.559 (0.232 - 1.347)	147 0.040 0.320 (0.102 - 1.007)	51 0.117	21 0.047 0.369 (0.0476 - 2.866)	2 0 2.30e-05 (4.46e 0.0001
Central African Republic	653	30 0.133	247 0.153	231 0.116	87 0.160	28 0.142	20 0.15	6 0	4 0
		0.928 (0.216 - 3.983)	1.048 (0.350 - 3.137)	0.797 (0.265 - 2.394)	1.074 (0.331 - 3.484)	0.966 (0.242 - 3.867)		1.25e-06 (2.98e-07 - 5.28e-06)	1.43e-06 (3.34e 6.12e-
Chad	1,763	104 0.153 0.957 (0.307 - 2.987)	742 0.141 0.857 (0.300 - 2.447)	555 0.104 0.627 (0.221 - 1.779)	249 0.092 0.564 (0.180 - 1.767)	88 0.136 0.836 (0.252 - 2.766)	19 0.157	5 0 4.82e-09 (1.23e-09 - 1.88e-08)	1 0 4.01e-09 (3.81e- 4.22e-0
Colombia	6,761	142 0.035 3.995 (1.069 - 14.94)	1436 0.019 2.253 (0.790 - 6.426)	2098 0.016 1.842 (0.653 - 5.195)	1400 0.012 1.481 (0.498 - 4.406)	804 0.009 1.105 (0.335 - 3.646)	469 0.008	260 0.019 2.046 (0.554 - 7.564)	152 0.006 0.736 (0.082 6.557)
Comoros	234	5 0 6.58e-07 (4.90e-08 - 8.84e-06)	42 0.142 2.041 (0.261 - 15.99)	64 0.031 0.444 (0.0329 - 5.999)	63 0.079 1.129 (0.109 - 11.75)	30 0 4.88e-07 (6.34e-08 - 3.76e-06)	18 0.055	7 0.142 1.794 (0.114 - 28.26)	5 0.2 2.603 (0.206 32.86)
Congo Dem. Rep.	1,180	27 0.148 2.739 (0.508 - 14.78)	262 0.099 1.868 (0.442 - 7.902)	467 0.104 1.999 (0.485 - 8.234)	276 0.072 1.373 (0.324 - 5.814)	87 0.126 2.379 (0.545 - 10.38)	38 0.052	14 0 2.99e-06 (6.89e-07 - 1.30e-05)	9 0.111 2.095 (0.192 22.84)

Page 33 of 40

BMJ Open

4	Congo Rep.	940	15 0.066	261 0.091	370 0.081	165 0.054	72 0.055	37 0.054	11 0.090	9 0.111
1			1.238 (0.122 -	1.655 (0.402 -	1.493 (0.373 -	0.991 (0.221 -	1.067 (0.202 -		1.773 (0.172 -	1.925 (0.203 -
2			12.55)	6.818)	5.972)	4.457)	5.641)		18.27)	18.25)
3	Cote d'Ivoire	1,023	70 0.171	424 0.129	325 0.104	134 0.067	41 0.073	23 0.043	4 0.25	2 0
4			3.618 (0.478 -	2.860 (0.388 -	2.428 (0.334 -	1.503 (0.189 -	1.638 (0.177 -		9.130 (0.787 -	3.38e-06 (3.14e-07 -
5			27.41)	21.07)	17.64)	11.98)	15.18)		105.9)	3.65e-05)
6	Dominican Republic	6,442	204 0.058	1,806 0.023	2,027 0.022	1,202 0.022	638 0.021	308 0.009	173 0.017	84 0.011
7			5.922 (1.697 -	2.485 (0.773 -	2.313 (0.719 -	2.292 (0.726 -	2.270 (0.656 -		1.734 (0.347 -	1.198 (0.128 -
8			20.67)	7.984)	7.444)	7.231)	7.853)		8.674)	11.24)
9	Egypt Arab Rep.	11,852	40 0.15	1187 0.064	3862 0.036	3482 0.022	1990 0.033	820 0.028	335 0.032	136 0.029
10			4.268 (1.887 -	2.064 (1.304 -	1.294 (0.840 -	0.792 (0.499 -	1.165 (0.729 -		1.173 (0.580 -	1.032 (0.362 -
11			9.655)	3.268)	1.993)	1.256)	1.862)		2.372)	2.946)
12	Ethiopia	2,895	60 0.166	788 0.109	968 0.088	646 0.058	281 0.110	88 0.102	49 0.142	15 0.066
13			1.889 (0.828 -	1.147 (0.613 -	0.894 (0.473 -	0.592 (0.298 -	1.072 (0.535 -		1.420 (0.580 -	0.649 (0.0845 -
14			4.309)	2.147)	1.690)	1.176)	2.149)		3.473)	4.979)
15	Gabon	709	41 0.097	292 0.051	238 0.050	88 0.034	28 0.035	16 0	6 0	
16 17	Ghana	1,949	11 0.272	322 0.059	732 0.049	477 0.046	252 0.035	91 0.043	43 0.093	21 0.047
			5.705 (1.384 -	1.411 (0.487 -	1.154 (0.410 -	1.061 (0.380 -	0.841 (0.262 -		2.305 (0.597 -	1.264 (0.143 -
18			23.52)	4.089)	3.248)	2.958)	2.699)		8.899)	11.17)
19	Guatemala	1,454	38 0.105	428 0.058	538 0.055	270 0.048	104 0.038	42 0.071	26 0.038	8 0
20			1.550 (0.383 -	0.845 (0.269 -	0.809 (0.262 -	0.688 (0.204 -	0.541 (0.128 -		0.518 (0.0536 -	7.68e-06 (2.06e-06 -
21			6.276)	2.656)	2.501)	2.317)	2.282)		5.010)	2.86e-05)
22	Guinea	1,409	104 0.105	556 0.100	410 0.080	205 0.092	88 0.102	29 0.034	13 0.153	4 0
23			3.039 (0.418 -	2.966 (0.431 -	2.329 (0.333 -	2.825 (0.390 -	3.310 (0.445 -		5.347 (0.549 -	1.99e-05 (2.25e-06 -
24			22.09)	20.44)	16.30)	20.48)	24.59)		52.12)	0.000176)
25	Haiti	1,514	16 0.062	295 0.105	485 0.068	330 0.042	188 0.063	110 0.054	64 0.031	26 0.076
26			1.084 (0.143 -	1.874 (0.790 -	1.211 (0.519 -	0.752 (0.294 -	1.097 (0.425 -		0.613 (0.125 -	1.514 (0.332 -
27			8.197)	4.447)	2.826)	1.920)	2.833)		2.997)	6.904)
28	Honduras	2,390	56 0.035	689 0.024	866 0.021	434 0.018	203 0	70 0.014	47 0	25 0.08
29			2.440 (0.225 -	1.695 (0.230 -	1.499 (0.203 -	1.267 (0.156 -	9.79e-07 (1.38e-07 -		9.96e-07 (1.39e-07 -	5.147 (0.458 -
30			26.49)	12.48)	11.06)	10.32)	6.95e-06)		7.13e-06)	57.85)
31	India	38,794	842 0.136	7641 0.098	13868 0.062	9293 0.048	4464 0.044	1767 0.030	684 0.036	235 0.063
32		, -	4.200 (3.067 -	3.063 (2.335 -	1.977 (1.511 -	1.559 (1.184 -	1.438 (1.074 -		1.223 (0.765 -	2.064 (1.191 -
33			5.750)	4.017)	2.586)	2.053)	1.924)		1.957)	3.576)
34	Jordan	3,007	10	284 0.010	843 0.028	911 0.026	579 0.018	251 0.015	105 0.009	33 0.030
35		-/	1.84e-07 (1.79e-08 -	0.627 (0.144 -	1.641 (0.597 -	1.544 (0.579 -	1.092 (0.362 -		0.567 (0.0646 -	1.931 (0.249 -
36			1.89e-06)	2.741)	4.514)	4.117)	3.291)		4.974)	14.98)
37	Kazakhstan	801	48 0.020	279 0.032	262 0.045	117 0.042	29 0	54 0.037	12 0	
-		001	10 0.020	0.468 (0.0471 -	0.838 (0.178 -	1.167 (0.258 -	1.158 (0.234 -	0.0007	1.50e-07 (3.47e-08 -	1.35e-07 (2.77e-08 -
38				4.656)	3.942)	5.286)	5.714)		6.51e-07)	6.57e-07)
39	Kenya	3,040	62 0.064	683 0.067	1196 0.042	666 0.036	281 0.046	103 0.029	41 0.048	80
40	Kenya	5)010	2.561 (0.585 -	2.349 (0.757 -	1.532 (0.493 -	1.247 (0.401 -	1.560 (0.463 -	100 0.015	1.646 (0.285 -	4.80e-06 (1.27e-06 -
41			11.21)	7.286)	4.765)	3.877)	5.259)		9.509)	1.82e-05)
42	Kyrgyz Republic	388	20 0.1	188 0.053	114 0.026	39 0.025	2 0	21 0.047	4 0.25	/
43		300	20 0.1	100 0.000	11, 0.020	55 0.025	20	21 0.047	1 0.25	
44										
45										33

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1				1.586 (0.146 - 17.26)	0.883 (0.113 - 6.895)	0.431 (0.0458 - 4.067)	0.395 (0.0242 - 6.458)		1.72e-06 (1.38e-07 - 2.14e-05)	3.645 (0.289 - 46.05)
2 3 4	Lesotho	749	4 0.5 4.978 (0.582 - 42.61)	165 0.054 0.770 (0.101 - 5.877)	339 0.073 1.098 (0.166 - 7.254)	170 0.070 0.965 (0.136 - 6.850)	37 0.027 0.358 (0.0245 - 5.225)	18 0.055	12 0.083 1.226 (0.102 - 14.82)	4 0 6.84e-06 (7.88e-07 - 5.94e-05)
5 6 7	Liberia	940	30 0.266 2.732 (0.639 - 11.69)	280 0.075 0.736 (0.185 - 2.931)	351 0.059 0.616 (0.152 - 2.493)	174 0.051 0.544 (0.124 - 2.385)	64 0.015 0.160 (0.0156 - 1.649)	19 0.105	17 0.117 1.115 (0.175 - 7.122)	5 0.2 2.044 (0.223 - 18.78)
8 9 10	Madagascar	3,753	203 0.152 1.732 (0.926 - 3.240)	1179 0.067 0.817 (0.447 - 1.493)	1196 0.051 0.617 (0.333 - 1.145)	645 0.049 0.638 (0.331 - 1.230)	287 0.048 0.594 (0.278 - 1.267)	141 0.078	60 0.083 1.063 (0.375 - 3.013)	42 0.095 1.315 (0.471 - 3.675)
11 12	Malawi	4,557	69 0.159 3.622 (0.828 - 15.85)	1346 0.135 3.079 (0.775 - 12.24)	2149 0.111 2.590 (0.651 - 10.31)	759 0.115 2.629 (0.652 - 10.59)	170 0.105 2.455 (0.578 - 10.42)	44 0.045	14 0.214 4.957 (0.889 - 27.64)	6 0.166 3.441 (0.356 - 33.23)
13 14 15	Mali	4,481	223 0.255 3.850 (1.867 - 7.939)	1801 0.147 2.145 (1.054 - 4.366)	1438 0.131 1.946 (0.950 - 3.986)	625 0.129 1.911 (0.924 - 3.953)	244 0.106 1.551 (0.705 - 3.412)	100 0.07	32 0.187 2.835 (1.052 - 7.644)	18 0.055 0.774 (0.102 - 5.864)
16 17	Moldova	630	34 0.029	187 0.021	224 0.004	108 0	21 0	50 0	6 0	
18 19 20	Morocco	2,064	10 0.3 5.342 (1.108 - 25.77)	212 0.066 1.325 (0.622 - 2.822)	587 0.059 1.176 (0.605 - 2.283)	539 0.048 0.969 (0.490 - 1.916)	316 0.041 0.790 (0.349 - 1.787)	218 0.050	119 0.008 0.183 (0.0238 - 1.410)	63 0 4.05e-07 (2.03e-07 - 8.07e-07)
21 22 23	Mozambique	2,617	108 0.277 3.760 (1.211 - 11.68)	947 0.126 1.932 (0.647 - 5.766)	947 0.102 1.557 (0.513 - 4.726)	399 0.092 1.362 (0.435 - 4.264)	141 0.134 1.984 (0.644 - 6.113)	42 0.071	29 0 1.01e-06 (3.18e-07 - 3.18e-06)	4 0.25 3.180 (0.465 - 21.77)
24 25 26	Namibia	2,715	34 0.058 3.788 (0.569 - 25.21)	559 0.055 4.094 (1.012 - 16.57)	995 0.041 2.998 (0.753 - 11.93)	602 0.039 2.843 (0.694 - 11.66)	298 0.033 2.573 (0.582 - 11.37)	143 0.013	56 0.053 3.971 (0.690 - 22.86)	28 0.035 2.688 (0.261 - 27.71)
27 28 29	Nicaragua	3,296	127 0.023 2.591 (0.270 - 24.89)	1153 0.052 5.875 (0.813 - 42.45)	1100 0.026 2.949 (0.401 - 21.68)	494 0.026 3.004 (0.394 - 22.92)	246 0.020 2.322 (0.273 - 19.77)	113 0.008	49 0.020 2.253 (0.142 - 35.64)	14 0.071 8.007 (0.520 - 123.3)
30 31 32	Niger	1,793	89 0.134 1.746 (0.420 - 7.262)	767 0.134 1.751 (0.463 - 6.622)	546 0.122 1.646 (0.431 - 6.282)	257 0.085 1.165 (0.295 - 4.607)	84 0.035 0.502 (0.0894 - 2.820)	29 0.068	17 0.058 0.851 (0.0803 - 9.023)	4 0 1.20e-08 (2.30e-09 - 6.24e-08)
33 34 35	Nigeria	5,825	206 0.155 2.100 (1.254 - 3.517)	1630 0.108 1.451 (0.958 - 2.198)	1571 0.081 1.098 (0.720 - 1.674)	1246 0.077 1.046 (0.682 - 1.605)	699 0.055 0.755 (0.464 - 1.228)	314 0.073	117 0.085 1.142 (0.566 - 2.307)	42 0.142 2.013 (0.867 - 4.676)
36 37	Pakistan	874	19 0.105 1.078 (0.220 - 5.290)	157 0.050 0.563 (0.178 - 1.775)	261 0.091 0.989 (0.396 - 2.467)	244 0.098 1.090 (0.433 - 2.744)	118 0.076 0.846 (0.297 - 2.411)	56 0.089	13 0.153 1.629 (0.351 - 7.557)	6 0 2.49e-06 (7.75e-07 - 7.98e-06)
38 39 40	Paraguay	696	10 0 2.74e-06 (3.47e-07 - 2.16e-05)	126 0.055 3.320 (0.415 - 26.59)	238 0.033 1.955 (0.246 - 15.57)	148 0.020 1.246 (0.131 - 11.89)	87 0.034 2.073 (0.215 - 20.00)	58 0.017	21 0 3.26e-06 (4.32e-07 - 2.46e-05)	8 0 2.85e-06 (3.41e-07 - 2.39e-05)
41 42 43 44	Peru	11,259	172 0.087 3.902 (1.989 - 7.654)	2114 0.038 1.707 (1.018 - 2.861)	3680 0.027 1.242 (0.748 - 2.061)	2568 0.022 0.987 (0.582 - 1.673)	1346 0.020 0.895 (0.492 - 1.630)	778 0.021	431 0.016 0.729 (0.305 - 1.745)	170 0.005 0.263 (0.0350 - 1.985)
44 45 46 47 48 40			Fc	or peer review o	nly - http://bmjop	en.bmj.com/site	/about/guideline	s.xhtml		34

BMJ Open

	Rwanda	2,930	15 0.133	243 0.106	1032 0.105	948 0.081	451 0.082	164 0.103	61 0.081	16 0.25
1 2			1.220 (0.306 - 4.873)	0.996 (0.551 - 1.801)	0.999 (0.615 - 1.623)	0.792 (0.482 - 1.302)	0.790 (0.455 - 1.371)		0.785 (0.265 - 2.326)	2.203 (0.774 - 6.270)
3 4 5	Senegal	1,260	41 0.121 3.306 (0.679 - 16.10)	329 0.103 2.870 (0.690 - 11.93)	398 0.062 1.705 (0.414 - 7.032)	292 0.041 1.139 (0.259 - 5.018)	114 0.061 1.673 (0.353 - 7.933)	55 0.036	20 0.1 2.799 (0.412 - 19.01)	11 0.272 7.708 (1.553 - 38.25)
6 7 8	Sierra Leone	663	29 0.103 1.703 (0.294 - 9.846)	184 0.081 1.325 (0.314 - 5.583)	190 0.094 1.563 (0.369 - 6.614)	157 0.082 1.364 (0.308 - 6.045)	55 0.054 0.904 (0.161 - 5.067)	31 0.064	9 0 4.49e-07 (9.69e-08 - 2.08e-06)	8 0 4.02e-07 (8.67e-08 - 1.87e-06)
9 10 11	Swaziland	620	10 0.1 0.679 (0.0697 - 6.608)	177 0.101 0.730 (0.186 - 2.864)	251 0.043 0.321 (0.0750 - 1.376)	106 0.103 0.804 (0.198 - 3.268)	50 0.08 0.607 (0.126 - 2.924)	16 0.125	8 0.125 0.850 (0.0868 - 8.325)	2 0 3.22e-06 (4.68e-07 - 2.22e-05)
12 13 14	Tanzania	2,511	27 0.222 4.229 (1.138 - 15.71)	675 0.094 1.754 (0.567 - 5.430)	1,085 0.088 1.648 (0.534 - 5.091)	476 0.056 1.060 (0.330 - 3.399)	162 0.086 1.636 (0.483 - 5.543)	59 0.050	22 0.090 1.769 (0.318 - 9.844)	5 0 1.80e-06 (4.28e-07 - 7.54e-06)
15 16 17	Togo	801	13 0.076 2.139 (0.139 - 32.95)	158 0.132 4.081 (0.544 - 30.59)	310 0.070 2.152 (0.287 - 16.14)	179 0.089 2.625 (0.357 - 19.33)	95 0.042 1.238 (0.139 - 10.99)	31 0.032	11 0.181 5.772 (0.566 - 58.89)	4 0.5 15.67 (1.863 - 131.8)
18 19	Turkey	1,878	4 0 8.48e-06 (2.05e-06 - 3.51e-05)	229 0.052 1.470 (0.480 - 4.502)	659 0.039 1.137 (0.401 - 3.222)	530 0.033 0.975 (0.327 - 2.909)	272 0.025 0.747 (0.210 - 2.665)	115 0.034	52 0.057 1.713 (0.405 - 7.246)	17 0 7.86e-06 (2.45e-06 - 2.52e-05)
20 21	Uganda	2,813	68 0.117	916 0.117	1165 0.089	438 0.075	170 0.076	41 0	13 0.230	2 0
22 23	Uzbekistan	559	27 0	263 0.03	205 0.058	38 0.105	5 0	18 0	3 0	
24 25	Zambia	3,321	52 0.134 (0.541 -	1116 0.128 (0.614 -	1428 0.095 (0.467 -	497 0.09 (0.441 -	153 0.078 (0.342 -	54 0.07	16 0.125 (0.295 -	5 0.2 (0.432 -
26 27	Zimbabwe	1,980	1.799 5.984) 21 0.142	1.631 4.333) 439 0.052	1.242 3.300) 888 0.057	1.204 3.288) 401 0.047	1.033 3.121) 160 0.05	44 0.05	1.460 7.218) 21 0.047	3.706 31.78) 6 0
28 29 30			(0.534 - 3.018 17.07)	(0.267 - 1.053 4.159)	(0.310 - 1.184 4.525)	(0.246 - 0.980 3.904)	(0.230 - 1.011 4.441)		(0.0980 - 1.004 10.29)	(2.35e-06 - 1.12e-05 5.31e-05)

Note: Each country/age group have four statistics associated with it: number of observations (top right), the fraction of children who died (top left), the relative risk ration (bottom right), and the 95% CI of that RRR (bottom left). Azerbaijan, Gabon, Moldova, Uganda and Uzbekistan excluded from country specific examples as convergence was not achieved for the country specific regressions.

Contributors: Jocelyn E. Finlay co-led the conception and interpretation of results in this study. She assisted with drafting the manuscript. She prepared all of the data, empirical analysis, and tables presented in the paper. As guarantor, she accepts full responsibility for this submitted work, had access to the data, and controlled the decision to publish. Emre Özaltin assisted with preliminary empirical analysis for this study. David Canning led the conception of this study and interpretation of study findings as well as assisting with the drafting of the manuscript. Authors have seen and approved this final submitted version of the manuscript. All authors will provide final approval of the version to be published.
Funding: We thank the William and Flora Hewlett Foundation for support of this research. Conception of this paper was

Funding: We thank the William and Flora Hewlett Foundation for support of this research. Conception of this paper was funded by the Centre for Disease Control. Researchers operated independently from the funders on this work, and funders neither provided nor were required to provide review and approval of this research.

Competing Interests: None declared

Exclusive License: "the Corresponding Author has the right to grant on behalf of all authors and does grant on behalf of all authors, an exclusive licence (or non exclusive for government employees) on a worldwide basis to the BMJ Publishing Group Ltd and its Licensees to permit this article (if accepted) to be published in BMJ editions and any other BMJPGL products and sublicenses to exploit all subsidiary rights, as set out in our licence

(http://resources.bmj.com/bmj/authors/checklists-forms/licence-for-publication).

Ethical Review

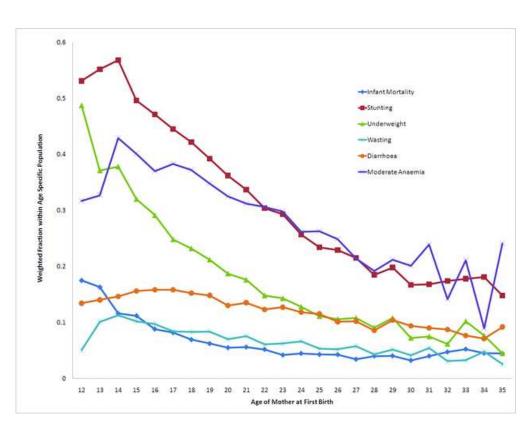
The DHS data collection procedures were approved by the ICF Macro International (Calverton, Maryland) Institutional Review Board as well as by the relevant body in each country which approves research studies on human subjects. Oral informed consent for the interview/survey was obtained from respondents by interviewers. The current study was reviewed by Harvard School of Public Health Institutional Review Board (Protocol #20069-101) and was ruled exempt from full review because the study was based on an anonymous public use data set with no identifiable information on the survey participants. STROBE Statement—Checklist of items that should be included in reports of cross-sectional studies

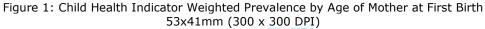
All items below are included in the study entitled: Association of Maternal Age with Infant Mortality, Child Anthropometric Failure, Diarrhoea, and Anaemia for First Births in Low- and Middle-Income Countries

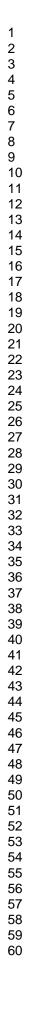
	Item No	Recommendation
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract
		(b) Provide in the abstract an informative and balanced summary of what was done
		and what was found
Introduction		
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported
Objectives	3	State specific objectives, including any prespecified hypotheses
Methods		
Study design	4	Present key elements of study design early in the paper
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment,
C		exposure, follow-up, and data collection
Participants	6	(<i>a</i>) Give the eligibility criteria, and the sources and methods of selection of participants
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect
		modifiers. Give diagnostic criteria, if applicable
Data sources/	8*	For each variable of interest, give sources of data and details of methods of
measurement		assessment (measurement). Describe comparability of assessment methods if there i
		more than one group
Bias	9	Describe any efforts to address potential sources of bias
Study size	10	Explain how the study size was arrived at
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable,
		describe which groupings were chosen and why
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding
		(b) Describe any methods used to examine subgroups and interactions
		(c) Explain how missing data were addressed
		(d) If applicable, describe analytical methods taking account of sampling strategy
		(<u>e</u>) Describe any sensitivity analyses
Results		
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially
		eligible, examined for eligibility, confirmed eligible, included in the study,
		completing follow-up, and analysed
		(b) Give reasons for non-participation at each stage
		(c) Consider use of a flow diagram
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and
		information on exposures and potential confounders
		(b) Indicate number of participants with missing data for each variable of interest
Outcome data	15*	Report numbers of outcome events or summary measures
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and
		their precision (eg, 95% confidence interval). Make clear which confounders were
		adjusted for and why they were included
		(b) Report category boundaries when continuous variables were categorized

(b) Report category boundaries when continuous variables were categorized

1
2
3
4
5
6
7
1
8
9
10
11
12
12
13
14
15
16
17
18
10
19
20
21
-2 3 4 5 6 7 8 9 10 11 2 13 14 15 16 17 18 19 20 12 23 24 25 6 7 8 9 10 11 23 33 34 35 36 37 38 9 10 11 20 21 22 34 25 6 27 28 29 30 11 32 33 34 35 36 37 38 9 10 10 10 10 10 10 10 10 10 10 10 10 10
23
24
24
20
26
27
28
29
20
30
31
32
33
34
35
36
30
31
38
39
40
41
42
43
44
45
46
47
48
40
51
52
53
54
55
56
57
58
59
60
00


1


		(c) If relevant, consider translating estimates of relative risk into absolute risk for a
		meaningful time period
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and
		sensitivity analyses
Discussion		
Key results	18	Summarise key results with reference to study objectives
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or
		imprecision. Discuss both direction and magnitude of any potential bias
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,
		multiplicity of analyses, results from similar studies, and other relevant evidence
Generalisability	21	Discuss the generalisability (external validity) of the study results
Other information		
Funding	22	Give the source of funding and the role of the funders for the present study and, if
		applicable, for the original study on which the present article is based


*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

s. em.c.

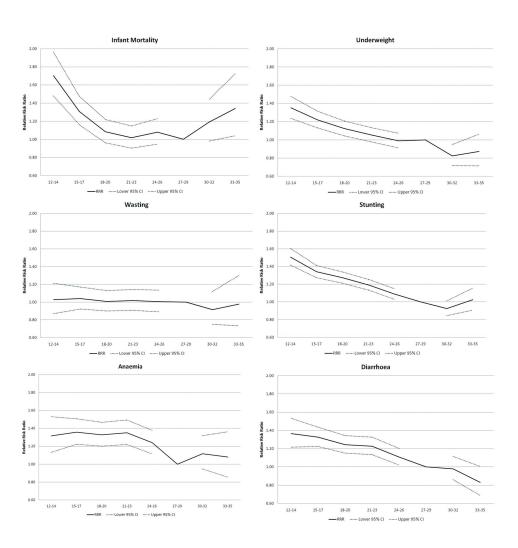


Figure 2: Plot of Adjusted Relative Risk Ratios and 95% Confidence Intervals as per the results tabulated in Table 4 174x176mm (300 x 300 DPI)

The Association of Maternal Age with Infant Mortality, Child Anthropometric Failure, Diarrhoea, and Anaemia for First Births: Evidence from 55 Low- and Middle-Income Countries

Journal:	BMJ Open
Manuscript ID:	bmjopen-2011-000226.R1
Article Type:	Research
Date Submitted by the Author:	14-Jul-2011
Complete List of Authors:	Finlay, Jocelyn; Harvard School of Public Health, Global Health and Population Ozaltin, Emre; Harvard School of Public Health, Global Health and Population Canning, David; Harvard School of Public Health, Global Health and Population
Primary Subject Heading :	Public health
Keywords:	PUBLIC HEALTH, PREVENTIVE MEDICINE, Community child health < PAEDIATRICS

Title
The Association of Maternal Age with Infant Mortality, Child Anthropometric Failure, Diarrhoea, and Anaemia for First
Births:Evidence from 55 Low- and Middle-Income Countries
Author, Degrees and Affiliation
Jocelyn E. Finlay, PhD, Department of Global Health and Population, HarvardSchool of Public Health, USA
EmreÖzaltin, MSc, Department of Global Health and Population, HarvardSchool of Public Health, USA
David Canning, PhD, Department of Global Health and Population, HarvardSchool of Public Health, USA
Corresponding Author
Jocelyn E. Finlay, Research Associate, Harvard Centre for Population and Development Studies, 9 Bow St, Cambridge, N
02138, USA. Tel: 617-372-735; Email: jfinlay@hsph.harvard.edu Running head: Maternal Age and Child Health
Running head: Maternal Age and Child Health

Objective: To examine the association between maternal age at first birth and infant mortality, stunting, underweight, wasting, diarrhoea and anaemia of children in low- middle-income countries. Design: Cross-sectional analysis of nationally representative household samples. A modified Poisson regression model is used to estimate unadjusted and adjusted relative risk ratios. Setting: Low- and middle-income countries Population: First births to women aged 12-35 where this birth occurred 12-60 months prior to the interview. The sample for analysing infant mortality is comprised of 176,583 children in 55 low- and middle-income countries across 118 Demographic and Health Surveys conducted between 1990 and 2008. Main Outcome Measures: In children under 12 months: infant mortality. In children under 5 years: stunting, underweight, wasting, diarrhoea and anaemia. Results: The investigation reveals two salient findings. First, in the sample of women who had their first birth between the ages of 12 and 35, the risk of poor child health outcome is lowest for women who have their first birth between the ages of 27-29. Secondly, the results indicate that both biological and social mechanisms play a role in explaining why children of young mothers have poorer outcomes. Conclusions: First borns of adolescent mothers are the most vulnerable to infant mortality and poor child health outcomes. Additionally, first time mothers up to the age of 27 have higher risk of having a child who suffers from stunting, diarrhoea and moderate or strong anaemia. Maternal and child health programs should take account of this increased risk even for mothers in their early twenties. Increasing age as first birth in developing countries may have large benefits in terms of child health.

Page 3 of 36

1

2	Introduction	
2 3 4	Progress towards reaching Millennium Development Goal 4 focuses on the measurable reduction in under-5	Deleted: (child health)
5 6	mortality. In low- to middle-income countries, this also means "revitalizing efforts againstdiarrhoea, while bolstering	
7 8	nutrition". ¹ The risk of under-5 mortality, and the prevalence of diarrheal disease and nutritional deficiencies that	
9	manifest themselves in outcomes such as stunting, wasting, underweight and anaemia in young children, underscore the	
10 11	need to understand the basic determinants of these poor child health outcomes. In India alone, 6.0% (95% CI 5.7-6.3) of	
12 ¹ 13	children die before their fifth birthday. In the same population, for children under-5, 42.2% are underweight, 47.8% are	Deleted: C
14 15	stunted, 19.7% are wasted, and 69.1% are anaemic. ² A cross-country study highlight that these prevalence percentages	Deleted: ies
16 17	are the norm throughout low- to middle-income countries. ³ A report on adolescent girls in low- to middle-income	
18 19	countries by the Centre for Global Development ⁴ highlighted the risk to child health associated with young motherhood.	
20	When considering child health, the report draws on the intergenerational influence on child health outcomes, rather	
21 22	than a cross sectional observation of children alone. The effect of the age of mother at first birth on child health	Deleted: a few
23 24	outcomes has been explored in <u>several</u> studies in low- to middle-income <u>countries</u> , ⁵⁻¹⁴ In the case of India, Raj <i>et al</i> ¹³	Deleted: country
25 26	show that childrenborn to mothers who were married under the age of 18 were at a higher risk of stunting and	Deleted: context Field Code Changed
27 ['] 28 '	underweight compared to children of women who had married at age18 or older. In another study, using the World	Deleted: as minors
29 30	Fertility Survey, Trussell and Hammerslough ¹⁴ also found that mothers' age at first birth was a significant risk factors of	
31 32	infant mortality in Sri Lanka. In low- to middle-income countries, 26.5% of women have their first birth before the age of	
33	18, and 83.1% have it before age 24. ¹⁵ Much debate, particularly with US population samples, concerns the social versus	Field Code Changed
34 35	physiological influence of young motherhood on child health outcomes. ¹⁶⁻²² Young age can proxy for "short stature, low	
36 37	body weight in relation to height, and greater likelihood of inadequate weight gain during pregnancy along with	Deleted: for
38 39	difficulty of delivery." ²³ These physiological factors point to vulnerability topoor child health outcomes. Women in low-	
40 41	to middle-income countries who have children at a young age are also more likely to be, and remain, poor and	
42 43	uneducated. ⁴ These social factors also disadvantage young mothers in terms of their child's health outcomes. Analysis	
44 45	that generalizes across and within countries, rather than focusing on a sample from a single country, provides	
46	standardized analyses and results to assess age as a proxy for physiological immaturity and social disadvantage and	
47 48	3	
49 50		
51 52		
53 54		
55 56		
57		
58 59		
60		

	BMJ Open	l	Page 4 of 36
	itseffect on child health outcomes. Earlier work by Hobcraft ¹² in 1992 examines the effect of age at first birth on child		Deleted: Early
1 2	survival in a number of countries using Demographic and Health Surveys available at that time. Given the prevalence of		
3	poor child health outcomes in low- to middle-income countries, and not just high infant mortality, studies that extend		
4 5	the monitoring of child health beyond infant mortality provide valuable information regarding health disparities and		
6 7	progress in achieving <u>Millennium Development Goal 4</u> , and its sub-goals relating to child health.	1	Deleted: MDG4
8 9	The purpose of the current study is to assess the association between maternal age at first birth and child health		
10 11	outcomes: infant mortality, stunting, underweight, wasting, diarrhoea, and anaemia. By controlling for socio-economic	1	Deleted: moderate or strong
12 13	factors, the, physiological effect of young motherhood on child health can be parsed out from the social disadvantage	.1	Deleted: Taking account of confounding socio-economic factors, the
14	that young mothers are also likely to face. The findings could critically inform family planning policies and programs		
15 16	aimed at delaying first birth beyond the teenage years.		
17 18	Methods		
19 20	Data Source		
21 22	Information from 118 Demographic and Health Surveys (DHS) conducted in 55 countries between 1990 and 2008		
23 24	provided the data for the analysis in this study. ²⁴ The DHS are nationally representative household sample surveys that		
25 26	measure population, health, socio-economic, and anthropometric indicators, emphasizing on maternal and child		
27	health. ²⁵ The DHS are important data source for studying population health across developing countries due to	1	
28 29	extensive coverage, comparability, and data quality, ²⁶⁻²⁸ To ensure standardization and comparability across diverse	1	Field Code Changed
30 31	sites and time, In conducting the Demographic and Health Surveys, Macro ICF, employs intense interviewer training,	1	Deleted: DHS research
32 33	standardized measurement tools and techniques, an identical core questionnaire, and instrument pretesting. ²⁹ Each		
34 35	participating country reports detail pretesting and quality assurance measures by survey. ¹⁵ The DHS is modular in		
36 37	structure, and in addition to the core questionnaire, a set of country-relevant sections, and country-specific variables are		
38	included. The DHS provides data with standardized variables across surveys. ³⁰		
39 40			
41 42	Sampling Plan		
43	The DHS involves stratified cluster randomized samples of households. ³¹ The sampling framewas stratified by	{	Deleted: Every survey population
44 45	urban and rural status and additionally by country-specific geographic or administrative regions. Within each stratified	7	Deleted: is
46 47	urban and rural status and additionally by country-specific geographic of administrative regions. Within each stratified		
48	4		
49 50			
51			
52			
53			
54 55			
55 56			
57			
58			
59			
60			

Page 5 of 36

BMJ Open

Deleted: are

	area, random clusters of households were drawn from a list of all enumeration areas taken from a population census. In
1 2	the second stage of sampling, all private households within the cluster were listed (institutions excluded) and an average
3 4	of 25 houses within a cluster wereselected by equal probability systematic sampling to be surveyed. Detailed sampling
5 6	plans are available from survey final reports. ¹⁵
7	Within each sampled household a household questionnaire was administered and women eligible for a more
8 9	detailed women's survey are identified. In most surveys all women between the ages of 15-49 were interviewed. In a
10 11	limited number of surveys the target group it is women aged 10-49, or 15-45, or ever-married women. The child
12 13	anthropometry module was conducted in a selection of the Standard Demographic and Health Surveys. ³² The DHS
14 15	provides weights <u>forcalculating</u> nationally representative <u>statistics</u> .
16	
17 18	Study Population and Sample Size
19 20	Our sample consists of children born to women who have had their first birth in the period 12-60 months before
21 22	the survey. The lower bound of 12 months is applied so that each child has equal exposure to one year of life and we
23 24	can accurately calculate the infant mortality (children who die within the first year of life). Detailed child health
25 26	measures are only taken for children up to 60 months which establishes our upper bound. Only the first birth for each
27 28	woman is included in our sample, for multiple births we only use data from the first recorded birth, though we control
29	for this for being a part of multiple births. The initial sample is 288,752 children across 72 countries from 181 surveys.
30 31	Infant mortality status is not available for 5,313 of these; mothers' age at the first birth is missing in 1,564;103,563
32 33	observations are missing covariates since not all surveys collect data on our covariates of interest (); yielding the final
34 35	sample of 176,583 children across 55 countries and 118 surveys for our mortality study. The age of mother is restricted
36 37	to 12-35 as only 13 of the mothers had their children at age less than 12 and 1,716 had their first birth at 36 or
38 39	older. Details of the samples for the child health outcomes are given in the appendix Table A1. These samples are smaller
40	because the child anthropometric module was not conducted in a number of surveys. The stunting data comprises
41 42	119,018, wasting 120,246, underweight 122,680, diarrhoea 135,121, and anaemia 31,520 children.
43 44	
45	
46 47	¹ Note the upper bound is 60 months rather than 59 months to conform to the World Health Organization age categories.
48	5
49 50	
51	
52 53	
54	
55 56	
50 57	
58	
59 60	

Deleted: are

Deleted: is

Deleted: are

sample . . .

5

Deleted: that can be used to make the

months rather than 59 to conform	
World Health Organization norm.	
Deleted: is in the sample	
Deleted: y	
Deleted: a	
Deleted: children reducing the s to 283,439. Not all	ample
Deleted: recorded (
Deleted: missing) reducing the s to 280,146 children. The age of mor restricted to 12-35 as only 13 of th mothers had their children at age than 12 and 1716 had their first bi 36 or older. This leaves the sample 280,146.	other is le less rth at
Deleted: We lose a significant nu of observations due to	ımber
Deleted: all	
Deleted: 103,563 observations lo	ost),
Deleted: ,these	
Deleted: due to	
Deleted: set is based on	
Deleted: children	
Deleted: the	
Deleted: data set is based on	
Deleted: children	
Deleted: the	
Deleted: data set is based on	
Deleted: children	
Deleted: the	
Deleted: data set is based on	
Deleted: children	
Deleted: the	
Deleted: data set is based on	

Outcome Measures

1 2	In this study, we focus on six outcomes: infant mortality, child stunting, underweight, wasting, diarrhoea, and		
3	moderate to severe anaemia (which is abbreviated to moderate anaemia throughout the paper). All health measures are		
4 5 6	for children born 12-60 months prior to the interview. Infant mortality is a measure of whether or not the child survived		
7	to age 1 year. The birth history in the Demographic and Health Surveys Individual Recode records the survival status of a		
8 9	woman's (respondent's) child. A child's death and age of death is reported by the mother. For the measure of infant		
10 11	mortality, we count infants who passed away within the first year of life (<12 months). We also measure anthropometric		
12 13	failure. First, we calculate a z-score given by the child's height minus the median height for that child's age and sex in a		
14 15	reference population. Then we divide by the standard deviation of the same age and sexin the World Health		Deleted: d
16	Organization reference population of healthy children in developing countries. ³³ Stunting is defined as a height z-score		Deleted: group Deleted: reference population. We use
17 18	of less than minus two. Similarly, underweight is defined as a z-score less than minus two for weight relative to children		the
19 20	of the same sex and age in the reference population. Wasting is defined as a z-score less than minus two for weight-to-		
21 22	height relative to children of the same sex and age in the reference population. Biologically impossible values are		
23 24	defined by the WHO for height (stunting) as z-scores <-6 or >6; for weight (underweight) as <-6 or >5; and for weight for		
25 26	height (wasting) as <-5 or >5. ρ bservations with biologically impossible values are dropped from our samples.		Deleted: These o
27	The outcome of child diarrhoea wasbased on the mother's recall of whether their child has had diarrhoea within	11	Deleted: is
28 29	the two weeks prior to interview. Anaemia was measured by a fingerstick blood test from the child at the time of	1	Deleted: is
30 31	interview. The first two drops of blood were discarded and the third drop was taken as a sample. The blood drop was		
32 33	analyzed using the HemoCue system. Adjustments for altitude weretaken into account, and children with a haemoglobin	1	Deleted: are
34 35	concentration less than <u>10grams per decilitre were</u> considered has having at least moderate anaemia.	1	Deleted: 11 Deleted: are
36			
37 38	Exposure and Covariates		
39 40	In this study we classify the covariates into four different categories: child characteristics, maternal		
41	characteristics, paternal characteristics and finally household and social factors. The child characteristics are child sex,		
42 43			
44 45	singleton or multiple births, and the age of child in months. The covariate for the age of child is not included in the infant		
46			
47 48	6		
49 50			
51 52			
53			
54 55			
56 57			
58			
59 60			

Page 7 of 36

	mortality model (which depends only on survival to age one year) but is included in all other models. Child, age in months
1 2	is categorized into four groups: 12-23, 24-35, 36-47, and 48-60.
3 4	The maternal factors that we include in this study are mother's age, her height, and her educational attainment.
5 6 7	Our exposure of interest <mark>is</mark> mother's age at the first birth. <u>The age of the mother at first birth is a variable reported in the</u>
	Demographic and Health Surveys recode manual ³⁰ and is calculated as from the CMC (century month code) of the date of
8 9	the first birth and the CMC of the date of birth of the mother. Age is categorized into three-year intervals: ages 12-14,
10 11	15-17, 18-20, 21-23, 24-26, 27-29, 30-32 and 33-35. Appendix Table A2 shows the effect of age of the mother at first
12	birth, and age squared, are regressed on the child health outcomes. This non-linear, continuous age variable, model
13 14 15	shows that the poor child health outcomes are minimised at age 29 for the infant mortality outcome. However, a
16 17	quadratic in age may not capture all the potential heterogeneity in the effect of maternal age on child health outcomes.
18	Furthermore, we use age grouped into three year intervals, as opposed to single year age groups, due to the small
19 20	number of infant deaths occurring for single age groups. Grouping three years together providesa sufficient group size
21 22	to minimize random fluctuations in mortality rates. Not all surveys measure women's height. In our main results, we do
23 24	not control for height but, since maternal height has been shown to be a predictor of child health, ³⁴ we do perform a
25 26	sensitivity analysis where we see the effect of adding maternal height as a covariate and restrict the sample to
27 28	observations where mother's height is available. The height of the mother is in five categories: 100-144cm, 145-149cm,
29	150-154cm, 155-159cm and 160-200cm. Maternal education is classified into three categories: no education or less
30 31	than completed primary, completed primary, and completed secondary or higher. Paternal covariates are whether the
32 33	women has a partner and if so the partner's age and education level. Partners are typically older than the women are
34 35	and partner's age is split into six categories: 12-17, 18-23, 24-29, 30-35, 36-41, 42-59. Partner's education follows the
36 37	same groupings as coded for mother's education: no education or less than completed primary, completed primary, and
38 39	completed secondary or higher.
40 41	Household and social factors include the wealth quintile of the household and whether the household is in a
42	rural or an urban location. The wealth quintile is a within-country measure of the wealth of the household relative to
43 44	other households in that survey based on its ownership of household assets. This measure of wealth, generated by
45 46	Filmer and Pritchett, ³⁵ is a linear index of asset ownership indicators using principal component analysis to derive
47	
48	7
49 50	
51	
52	
53	
54	
55 56	
56 57	
58	
59	
60	

weights. This measure has been standardised by Measure DHS across most of the Demographic and Health Surveys and

1 2	is widely used as a measure of relative wealth within a country. Given we have country fixed effects in the regression	
3 4	analyses, this wealth index is an indicator of how each household's wealth deviates from its own country's mean wealth	l
- 5 6	We also include indicators for piped water to the house, and a flush toilet in household. In addition to these household	
7	measures, we include a cluster level measure: the percentage of living children aged 12-60 months who have received	
8 9	measles vaccination in the cluster. We do not have vaccination data for children who have died and the cluster level	
10 11	measles vaccination percentage allows us to control for neighbourhood health system inputs. The cluster level average	
12 13	may be subject to the ecological fallacy, and we do not claim to measure the causal effect of measles vaccination on	
14 15	vaccinated children. Measles vaccine is administered between 9-12 months of age and is likely to have only a limited	
16 17	direct effect on infant mortality (deaths between 0-12 months). Rather, we think of the vaccine coverage as being a	
18	proxy for health care provision, though there may also be a herd-immunity effect on younger children due to lower	
19 20	overall prevalence.	
21 22		
23 24	Statistical Analysis	
25 26	To measure the relative risk of a given outcome we apply a modified Poisson regression following	Deleted: applied
27 28	Zou's ³⁶ methodology. We estimate the unadjusted model only controlling for country fixed effects and survey-year	
29	dummies to account for the uneven repeated cross section. We then estimate the adjusted model and include the	
30 31	covariates. While summary statistics are weighted to take into account the multistage sampling design, the regressions	
32 33	are not weighted. ³⁷	
34 35	Results	
36	Results	
37 38	Results: Summary Statistics	
39		
40 41	Average age at first birth across the 118 Demographic and Health Surveys is 20.18. This ranges from an average	
42	age of 17.65 in Bangladesh in 1996, to an average of 23.02 in Jordan in 2007 (Table 1). Across the 118 surveys included	
43 44	in this study, infant mortality is as high as 17.01% of all first borns in Mali in 1995. In 30 of the 118 surveys, average	
45 46	stunting is 50% or higher, 79 of the 118 survey country/years have stunting rates of 30% or higher. Madagascar in 1997	
47		
48		3
49 50		
51		
52		
53		
54		
55		
56 57		
57 58		
59		
60		

Page 9 of 36

	hasthe highest average stunting rate with 65.46% of the first borns being classified as stunted according to the WHO
1 2	standards. Wasting, weight-for-height, does not measure as prevalent as stunting. 26 of the 118 surveys record an
3 4	average prevalence of 10% or more. Underweight, weight-for-age, is as high as 50.01% in Niger in 1998. In terms of
5	underweight, 32 of the 118 surveys record a prevalence of 25% or more. An average of 36.91% of first borns in Niger in
6 7 8	1998 isreported to have suffered diarrhoea within the two weeks prior to the DHS interview, but across the 118 surveys
9	the average is 13.64%. Anaemia was not recorded in all of the surveys, but of the 38 surveys that do record anaemia
10 11	average rates range from a low of 7.99% of first borns in Egypt in 2000, to 71.55% in Burkina Faso in 2003. The average
12 13	is32.6% across the 118 surveys (Table 1).
14 15	In the infant mortality model (n=176,583 children) 23.9% of the women are between the ages of 15 and 17 at
16	first birth and 35.2% are between the ages of 18 and 20 (Table 2). The reference group in the regression analysis is
17 18	children whose mothers were 27-29 year old at first birth. This group represents 4.3% of the population with 7,648
19 20	children. Children of multiple births are rare (0.8%), most women (92.9%) have partners, 60.1% of the children are born
21 22	in rural areas, 43.6% have piped water to the house, the remainder has to leave the house to collect water, and 30.9% of
23 24	the children have a flush toilet at the house. Distributions of covariates are similar across the different outcome models
25 26	(Table 2).
27 28	In Figure 1 we plot the prevalence of the child health outcome against the age of the mother at first birth. The
29	weighted fraction of child health outcomes by age is an extension of the statistics reported in Table 2 of child health
30 31	outcomes by age band. We see that, in general, the prevalence of poor child health outcomes declines with mother's
32 33	age to about age 27. The decline in poor child health outcomes with maternal age is particularly obvious for stunting,
34 35	anaemia, and underweight, but is also evident for diarrhoea, infant mortality and wasting.
36	
37 38	
39	
40 41	
42	
43	
44 45	
45 46	
40 47	
48	9
49	
50	
51	
52	
53 54	
54 55	
56	
57	
58	
59	
60	

Table 1:Weighted Mean Child Health Outcomes and Confidence Intervals by Survey

2																	
2				Age													
		Survey		at first													
4		Year	Sample Size	birth		Infa	nt Mortality	:	Stunting	,	Wasting	Un	derweight	1	Diarrhea		Anemia
5		. cui	N	Mean	SD	Mean	95% CI										
6	Armenia	2000	510	21.04	(3.61)	1.51	[0.77,2.93]	16.17	[12.27,21.00]	1.40	[0.55,3.56]	1.02	[0.38,2.65]	8.53	[6.20,11.63]	8.29	[5.92,11.49]
7	Armenia	2005	504	21.90	(3.15)	1.47	[0.51,4.15]	17.19	[11.07,25.72]	3.12	[1.63,5.88]	3.57	[1.96,6.41]	15.60	[12.00,20.05]	15.78	[10.21,23.57]
3	Azerbaijan	2006	719	22.54	(3.97)	3.11	[1.73,5.55]	25.32	[20.80,30.45]	3.93	[2.31,6.61]	7.40	[4.81,11.21]	9.79	[7.00,13.53]	17.82	[13.55,23.07]
9	Bangladesh	1996	1,309	17.65	(3.24)	9.60	[8.11,11.33]	57.25	[53.52,60.89]	16.80	[14.37,19.53]	48.81	[45.41,52.22]	8.13	[6.43,10.23]		
-	Bangladesh	1999	1,596	18.20	(3.49)	9.86	[8.45,11.48]	56.07	[52.65,59.44]	10.46	[8.69,12.53]	40.37	[37.31,43.51]	6.30	[5.04,7.85]		
0	Bangladesh	2004	1,633	18.04	(3.29)	7.80	[6.49,9.35]	52.60	[49.58,55.60]	14.43	[12.29,16.87]	42.73	[39.70,45.81]	5.89	[4.70,7.37]		
1	Bangladesh	2007	1,637	18.48	(3.35)	6.14	[4.82,7.79]	43.55	[40.14,47.01]	15.12	[12.90,17.64]	40.91	[37.40,44.52]	9.98	[8.24,12.03]		
2	Benin	1996	594	19.57	(3.02)	8.40	[6.46,10.86]	38.94	[32.70,45.58]	14.76	[10.67,20.08]	27.60	[22.44,33.45]	27.46	[21.91,33.80]		
3	Benin	2001	781	20.25	(3.55)	8.27	[6.49,10.48]	40.96	[36.75,45.31]	7.25	[5.53,9.46]	21.17	[17.80,24.99]	14.54	[11.70,17.92]	55.57	[49.74,61.26]
	Benin	2006	2,112	20.42	(3.57)	7.34	[6.23,8.63]	45.43	[42.40,48.48]	5.43	[4.25,6.91]	17.54	[15.58,19.69]	9.41	[8.06,10.95]	48.72	[44.21,53.26]
4	Bolivia	1993	813	20.82	(4.05)	3.36	[2.29,4.90]	29.95	[25.21,35.16]	4.17	[2.47,6.96]	10.60	[7.75,14.34]	31.69	[27.25,36.50]		
5	Bolivia	1998	1,224	20.85	(4.16)	4.54	[3.42,6.00]	24.24	[21.38,27.35]	0.56	[0.24,1.32]	3.43	[2.47,4.73]	18.66	[16.17,21.44]		
6	Bolivia	2003	1,987	20.48	(4.03)	3.65	[2.75,4.83]	26.30	[23.44,29.38]	0.81	[0.48,1.39]	2.68	[1.94,3.69]	22.07	[19.78,24.53]	22.67	[18.54,27.40]
7	Brazil	1996	1,280	21.12	(4.53)	2.15	[1.48,3.13]	8.76	[7.11,10.73]	2.43	[1.48,3.96]	2.60	[1.76,3.82]	9.62	[7.96,11.58]		
-	Burkina Faso	1992	771	19.12	(2.91)	12.50	[10.06,15.44]	45.86	[41.34,50.46]	15.69	[12.40,19.66]	33.99	[29.51,38.78]	12.85	[10.33,15.87]		
8	Burkina Faso	1998	730	19.21	(3.00)	14.94	[12.25,18.09]	53.12	[48.15,58.03]	13.36	[10.62,16.67]	39.39	[35.29,43.64]	12.64	[10.02,15.83]		
9	Burkina Faso	2003	1,414	19.19	(2.87)	9.07	[7.48,10.95]	48.54	[44.36,52.74]	17.97	[15.29,21.00]	33.47	[29.58,37.60]	20.82	[17.94,24.02]	71.55	[65.66,76.78]
0	Cameroon	1991	498	18.62	(3.16)	6.67	[4.50,9.78]	35.90	[29.95,42.33]	4.38	[2.41,7.86]	16.73	[11.94,22.96]	12.10	[8.78,16.45]		
1	Cameroon	1998	542	18.87	(3.18)	7.27	[5.29,9.91]	43.56	[37.05,50.30]	4.52	[2.21,9.03]	17.92	[12.98,24.22]	20.23	[15.66,25.74]		
	Cameroon	2004	1,146	19.13	(3.45)	6.26	[4.90,7.97]	35.95	[31.39,40.79]	6.20	[4.23,9.00]	13.57	[10.26,17.73]	16.99	[13.40,21.29]	45.37	[40.19,50.65]
2	Central African Rep.	1994	653	18.78	(3.44)	13.62	[11.25,16.41]	49.09	[43.70,54.50]	7.51	[4.83,11.48]	22.06	[17.35,27.62]	28.00	[23.40,33.12]		
23	Chad	1996	1,030	18.30	(2.98)	12.37	[10.37,14.70]	50.36	[46.24,54.47]	13.68	[11.22,16.58]	33.95	[30.05,38.08]	21.38	[18.25,24.89]		
4	Chad	2004	733	18.18	(3.09)	14.00	[10.86,17.85]	42.26	[37.35,47.34]	11.23	[8.51,14.68]	36.86	[29.66,44.69]	22.83	[18.16,28.29]		
5	Colombia	1995	1,405	21.60	(4.43)	1.58	[1.05,2.38]	15.73	[13.68,18.01]	0.92	[0.50,1.68]	4.54	[3.42,6.01]	12.44	[10.75,14.35]		
	Colombia	2000	1,358	21.32	(4.70)	1.85	[1.26,2.70]	15.38	[13.06,18.03]	0.49	[0.22,1.09]	3.19	[2.21,4.59]	12.77	[10.94,14.85]		
6	Colombia	2004	3,998	20.70	(4.49)	1.04	[0.75,1.44]	12.36	[10.92,13.96]	0.85	[0.59,1.24]	3.15	[2.50,3.98]	14.14	[12.63,15.79]		
27	Comoros	1996	234	21.20	(4.42)	6.84	[4.40,10.47]	47.27	[37.21,57.56]	10.81	[6.25,18.05]	19.64	[12.36,29.77]	16.81	[10.75,25.30]		
28	Congo, Dem. Rep.	2007	1,180	19.86	(3.50)	9.97	[7.87,12.55]	45.30	[38.16,52.65]	8.54	[5.39,13.26]	25.79	[21.49,30.61]	17.11	[12.48,23.00]	45.44	[38.80,52.25]
29	Congo, Rep.	2005	940	19.66	(3.63)	8.85	[6.69,11.63]	36.58	[31.42,42.07]	5.64	[3.85,8.20]	12.69	[9.38,16.94]	13.49	[10.72,16.84]	34.19	[27.82,41.19]
	Cote d'Ivoire	1994	927	18.28	(3.21)	11.83	[9.50,14.63]	45.40	[40.31,50.60]	8.55	[6.03,12.00]	24.23	[19.89,29.17]	17.89	[14.34,22.10]		
30	Cote d'Ivoire	1998	96	18.50	(3.18)	6.75	[2.85,15.16]	36.39	[23.85,51.09]	4.53	[1.49,12.96]	17.29	[10.34,27.47]	20.92	[13.39,31.16]		
81	Dominican Republic	1996	1,035	20.31	(4.34)	3.42	[2.35,4.97]	8.21	[6.30,10.65]	1.79	[0.88,3.60]	2.85	[1.85,4.38]	10.81	[8.59,13.51]		
32	Dominican Republic	2002	2,611	19.99	(4.19)	2.00	[1.41,2.84]	8.13	[6.56,10.04]	1.11	[0.66,1.86]	2.35	[1.66,3.31]	13.91	[12.04,16.02]		
3	Dominican Republic	2007	2,632	20.14	(4.29)	2.00	[1.38,2.88]	7.59	[6.03,9.52]	1.40	[0.93,2.10]	2.67	[1.68,4.20]	14.66	[12.74,16.82]		
84	Dominican Republic	2007	164	18.72	(3.27)	1.99	[0.58,6.52]	15.18	[9.25,23.93]	1.08	[0.27,4.28]	4.03	[1.85,8.55]	22.09	[15.04,31.24]		
	Egypt, Arab Rep.	1995	2,136	21.41	(3.95)	4.92	[3.94,6.14]	30.90	[27.95,34.01]	3.67	[2.70,4.97]	7.48	[6.11,9.11]	13.87	[12.04,15.93]		
35	Egypt, Arab Rep.	2000	2,370	21.81	(3.73)	3.20	[2.55,3.99]	21.40	[19.35,23.61]	2.19	[1.58,3.03]	2.40	[1.82,3.17]	5.85	[4.88,7.00]	7.99	[6.40,9.94]
36	Egypt, Arab Rep.	2003	1,502	21.45	(3.70)	3.94	[3.01,5.16]	16.87	[14.65,19.36]	4.17	[3.03,5.72]	7.18	[5.75,8.93]	19.40	[17.10,21.92]		
37																	
~ ~																	10

Page 11 of 36

BMJ Open

	Egypt, Arab Rep.	2005	3,226	21.78	(3.69)	2.53	[1.99,3.21]	19.10	[17.35,20.97]	4.15	[3.29,5.23]	3.39	[2.72,4.21]	16.20	[14.67,17.86]	20.08	[17.18,23.32]
4	Egypt, Arab Rep.	2008	2,618	21.91	(3.72)	1.88	[1.41,2.51]	30.29	[28.01,32.67]	7.28	[6.05,8.73]	5.26	[4.31,6.39]	6.63	[5.66,7.74]		
	Ethiopia	2000	1,689	20.09	(3.64)	11.37	[9.40,13.70]	58.70	[54.76,62.53]	9.29	[7.17,11.95]	37.03	[33.21,41.03]	22.00	[18.84,25.53]		
2	Ethiopia	2005	1,206	19.55	(3.63)	7.59	[5.67,10.08]	48.86	[42.72,55.04]	10.38	[7.47,14.26]	33.03	[27.97,38.53]	15.79	[12.11,20.34]	28.82	[23.44,34.88]
3	Gabon	2000	709	18.31	(3.21)	5.10	[3.60,7.19]	30.15	[25.72,34.99]	2.40	[1.31,4.34]	7.57	[5.60,10.16]	21.01	[17.52,24.98]		
4	Ghana	1993	427	20.45	(3.51)	3.04	[1.75,5.24]	42.36	[35.78,49.22]	8.70	[5.69,13.07]	20.09	[15.52,25.58]	14.10	[10.22,19.15]		
	Ghana	1998	531	20.72	(3.52)	4.76	[3.22,6.96]	33.92	[29.21,38.98]	7.52	[5.46,10.26]	20.99	[17.56,24.88]	16.21	[13.12,19.86]		
5	Ghana	2003	492	20.92	(3.71)	5.81	[4.03,8.31]	36.27	[31.08,41.79]	6.36	[4.35,9.21]	19.35	[15.61,23.73]	15.96	[12.40,20.29]	52.42	[46.87,57.91]
6	Ghana	2008	499	21.19	(4.19)	4.51	[3.05,6.63]	35.08	[29.58,41.00]	6.80	[4.47,10.21]	14.88	[11.24,19.44]	20.50	[16.69,24.92]	50.44	[44.47,56.40]
7	Guatemala	1995	1,454	19.52	(3.67)	5.38	[4.15,6.95]	50.10	[45.63,54.57]	3.90	[2.75,5.52]	16.96	[14.31,20.00]	21.36	[18.19,24.92]		
8	Guinea	1999	743	18.32	(3.36)	10.82	[8.73,13.35]	37.23	[32.89,41.79]	6.31	[4.47,8.83]	19.86	[16.59,23.58]	22.56	[19.45,26.00]		
-	Guinea	2005	666	18.77	(3.72)	7.40	[5.59,9.74]	43.81	[37.73,50.09]	10.06	[6.85,14.54]	26.52	[21.40,32.36]	17.18	[13.55,21.53]	58.57	[52.14,64.73]
9	Haiti	1994	514	21.19	(4.18)	9.24	[6.84,12.39]	33.89	[28.47,39.78]	5.65	[3.83,8.26]	20.68	[16.67,25.36]	24.12	[19.99,28.80]		
10	Haiti	2005	1,000	21.19	(4.44)	5.52	[4.09,7.41]	23.71	[19.13,29.00]	9.22	[6.50,12.92]	16.45	[12.85,20.82]	17.80	[13.50,23.12]	34.56	[29.27,40.26]
11	Honduras	2005	2,390	19.70	(3.82)	1.68	[1.22,2.32]	23.09	[20.90,25.43]	1.26	[0.80,1.96]	6.73	[5.55,8.13]	15.76	[14.10,17.57]	12.30	[10.69,14.12]
12	India	1992	12,919	19.93	(3.55)	8.02	[7.44,8.64]	58.80	[56.94,60.63]	18.02	[16.66,19.47]	48.55	[46.72,50.37]	5.34	[4.79,5.95]		[]
	India	1998	12,763	20.12	(3.66)	7.11	[6.58,7.68]	52.52	[50.67,54.36]	15.99	[14.77,17.29]	41.41	[39.66,43.18]	17.38	[16.22,18.61]		
13	India	2005	13,112	21.13	(3.86)	6.27	[5.71,6.87]	44.60	[43.17,46.04]	16.23	[15.25,17.26]	38.76	[37.35,40.18]	7.60	[6.97,8.30]	38.38	[36.96,39.81]
14	Jordan	1990	1,035	21.22	(3.59)	1.90	[1.18,3.02]	18.53	[15.85,21.55]	3.05	[1.97,4.70]	4.97	[3.45,7.11]	9.21	[7.48,11.29]	50.50	[50.50,55.01]
15	Jordan	1997	1,033	22.17	(3.73)	2.98	[2.11,4.20]	8.55	[6.88,10.59]	1.60	[0.94,2.71]	2.92	[2.05,4.14]	15.63	[13.37,18.19]		
	Jordan	2007	898	23.02	(3.90)	1.83	[0.77,4.30]	12.20	[9.05,16.26]	5.89	[3.66,9.35]	5.23	[2.05,4.14]	16.98	. , .	12.29	[9.25,16.16]
16	Kazakhstan		406	25.02	(3.62)	3.68		17.89	. , .		. , ,	5.25	. , ,		[13.21,21.55]	12.29	[9.25,10.10]
17	Kazakhstan	1995 1999	395	21.95	(3.62)	4.48	[2.17,6.20] [2.69,7.38]	17.89	[11.91,25.99] [8.15,19.15]	2.59 2.56	[1.07,6.14] [0.97,6.54]	3.86	[2.97,10.91] [1.53,9.42]	17.56 17.49	[11.77,25.39]		
18					. ,										[13.32,22.63]		
19	Kenya	1998	867	19.92	(3.20)	3.95	[2.71,5.71]	38.01	[33.54,42.69]	5.98	[3.97,8.90]	14.11	[11.53,17.14]	18.73	[14.95,23.21]		
	Kenya	2003	1,114	19.95	(3.43)	5.61	[4.29,7.30]	35.33	[31.70,39.14]	5.42	[3.87,7.54]	14.99	[12.43,17.97]	16.14	[13.63,19.00]		
20	Kenya	2008	1,059	19.91	(3.60)	4.75	[3.34,6.71]	35.46	[30.78,40.43]	5.24	[3.67,7.41]	14.39	[11.36,18.06]	13.55	[10.69,17.02]		
21	Kyrgyz Republic	1997	388	20.97	(3.14)	5.05	[3.22,7.83]	32.43	[24.30,41.77]	2.02	[0.73,5.49]	6.77	[3.51,12.64]	19.38	[14.01,26.20]		
22	Lesotho	2004	749	19.81	(3.24)	6.82	[5.09,9.09]	48.43	[41.99,54.93]	2.81	[1.50,5.18]	16.97	[13.00,21.84]	13.53	[9.92,18.19]	28.47	[22.99,34.65]
	Liberia	2006	940	19.38	(3.52)	7.12	[5.23,9.63]	45.57	[40.86,50.35]	5.85	[4.08,8.32]	25.72	[20.96,31.13]	21.03	[17.16,25.50]		
23	Madagascar	1997	915	19.22	(3.94)	10.61	[8.51,13.14]	65.46	[60.10,70.45]	7.12	[5.03,10.00]	34.37	[29.41,39.70]	29.95	[25.50,34.81]		
24	Madagascar	2003	951	20.19	(4.40)	5.36	[3.70,7.69]	56.18	[50.85,61.36]	12.83	[9.76,16.70]	37.42	[32.05,43.13]	7.33	[5.31,10.05]	34.48	[26.54,43.39]
25	Madagascar	2008	1,887	19.11	(3.82)	4.78	[3.78,6.02]	44.72	[40.11,49.42]					9.11	[6.96,11.84]	14.62	[11.89,17.85]
26	Malawi	1992	564	18.84	(2.98)	17.00	[13.63,20.98]	64.28	[58.09,70.03]	6.08	[3.88,9.41]	22.30	[17.79,27.57]	11.15	[8.10,15.17]		
	Malawi	2000	2,121	18.95	(2.61)	13.71	[12.13,15.46]	62.66	[59.57,65.66]	4.79	[3.64,6.27]	22.42	[19.99,25.05]	16.49	[14.48,18.71]		
27	Malawi	2004	1,872	18.80	(2.53)	8.53	[7.15,10.15]	58.00	[54.61,61.31]	5.87	[4.55,7.55]	18.31	[15.91,20.98]	21.50	[18.90,24.34]	39.83	[34.10,45.84]
28	Mali	1995	1,042	18.48	(3.32)	17.01	[14.74,19.55]	48.29	[42.85,53.77]	23.45	[19.14,28.41]	39.96	[34.73,45.43]	25.17	[20.64,30.32]		
29	Mali	2001	1,595	18.70	(3.44)	15.56	[13.36,18.04]	45.95	[42.17,49.77]	12.23	[9.96,14.94]	33.63	[30.07,37.38]	19.06	[15.93,22.64]	63.91	[56.77,70.49]
30	Mali	2006	1,844	18.55	(3.43)	14.17	[11.74,17.01]	42.24	[38.58,45.99]	14.98	[12.97,17.24]	31.23	[28.23,34.40]	14.47	[12.11,17.20]	62.99	[57.58,68.08]
	Moldova	2005	630	22.18	(3.56)	0.93	[0.40,2.15]	8.89	[6.70,11.70]	5.19	[3.59,7.44]	3.22	[1.95,5.26]	7.01	[5.28,9.26]	9.04	[6.38,12.66]
31	Morocco	1992	788	22.21	(4.38)	6.22	[4.55,8.45]	23.49	[20.13,27.23]	1.94	[1.10,3.41]	4.29	[2.86,6.39]	6.20	[4.48,8.53]		
32	Morocco	2003	1,276	22.57	(4.54)	3.96	[3.00,5.21]	19.72	[17.10,22.64]	8.67	[7.00,10.70]	8.32	[6.80,10.15]	7.30	[5.72,9.26]		
33	Mozambique	1997	938	18.80	(3.27)	14.62	[10.35,20.26]	56.14	[48.14,63.83]	9.74	[6.09,15.20]	28.54	[20.40,38.36]	22.39	[14.69,32.59]		
	Mozambique	2003	1,679	18.73	(3.26)	11.68	[9.88,13.75]	51.77	[47.94,55.58]	4.75	[3.40,6.60]	21.41	[18.50,24.65]	14.41	[12.22,16.91]		
34	Namibia	1992	762	20.32	(3.71)	5.10	[3.75,6.89]	38.83	[34.12,43.76]	8.02	[5.73,11.13]	21.24	[17.21,25.91]	16.28	[12.91,20.33]		
35	Namibia	2000	830	20.44	(3.83)	3.05	[1.95,4.72]	27.82	[23.92,32.10]	8.74	[6.18,12.22]	18.69	[14.28,24.08]	12.63	[9.55,16.53]		
36	Namibia	2006	1,123	20.76	(4.00)	3.31	[2.44,4.50]	28.69	[24.81,32.90]	5.96	[4.41,8.02]	17.92	[14.58,21.84]	16.00	[12.96,19.59]		
37																	
																	11
38																	
20																	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

47 48

	Nicaragua	1997	1,633	19.06	(3.64)	3.75	[2.86,4.90]	25.74	[23.01,28.66]	2.18	[1.39,3.40]	8.07	[6.33,10.23]	12.33	[10.57,14.34]		
1	Nicaragua	2001	1,663	19.26	(3.75)	2.43	[1.78,3.30]	20.84	[18.42,23.48]	1.59	[0.88,2.85]	5.03	[3.84,6.56]	12.33	[10.48,14.45]		
-	Niger	1998	871	18.16	(3.15)	16.42	[13.68,19.58]	56.49	[50.91,61.91]	24.52	[19.95,29.75]	50.01	[44.60,55.42]	36.91	[31.70,42.44]		
2	Niger	2006	922	18.64	(3.42)	9.45	[7.42,11.96]	60.64	[55.35,65.69]	9.47	[6.85,12.95]	45.40	[40.09,50.81]	18.74	[14.93,23.26]	59.43	[53.08,65.49]
3	Nigeria	1990	1,023	19.80	(3.88)	7.65	[5.64,10.30]	55.63	[51.25,59.92]	13.60	[8.01,22.17]	38.01	[32.01,44.40]	10.97	[8.23,14.47]		
4	Nigeria	2003	850	19.82	(3.89)	10.00	[7.71,12.87]	46.78	[40.28,53.39]	9.13	[6.60,12.50]	31.67	[26.27,37.61]	16.72	[13.26,20.87]		
5	Nigeria	2008	3,952	20.29	(4.24)	8.17	[7.26,9.19]	39.08	[36.76,41.46]	12.00	[10.61,13.53]	24.74	[22.65,26.96]	10.41	[9.20,11.77]		
	Pakistan	1990	874	20.81	(3.88)	9.97	[7.64,12.90]	53.38	[47.78,58.89]	11.52	[7.41,17.49]	33.03	[27.96,38.54]	7.11	[4.90,10.21]		
6	Paraguay	1990	696	21.07	(4.21)	3.09	[2.02,4.69]	12.87	[10.24,16.06]	0.34	[0.07,1.55]	1.83	[0.98,3.38]	4.93	[3.27,7.35]		
7	Peru	1991	1,747	21.13	(4.22)	2.50	[1.87,3.35]	30.63	[27.83,33.57]	1.21	[0.73,1.99]	6.08	[4.88,7.56]	7.93	[6.57,9.55]		
8	Peru	1996	3,505	20.96	(4.15)	3.05	[2.45,3.80]	22.42	[20.35,24.65]	0.79	[0.51,1.22]	3.17	[2.59,3.88]	15.06	[13.51,16.75]		
9	Peru	2000	3,151	21.02	(4.33)	2.21	[1.70,2.87]	24.09	[21.85,26.48]	0.68	[0.41,1.13]	3.20	[2.50,4.08]	13.78	[12.30,15.41]	24.96	[20.76,29.70]
	Peru	2003	2,856	21.14	(4.44)	1.57	[1.11,2.24]	20.19	[17.77,22.84]	0.71	[0.35,1.43]	2.24	[1.70,2.94]	13.72	[11.85,15.82]	17.32	[15.22,19.64]
10	Rwanda	1992	742	21.54	(3.57)	10.06	[8.07,12.48]	58.42	[53.98,62.73]	2.91	[1.75,4.82]	19.17	[15.79,23.07]	15.52	[12.61,18.96]		
11	Rwanda	2000	1,209	21.34	(3.32)	10.62	[8.96,12.54]	52.92	[49.11,56.70]	5.24	[3.73,7.30]	17.46	[14.78,20.52]	15.93	[13.40,18.84]		
12	Rwanda	2005	979	21.54	(3.29)	8.06	[6.31,10.25]	54.14	[49.11,59.09]	5.69	[3.72,8.59]	21.00	[17.07,25.56]	16.34	[12.97,20.38]	35.70	[30.54,41.20]
13	Senegal	2005	1,260	20.01	(3.91)	7.09	[5.61,8.93]	20.13	[15.29,26.04]	7.46	[5.05,10.88]	13.98	[10.29,18.71]	21.26	[16.65,26.74]	61.98	[55.64,67.94]
	Sierra Leone	2008	663	19.85	(4.03)	8.06	[6.08,10.61]	38.25	[31.56,45.41]	11.82	[8.30,16.57]	22.17	[16.99,28.39]	7.80	[5.15,11.64]	46.22	[39.35,53.23]
14	Swaziland	2006	620	19.48	(3.35)	7.95	[5.95,10.55]	28.69	[24.65,33.10]	1.54	[0.72,3.29]	3.87	[2.40,6.16]	17.15	[13.71,21.23]	21.93	[18.07,26.34]
15	Tanzania	1996	1,058	19.31	(2.81)	9.38	[7.62,11.50]	56.50	[52.22,60.69]	8.52	[6.43,11.20]	26.25	[23.01,29.77]	13.45	[11.13,16.17]		
16	Tanzania	1999	48	18.50	(2.84)	9.86	[3.92,22.69]	57.16	[33.20,78.17]	6.31	[1.43,23.83]	26.88	[13.03,47.41]	9.32	[3.45,22.82]		
17	Tanzania	2004	1,405	19.58	(3.26)	7.40	[5.98,9.12]	50.22	[45.93,54.51]	3.24	[2.22,4.69]	18.11	[15.72,20.77]	11.54	[9.57,13.85]	43.42	[39.87,47.05]
	Togo	1998	801	20.30	(3.60)	8.27	[6.47,10.53]	34.67	[29.09,40.70]	12.53	[9.28,16.70]	25.71	[21.19,30.81]	30.18	[25.94,34.79]		
18	Turkey	1993	949	21.16	(3.44)	4.73	[3.47,6.42]	17.98	[15.20,21.15]	1.76	[1.00,3.09]	6.15	[4.49,8.37]	14.42	[12.09,17.12]		
19	Turkey	1998	929	21.59	(3.89)	3.06	[2.05,4.55]	18.36	[15.46,21.67]	1.62	[0.88,2.99]	5.70	[4.12,7.85]	27.06	[23.87,30.51]		
20	Uganda	1995	1,067	18.71	(2.98)	11.14	[9.18,13.47]	52.06	[46.60,57.47]	5.41	[3.49,8.29]	23.09	[19.11,27.61]	25.44	[22.03,29.17]		
21	Uganda	2000	1,035	18.81	(2.98)	10.56	[8.68,12.78]	49.28	[45.02,53.56]	3.10	[1.94,4.93]	14.86	[11.93,18.34]	16.99	[13.93,20.57]	41.11	[36.08,46.33]
	Uganda	2006	711	19.26	(2.82)	7.63	[5.55,10.39]	42.30	[36.02,48.83]	6.65	[3.81,11.35]	15.90	[11.62,21.39]	26.83	[21.31,33.17]	41.20	[34.42,48.33]
22	Uzbekistan	1996	559	20.89	(2.71)	3.80	[2.51,5.71]	35.89	[29.30,43.06]	7.84	[4.63,13.00]	7.63	[4.98,11.53]	6.73	[4.11,10.84]		
23	Zambia	1996	1,188	18.80	(2.81)	13.46	[11.48,15.72]	57.98	[54.05,61.81]	4.49	[3.18,6.29]	21.31	[18.40,24.55]	24.12	[21.17,27.34]		
24	Zambia	2001	1,161	18.59	(2.68)	10.47	[8.82,12.38]	58.17	[54.17,62.06]	5.27	[3.70,7.44]	22.43	[19.83,25.27]	23.77	[20.83,26.98]		
25	Zambia	2007	972	19.21	(3.12)	7.44	[5.85,9.42]	51.39	[47.22,55.54]	4.36	[3.03,6.24]	15.44	[12.74,18.59]	15.66	[12.98,18.78]		
26	Zimbabwe	1994	719	19.53	(3.01)	5.81	[4.22,7.95]	31.46	[25.99,37.50]	7.39	[4.77,11.27]	14.70	[10.79,19.72]	25.59	[20.64,31.26]		
	Zimbabwe	2005	1,261	19.87	(3.19)	5.49	[4.08,7.35]	33.26	[30.00,36.69]	6.32	[4.77,8.33]	12.57	[10.49,14.98]	13.65	[11.40,16.26]	29.68	[25.99,33.65]
27	Total	2000	176,583	20.18	(3.87)	6.49	[6.35,6.64]	36.20	[35.81,36.60]	7.53	[7.32,7.74]	19.78	[19.43,20.13]	13.64	[13.40,13.87]	32.60	[31.87,33.34]
28																	

Page 13 of 36

BMJ Open

Table 2: Weighted Frequency and Distribution of First Born Children within Five Years of the Survey Aged 12-60 months Across Age of Mother at Birth and Other	
Covariates	

	Infant M	ortality	Stun	ting	Underwe	eight	Was	ting	Diarr	hoea	Moderate	Anaemia
	Population	Weighted	Population	Weighted	Population	Weighted	Population	Weighted	Population	Weighted	Population	Weighted
		Fraction		Fraction		Fraction		Fraction		Fraction		Fraction
	n=176	,583	n=119	9,018	n=122,6	580	n=120),246	n=135	5,121	n=31	,520
Age Band of the Mother at First Birth												
12-14	4,497	0.026	2,301	0.020	2443	0.020	2,379	0.020	2,851	0.021	514	0.01
15-17	42,233	0.239	25,882	0.219	26839	0.220	26,335	0.220	30,011	0.222	6,531	0.20
18-20	62,091	0.352	41,492	0.351	42868	0.352	42,054	0.352	47,425	0.351	11,753	0.36
21-23	37,757	0.214	26,427	0.224	27127	0.223	26,594	0.223	29,927	0.222	7,563	0.23
24-26	17,383	0.099	12,669	0.107	12936	0.106	12,690	0.106	14,258	0.106	3,355	0.10
27-29	7,648	0.043	5,722	0.048	5883	0.048	5,771	0.048	6,480	0.048	1,481	0.04
30-32	3,377	0.019	2,566	0.022	2616	0.022	2,547	0.021	2,884	0.021	650	0.02
33-35	1,399	0.008	1,075	0.009	1085	0.009	1,075	0.009	1,203	0.009	249	0.00
Sex of Child												
Vale	90,302	0.512	59,709	0.505	61867	0.508	60,577	0.507	68,501	0.507	16,438	0.51
Female	86,083	0.488	58,424	0.495	59929	0.492	58,867	0.493	66,539	0.493	15,658	0.48
Гуре of Birth												
Singleton	174,947	0.992	117,235	0.992	120853	0.992	118,515	0.992	134,004	0.992	31,850	0.99
ſwin	1,438	0.008	898	0.008	944	0.008	930	0.008	1,036	0.008	247	0.00
Age of Child in Months												
18-60 months	44,542	0.253	24,472	0.207	24780	0.203	24,353	0.204	27,013	0.200	7,552	0.23
36-47 months	42,793	0.243	26,908	0.228	27694	0.227	27,210	0.228	31,330	0.232	7,867	0.24
24-35 months	43,082	0.244	31,485	0.267	32603	0.268	31,950	0.267	36,595	0.271	7,961	0.24
12-23 months	45,968	0.261	35,268	0.299	36718	0.301	35,932	0.301	40,101	0.297	8,717	0.2
Education Level of the Mother at Time	of Interview											
Secondary or higher	36,152	0.205	27,729	0.235	28308	0.232	27,757	0.232	31,177	0.231	6,562	0.20
Completed primary	57,645	0.327	40,543	0.343	41341	0.339	40,673	0.341	45,720	0.339	12,739	0.39
No education or incomplete primary	82,589	0.468	49,862	0.422	52147	0.428	51,015	0.427	58,142	0.431	12,796	0.3
Nother has a Partner												
/es	163,858	0.929	109,350	0.926	112890	0.927	110,666	0.927	125,468	0.929	30,192	0.94
No	12,527	0.071	8,784	0.074	8906	0.073	8,779	0.074	9,572	0.071	1,904	0.0
Education Level of the Mother's Partne	r at the Time o	f Interview										
Completed Secondary or Higher	54,943	0.311	39,434	0.334	40422	0.332	39,640	0.332	44,409	0.329	8,891	0.2
Completed primary	56,655	0.321	38,884	0.329	39920	0.328	39,216	0.328	44,217	0.327	12,180	0.3
No education or incomplete primary	64,787	0.367										

	Age Band of the Mother's Partner at	t the Birth of the M	other's First B	irth									
	12-17	2,104	0.012	1,224	0.010	1236	0.010	1,211	0.010	1,409	0.010	373	0.012
2	18-23	40,271	0.228	27,180	0.230	28018	0.230	27,483	0.230	30,594	0.227	9,132	0.285
	24-29	101,722	0.577	66,806	0.566	68828	0.565	67,569	0.566	77,555	0.574	15,792	0.492
	30-35	22,072	0.125	15,954	0.135	16483	0.135	16,125	0.135	17,661	0.131	4,797	0.149
	36-41	6,768	0.038	4,685	0.040	4846	0.040	4,724	0.040	5,266	0.039	1,342	0.042
	42-59	3,448	0.020	2,284	0.019	2385	0.020	2,332	0.020	2,555	0.019	660	0.021
	Wealth Quintile of the Child's House	hold											
	Richest	36,825	0.209	24,886	0.211	25377	0.208	24,876	0.208	28,741	0.213	6,550	0.204
	Rich	37,749	0.214	25,955	0.220	26597	0.218	26,150	0.219	29,413	0.218	6,961	0.217
	Middle	36,203	0.205	24,554	0.208	25319	0.208	24,853	0.208	27,932	0.207	6,795	0.212
	Poorer	34,324	0.195	22,705	0.192	23517	0.193	23,053	0.193	25,834	0.191	6,138	0.191
	Poorest	31,285	0.177	20,035	0.170	20986	0.172	20,512	0.172	23,120	0.171	5,653	0.176
		, -											
	Residence of the Child's Household a	at the Time of Inter	view										
2	Urban	70,395	0.399	50,428	0.427	51491	0.423	50,597	0.424	57,358	0.425	12,301	0.383
3	Rural	105,990	0.601	67,706	0.573	70305	0.577	68,848	0.576	77,682	0.575	19,796	0.617
1													
5	Water Piped to Child's House												
3	Piped to House	76,844	0.436	55,481	0.470	56699	0.466	55,714	0.466	62,499	0.463	14,306	0.446
•	Water not piped to house	99,542	0.564	62,653	0.530	65097	0.534	63,731	0.534	72,542	0.537	17,790	0.554
3	Flush Toilet at Child's House												
)	Flush Toilet at House	54,418	0.309	41,542	0.352	42402	0.348	41,686	0.349	46,955	0.348	10,511	0.327
	No Flush Toilet at House	121,968	0.691	76,592	0.648	79394	0.652	77,759	0.651	88,085	0.652	21,586	0.673
)													
2	Child Measles Vaccination												
	Cluster Weighted Mean		0.234		0.204		0.208		0.208		0.214		0.211
•													
5								8					
6													
7													
3													
9													
0													
ĺ													
5													
5													
7													
8													

 Page 14 of 36

Page 15 of 36

BMJ Open

Older women are more likely to have multiple births, although the event is rare across all age groups. Young mothers are less likely to have a partner: 8.6% of 15-17 year olds mothers do not have a partner compared to 5.8% of women in the 27-29 year old category (Table 3). Young mothers have lower education than older mothers; 64.6% of mothers aged 15-17 had incomplete primary or no schooling, whereas 23.1% of women who had their first birth between the ages of 27-29 had only incomplete primary or no schooling (Table 3). Older mothers tend to be in a higher wealth quintile: 42.9% of women who had their first birth between the ages of 27-29 are in the richest quintile while 11.7% of mothers age 15-17 are in the richest quintile (Table 3). 71.2% of mothers who had their first birth between the ages of 15 and 17 live in rural areas, while 35% of women who have their first birth between the ages of 27-29 live in rural areas (Table 3). Delaying first birth is more likely in urban areas. Women who have their first birth later are also more likely to live in conditions that are more sanitary: 57.3% of women who have their first birth between the ages of 27 and 29 have a flush toilet at the house compared to 16.4% of 15-17 year old first time mothers (Table 3). Women who delay their first birth are more educated, more likely to have a partner, are richer, more likely to live in an urban area, and more likely to live in better sanitary conditions. Young mothers tend to have lower educational and socio-economic characteristics. In the following analysis, we present both unadjusted results and results that control for these covariates (Table 3).

Deleted: do

Table 3: Weighted Frequency and Distribution Covariates Across Age of Mother at Birth

1 2 2	Age Band	12-14 Pop. W'tedFrac. n=4,322	15-17 Pop. W'tedFrac. n=41,384	18-20 Pop. W'tedFrac. n=61,491	21-23 Pop. W'tedFrac. n=38,300	24-26 Pop. W'tedFrac. n=18,211	27-29 Pop. W'tedFrac. n=7,939	30-32 Pop. W'tedFrac. n=3,493	33-35 Pop. W'tedFrac. n=1,443
3 4	Sex of Child								
5	Male	2,323 0.517	21,627 0.512	31,995 0.515	19,017 0.504	8,941 0.514	3,964 0.518	1,731 0.513	705 0.504
	Female	2,173 0.483	20,607 0.488	30,096 0.485	18,741 0.496	8,443 0.486	3,685 0.482	1,646 0.487	694 0.496
6	Type of Birth								
7	Singleton	4,477 0.996	42,003 0.995	61,701 0.994	37,376 0.990	17,173 0.988	7,532 0.985	3,317 0.982	1,369 0.979
8	Twin	19 0.004	230 0.005	390 0.006	382 0.010	211 0.012	116 0.015	60 0.018	30 0.021
9									
10	Age of Child in Months								
11	48-60 months	1,380 0.307	11,154 0.264	15,402 0.248	9,272 0.246	4,269 0.246	1,841 0.241	890 0.263	335 0.240
	36-47 months	1,260 0.280	10,537 0.249	14,491 0.233	9,378 0.248	4,176 0.240	1,822 0.238	822 0.243	307 0.219
12	24-35 months	995 0.221	10,125 0.240	15,252 0.246	9,419 0.249	4,191 0.241	1,885 0.246	839 0.248	376 0.269
13	12-23 months	862 0.192	10,418 0.247	16,946 0.273	9,687 0.257	4,748 0.273	2,100 0.275	827 0.245	381 0.272
14	Education Local of the Marthan of Times	6 June							
15	Education Level of the Mother at Time o	30 0.007	1,518 0.036	9,263 0.149	11,213 0.297	7,607 0.438	3,979 0.520	1,836 0.544	705 0.504
16	Secondary or higher Completed primary	957 0.213	13,415 0.318	22,837 0.368	12,459 0.330	4,961 0.285	1,899 0.248	781 0.231	336 0.241
17	No education or incomplete primary	3,509 0.780	27,300 0.646	29,991 0.483	14,085 0.373	4,816 0.277	1,770 0.231	760 0.225	357 0.256
	No education of meonipiete primary	3,303 0.780	27,300 0.040	25,551 0.405	14,005 0.575	4,810 0.277	1,770 0.251	700 0.225	337 0.230
18	Mother has a Partner								
19	Yes	4,101 0.912	38,606 0.914	57,623 0.928	35,469 0.939	16,378 0.942	7,208 0.942	3,181 0.942	1,291 0.923
20	No	395 0.088	3,627 0.086	4,468 0.072	2,288 0.061	1,006 0.058	440 0.058	196 0.058	108 0.077
21			,	,		,			
22	Education Level of the Mother's Partner	at the Time of Interview							
23	Completed Secondary or Higher	669 0.149	8,265 0.196	17,087 0.275	14,040 0.372	8,148 0.469	4,113 0.538	1,876 0.556	746 0.533
	Completed primary	1,107 0.246	12,977 0.307	21,683 0.349	12,533 0.332	5,193 0.299	2,031 0.266	802 0.238	328 0.235
24	No education or incomplete primary	2,721 0.605	20,992 0.497	23,321 0.376	11,184 0.296	4,042 0.233	1,504 0.197	699 0.207	325 0.232
25									
26	Age Band of the Mother's Partner at the								
27	12-17	313 0.070	1,250 0.030	407 0.007	109 0.003	20 0.001	4 0.001	1 0.000	1 0.000
28	18-23	1,587 0.353	14,655 0.347	17,407 0.280	5,426 0.144	898 0.052	227 0.030	55 0.016	17 0.012
	24-29	2,256 0.502	22,157 0.525	36,519 0.588	24,543 0.650	10,869 0.625	3,671 0.480	1,220 0.361	487 0.348
29	30-35	214 0.048	2,756 0.065	5,480 0.088	5,634 0.149	3,981 0.229	2,491 0.326	1,203 0.356	313 0.223
30	36-41	83 0.019	896 0.021	1,467 0.024	1,319 0.035	1,155 0.066	848 0.111	631 0.187	371 0.265
31	42-59	44 0.010	520 0.012	812 0.013	727 0.019	461 0.027	407 0.053	267 0.079	211 0.151
32	Wealth Quintile of the Child's Household	4							
33	Richest	366 0.081	4,937 0.117	10,572 0.170	9,490 0.251	6,196 0.356	3,283 0.429	1,423 0.421	557 0.398
34	Rich	710 0.158	7,659 0.181	13,466 0.217	9,088 0.241	3,972 0.228	1,700 0.222	815 0.241	340 0.243
35	Middle	950 0.211	9,159 0.217	13,772 0.222	7,453 0.197	2,950 0.170	1,185 0.155	517 0.153	216 0.154
	Poorer	1,194 0.265	10,329 0.245	12,770 0.206	6,330 0.168	2,354 0.135	838 0.110	350 0.103	160 0.114
36	Poorest	1,277 0.284	10,148 0.240	11,511 0.185	5,397 0.143	1,911 0.110	642 0.084	273 0.081	126 0.090
37									16
38									10

Page 17 of 36

Pag	je 17 of 36				BMJ	Open				
	Residence of the Child's Household a	at the Time of Interview								
1	Urban	1,033 0.230	12,159 0.288	22,251 0.358	16,999 0.450	9,721 0.559	4,969 0.650	2,315 0.686	949 0.678	
2	Rural	3,463 0.770	30,074 0.712	39,840 0.642	20,759 0.550	7,663 0.441	2,679 0.350	1,062 0.314	450 0.322	
3										
4	Water Piped to Child's House Piped to House	1,082 0.241	13,530 0.320	25,731 0.414	18,816 0.498	9,906 0.570	4,736 0.619	2,149 0.636	896 0.640	
5	Water not piped to house	3,415 0.759	28,704 0.680	36,360 0.586	18,942 0.502	7,478 0.430	2,912 0.381	1,228 0.364	503 0.360	
6		-,		,	,	.,	_,	_,		
7	Flush Toilet at Child's House									
8	Flush Toilet at House	434 0.097	6,908 0.164	16,700 0.269	14,506 0.384	8,551 0.492	4,380 0.573	2,080 0.616	859 0.614	
9	No Flush Toilet at House	4,062 0.903	35,325 0.836	45,390 0.731	23,251 0.616	8,832 0.508	3,269 0.427	1,297 0.384	540 0.386	
10	Child Measles Vaccination									
11	Cluster Weighted Mean	0.359	0.298	0.238	0.202	0.166	0.145	0.125	0.139	
12										
13										
14										
15										
16										
17										
18										
19										
20										
21										
22										
23										
24										
25										
26										
27										
28										
29										
30										
31										
32										
33										
34			0.298							
34 35										
36										
37									1	7
38									-	

Results: Unadjusted and Adjusted Models

1 2	The unadjusted pooled results indicate that the risk of infant mortality is lowest for women who have their first	
- 3 4	birth between the ages of 27-29 (Table A3). The relative risk ratio declines as age increases between the ages of 12 and	Deleted: comes to a minimum
5 6	26, and is lowest for 27-29 year olds (Table A3). The relative risk ratio then increases for women who have their first	
7 8	birth at 33-35 (Table A3). This same U-shape is exhibited in many of the country specific unadjusted regressions. Benin,	
9	Bolivia, India, Senegal and Tanzania are examples where the child survival is maximized if the first birth is delayed to the	
10 11	ages of 27-29, and most countries (<u>38/55)</u> follow this pattern (Table A3).	Deleted: even when we
12 13	Age of the mother at first birth is a risk factor for infant mortality and adverse child health outcomes in adjusted	Deleted. even when we
14 15	analysis controlling for maternal, paternal, and household and social characteristics (Table 4). The relative risk ratios of	
16 17	each age group (relative to 27-29 year olds who are the reference group) and 95% confidence intervals are plotted in	
18	Figure 2. Child health outcomes improve with increasing age of the mother at first birth through to age 27-29 even after	Deleted: in Deleted: and in some cases 30-32 (except for wasting)
19 20	controlling for maternal, paternal, household and social factor covariates (Table 4, Figure 2).	(except for washing)
21 22	Maternal and paternal age have different effects on child health outcomes (Table 4). In the cases of infant	
23 24	mortality, underweight, wasting, and anaemia, maternal and paternal age have similar effect sizes indicating the role of	Deleted: has Deleted: approximately equal relative
25 26	social mechanisms (Table 4). In the case of stunting and diarrhoea, while having a very young father increases the	risk
27	relative risk of poor child health outcomes, the effect is significantly smaller than that of the mother's age, strengthening	
28 29 30	the case that the effect has a biological component for these two child health outcomes (Table 4). There may be concern	
31	that the effect of age of mother on child health outcomes may be changing over time. Although the year of birth is	
32 33	controlled for, this only controls for year specific events and not for an interaction between age of the mother and the	
34 35	year of birth. To explore this possibility, Table A4 is the same model as that in Table 4 but the sample is restricted	
36 37	surveys between 2000 and 2005. Comparison ofresults in Table A4 and Table4 shows that the effect of age of mother on	
38 39	child health is similar across the two samples. This comparison suggests that the effect of age on child health outcomes	
40	is changing over the study period.	
41 42		
43		
44 45		
46		
47		
48	18	
49 50		
50		
51 52		
52 53		
53 54		
55		
56		
57		
58		
59		
60		

Page 19 of 36

BMJ Open

Table 4: Adjusted Relative Risk of Infant Mortality and Child Health Outcome by Age of Mother at First Birth

		Infant Mortality	Stunting	Underweight	Wasting	Diarrhoea	Moderate Anaemia
A	ge Band of the Mother at First Birth						
27	7-29 (Reference)	1.00	1.00	1.00	1.00	1.00	1.00
	2-14	1.703	1.507	1.351	1.027	1.365	1.315
		(1.478 - 1.962)	(1.416 - 1.603)	(1.236 - 1.477)	(0.870 - 1.211)	(1.216 - 1.533)	(1.131 - 1.528)
15	5-17	1.307	1.341	1.218	1.040	1.326	1.357
_,		(1.160 - 1.474)	(1.274 - 1.412)	(1.131 - 1.313)	(0.923 - 1.170)	(1.224 - 1.436)	(1.222 - 1.507)
18	8-20	1.083	1.272	1.122	1.007	1.244	1.327
		(0.963 - 1.219)	(1.210 - 1.338)	(1.043 - 1.207)	(0.899 - 1.129)	(1.151 - 1.343)	(1.200 - 1.468)
22	1-23	1.018	1.191	1.052	1.018	1.227	1.349
22		(0.903 - 1.148)	(1.132 - 1.254)	(0.976 - 1.132)	(0.908 - 1.141)	(1.135 - 1.326)	(1.219 - 1.493)
	4-26	1.079	1.087	0.989	1.004	1.108	1.239
1		(0.948 - 1.228)	(1.028 - 1.148)	(0.912 - 1.071)	(0.889 - 1.135)	(1.019 - 1.203)	(1.114 - 1.378)
	0-32	1.191	0.925	0.824	0.915	0.979	1.117
3 _		(0.981 - 1.445)	(0.845 - 1.013)	(0.717 - 0.947)	(0.749 - 1.119)	(0.860 - 1.115)	(0.947 - 1.317)
3:	3-35	1.340	1.025	0.872	0.976	0.831	1.079
4		(1.041 - 1.725)	(0.908 - 1.156)	(0.715 - 1.062)	(0.733 - 1.299)	(0.687 - 1.006)	(0.854 - 1.362)
5 se	ex of Child						
6 ™	1ale (Reference)	1.00	1.00	1.00	1.00	1.00	1.00
	emale	0.787	0.900	0.915	0.854	0.927	0.956
		(0.759 - 0.815)	(0.888 - 0.913)	(0.895 - 0.935)	(0.821 - 0.889)	(0.903 - 0.951)	(0.927 - 0.985)
8 т,	ype of Birth						
9 si	ingleton (Reference)	1.00	1.00	1.00	1.00	1.00	1.00
0 т	win	4.998	1.302	1.627	1.264	0.918	1.135
		(4.609 - 5.421)	(1.207 - 1.404)	(1.459 - 1.814)	(1.018 - 1.570)	(0.782 - 1.077)	(0.963 - 1.337)
1 	ge of Child in Months	, ,	, , , , , , , , , , , , , , , , , , ,	, , , , , , , , , , , , , , , , , , ,	·		. ,
2 4	8-59 months (Reference)		1.00	1.00	1.00	1.00	1.00
<u> </u>	6-47 months		1.146	1.023	0.986	1.392	1.219
4			(1.119 - 1.174)	(0.986 - 1.062)	(0.916 - 1.060)	(1.311 - 1.477)	(1.147 - 1.296)
	4-35 months		1.246	1.123	1.145	2.446	1.609
5			(1.217 - 1.275)	(1.083 - 1.164)	(1.066 - 1.229)	(2.316 - 2.582)	(1.513 - 1.711)
6 ₁₂	2-23 months		1.169	1.114	1.572	3.818	2.240
7			(1.141 - 1.198)	(1.073 - 1.156)	(1.466 - 1.686)	(3.625 - 4.021)	(2.102 - 2.386)
8 Ed	ducation Level of the Mother at Time of In	terview	, , , , , , , , , , , , , , , , , , ,	, , , , , , , , , , , , , , , , , , ,	,	· ,	
	econdary or Higher (Reference)	1.00	1.00	1.00	1.00	1.00	1.00
3	ompleted Primary	1.266	1.286	1.282	1.022	1.143	1.079
)		(1.160 - 1.382)	(1.243 - 1.329)	(1.214 - 1.354)	(0.945 - 1.105)	(1.092 - 1.196)	(1.009 - 1.154)
1 _N	o education or incomplete primary	1.626	1.482	1.586	1.243	1.192	1.159
2	· · · · · · · · · · · · · · · · · · ·	(1.480 - 1.786)	(1.429 - 1.536)	(1.495 - 1.681)	(1.141 - 1.355)	(1.131 - 1.256)	(1.075 - 1.248)
	1other has a Partner	(1.00 1.00)	((()	((2.070 2.240)
J	es (Reference)	1.00	1.00	1.00	1.00	1.00	1.00
4 _N		0.977	1.148	1.237	1.232	1.105	1.110
5 ື	-	5.577	1.140	1.237	1.2.52	1.105	2.110

36 Education Level of the Mother's Partner at the Time of Interview

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

(1.47-1.434) (1.09-1.163) (1.100-1.288) (1.070-1.238) (1.079-1.120) (1.029-1.120) Age Band of the obther's Partner at the Birth of the Mother's First Birth 1.00								
Income [1.027 - 1.176] (1.009 - 1.037) (1.015 - 1.109) (1.015 - 1.109) (1.019 - 1.120) No education or incomplete primary (1.147 - 1.324) (1.099 - 1.133) (1.180 - 1.288) (1.007 - 1.238) (1.019 - 1.120) (1.029 - 1.172) Age Band of the Mother's Partner at the Birth of the Mother's First Birth 22-29 (Intervence) 1.00		Higher (Reference)	1.00	1.00	1.00	1.00	1.00	1.00
No education or incomplete primary 1.232 1.131 1.233 1.151 1.088 1.098 Age Band of the Mother's Partner at the Birth of the Mother's first Birth 1.000 1.00 </td <td></td> <td>Completed primary</td> <td>1.099</td> <td>1.068</td> <td>1.097</td> <td>1.037</td> <td>1.059</td> <td>1.053</td>		Completed primary	1.099	1.068	1.097	1.037	1.059	1.053
(1.47-1.434) (1.09-1.163) (1.100-1.288) (1.070-1.238) (1.079-1.120) (1.029-1.120) Age Band of the obther's Partner at the Birth of the Mother's First Birth 1.00	1		(1.027 - 1.176)	(1.040 - 1.097)	(1.052 - 1.144)	(0.969 - 1.109)	(1.015 - 1.104)	(0.993 - 1.117)
Age Sand of the Mother's First Birth 24-29 (Reference) 1.00 1.00 1.00 1.00 1.00 1.00 12-25 (Reference) 1.00 1.01 1.148 1.125 1.008 1.049 1.090 18-23 1.077 1.054 1.026 0.979 1.032 1.050 30-35 0.942 0.964 0.953 0.941 0.958 0.997 30-35 0.942 0.964 0.953 0.941 0.958 0.997 36-41 0.956 0.932 0.922 1.065 0.932 0.929 1.032 1.066 12 2-59 1.046 1.035 1.030 0.977 1.01 0.962 12 42-59 1.046 1.035 1.00 1.02 1.	2	No education or incomplete primary	1.232	1.131	1.233	1.151	1.068	1.098
Age Sand of the Mother's First Birth 24-29 (Reference) 1.00 1.00 1.00 1.00 1.00 1.00 12-25 (Reference) 1.00 1.01 1.148 1.125 1.008 1.049 1.090 18-23 1.077 1.054 1.026 0.979 1.032 1.050 30-35 0.942 0.964 0.953 0.941 0.958 0.997 30-35 0.942 0.964 0.953 0.941 0.958 0.997 36-41 0.956 0.932 0.922 1.065 0.932 0.929 1.032 1.066 12 2-59 1.046 1.035 1.030 0.977 1.01 0.962 12 42-59 1.046 1.035 1.00 1.02 1.	3		(1.147 - 1.324)	(1.099 - 1.163)	(1.180 - 1.288)	(1.070 - 1.238)	(1.019 - 1.120)	(1.029 - 1.172)
24-29 (Reference) 1.00 <td>4</td> <td>Age Band of the Mother's Partner at the Birth</td> <td>n of the Mother's First</td> <td>Birth</td> <td></td> <td></td> <td></td> <td></td>	4	Age Band of the Mother's Partner at the Birth	n of the Mother's First	Birth				
Inf Lind Lind <thlind< th=""> Lind Lind L</thlind<>		24-29 (Reference)	1.00	1.00	1.00	1.00	1.00	1.00
18-23 1.077 1.054 1.026 0.979 1.032 1.050 30-35 0.942 0.964 0.933 0.941 0.958 0.997 0 36-41 0.996 0.932 0.992 1.032 1.069 1 0.904 1.099 0.918 0.992 0.922 1.032 1.069 1 0.904 1.097 (0.934 - 1.028) 0.932 0.922 1.032 1.069 1 0.904 1.027 (0.932 - 1.028) (0.835 - 1.034) (0.960 - 1.108) (0.994 - 1.149) 2 42.59 1.046 1.036 1.030 0.077 1.01 0.962 3 Wealth Quintile of the Child's Household 1.032 1.138 1.182 1.272 1.110 1.171 1.157 6 Niddle 1.223 1.257 1.416 1.276 1.209 1.246 7 1.138 1.182 1.272 1.1416 1.277 1.033 1.129 1.244 1.244 1.287 9 0corer 1.268 1.332 1.524	5	12-17	1.410	1.148	1.125	1.008	1.049	1.090
(1.025 - 1.130) (1.035 - 1.073) (0.997 - 1.054) (0.997 - 1.068) (0.997 - 1.068) (0.997 - 1.068) (0.997 - 1.068) (0.997 - 1.068) 0.997 3 6 - 35 (0.884 - 1.005) (0.939 - 0.990) (0.818 - 0.990) (0.828 - 1.004) (0.915 - 1.002) (0.949 - 1.046) 1 (0.904 - 1.079) (0.945 - 1.028) (0.855 - 0.921) (0.835 - 1.138) (0.969 - 1.098) (0.954 - 1.028) 2 42-59 1.046 1.036 1.030 0.977 1.010 0.947 2 42-59 1.046 1.038 1.030 0.977 1.011 0.956 3 (hebts) (Reference) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 4 Riches (Reference) 1.031 1.128 - 1.272 1.110 1.171 1.157 7 Middle 1.268 1.332 1.524 1.344 1.244 1.287 7 Middle 1.268 1.332 1.524 1.344 1.247 1.270 1.248 8 0corer 1.268 1.332	6		(1.237 - 1.606)	(1.081 - 1.219)	(1.017 - 1.245)	(0.801 - 1.269)	(0.932 - 1.181)	(0.937 - 1.269)
(1.025 - 1.130) (1.035 - 1.073) (0.997 - 1.054) (0.997 - 1.068) (0.997 - 1.068) (0.997 - 1.068) (0.997 - 1.068) (0.997 - 1.068) 0.997 3 6 - 35 (0.884 - 1.005) (0.939 - 0.990) (0.818 - 0.990) (0.828 - 1.004) (0.915 - 1.002) (0.949 - 1.046) 1 (0.904 - 1.079) (0.945 - 1.028) (0.855 - 0.921) (0.835 - 1.138) (0.969 - 1.098) (0.954 - 1.028) 2 42-59 1.046 1.036 1.030 0.977 1.010 0.947 2 42-59 1.046 1.038 1.030 0.977 1.011 0.956 3 (hebts) (Reference) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 4 Riches (Reference) 1.031 1.128 - 1.272 1.110 1.171 1.157 7 Middle 1.268 1.332 1.524 1.344 1.244 1.287 7 Middle 1.268 1.332 1.524 1.344 1.247 1.270 1.248 8 0corer 1.268 1.332	7	18-23	1.077	1.054	1.026	0.979	1.032	1.050
30-35 0.942 0.954 0.953 0.941 0.958 0.997 0 36-41 0.996 0.9986 0.932 0.022 1.005 1.005 0.949 1.005 1 (0.994 1.007 (0.945 1.028 0.932 0.029 1.032 1.069 2 259 1.046 1.036 0.377 1.101 0.962 3 Weath Quintile of the Child's Household (0.983 · 1.021) (0.983 · 1.111) (0.885 · 1.118) (1.004 · 1.207) (0.874 · 1.060) 6 1.138 1.182 1.272 1.110 1.171 · 1.177 1.157 7 Middle 1.233 1.257 1.416 1.216 · 1.331) (1.124 · 1.272) (1.170 · 1.326) 8 Poorer 1.268 1.332 1.524 1.344 1.244 1.287 9 Poorerst 1.289 1.445 1.671 1.458 1.289 1.338 1 Residence of the Child's Household at the Time of Intherwise 1.037 1.03	8		(1.026 - 1.130)	(1.035 - 1.073)	(0.997 - 1.056)	(0.927 - 1.034)	(0.997 - 1.068)	(1.010 - 1.092)
0 36-41 0.996 0.992 0.032 1.032 1.032 1.032 1.032 2 42-59 1.046 1.036 1.030 0.977 1.101 0.962 3 42-59 1.046 1.038 1.030 0.977 1.101 0.962 42-59 1.046 1.036 1.030 0.977 1.101 0.967 42-59 1.046 1.038 1.030 0.977 1.101 0.967 Wealth Quintile of the Child's Household 1.138 1.132 1.277 1.110 1.171 1.157 6 1.065 1.232 1.257 1.416 1.276 1.209 1.224 9 Poorer 1.268 1.332 1.524 1.344 1.244 1.289 1 1.279 1.271 1.128 1.691 1.245 1.371 1.248 1.331 1.231 1.269 1.376 1.248 1.601 1.247 1.244 1.224 1.378 1.445		30-35	0.942	0.964	0.953	0.941	0.958	0.997
1 (0.904 - 1.097) (0.945 - 1.028) (0.875 - 0.992) (0.833 - 1.034) (0.960 - 1.108) (0.994 - 1.149) 2 2-59 1.046 1.036 1.030 0.977 1.101 0.952 3 Wealth Quintile of the Child's Household (0.932 - 1.173) (0.983 - 1.093) (0.954 - 1.111) (0.855 - 1.118) (1.004 - 1.207) (0.874 - 1.060) 6 Nichest (Reference) 1.00 1.245 1.248 1.243 1.245 1.145 1.145 1.145 1.145 1.149 1.227 1.110 1.145 1.245 1.245 1.341 1.245 1.245 1.341 1.245 1.245 1.345 1.145 1.145 <t< td=""><td>9</td><td></td><td>(0.884 - 1.005)</td><td>(0.939 - 0.990)</td><td>(0.918 - 0.990)</td><td>(0.882 - 1.004)</td><td>(0.915 - 1.002)</td><td>(0.949 - 1.046)</td></t<>	9		(0.884 - 1.005)	(0.939 - 0.990)	(0.918 - 0.990)	(0.882 - 1.004)	(0.915 - 1.002)	(0.949 - 1.046)
2 42-59 1.046 1.036 1.030 0.977 1.101 0.962 3 (0.932 - 1.173) (0.932 - 1.073) (0.954 - 1.111) (0.855 - 1.118) (1.004 - 1.207) (0.874 - 1.060) 4 (1.664) 1.138 1.182 1.272 1.110 1.171 1.157 7 Mich (1.063 - 1.219) (1.148 - 1.216) (1.216 - 1.331) (1.032 - 1.174) (1.177 - 1.227) (1.033 - 1.224) 7 Middle 1.223 1.257 1.416 1.276 1.209 1.246 9 Porer 1.268 1.332 1.524 1.344 1.244 1.287 9 Porest 1.289 1.445 1.671 1.458 1.289 1.338 1 (1.187 - 1.399) (1.397 - 1.496) (1.585 - 1.762) (1.331 - 1.598) (1.245 - 1.438) 1 Urban (Reference) 1.00 1.00 1.00 1.00 1.00 1.00 1 Urban (Reference) 1.00 1.00 1.00 1.	10	36-41	0.996	0.986	0.932	0.929	1.032	1.069
2 42-59 1.046 1.036 1.030 0.977 1.101 0.962 3 (0.932 - 1.173) (0.932 - 1.073) (0.954 - 1.111) (0.855 - 1.118) (1.004 - 1.207) (0.874 - 1.060) 4 (1.664) 1.138 1.182 1.272 1.110 1.171 1.157 7 Mich (1.063 - 1.219) (1.148 - 1.216) (1.216 - 1.331) (1.032 - 1.174) (1.177 - 1.227) (1.033 - 1.224) 7 Middle 1.223 1.257 1.416 1.276 1.209 1.246 9 Porer 1.268 1.332 1.524 1.344 1.244 1.287 9 Porest 1.289 1.445 1.671 1.458 1.289 1.338 1 (1.187 - 1.399) (1.397 - 1.496) (1.585 - 1.762) (1.331 - 1.598) (1.245 - 1.438) 1 Urban (Reference) 1.00 1.00 1.00 1.00 1.00 1.00 1 Urban (Reference) 1.00 1.00 1.00 1.	11		(0.904 - 1.097)	(0.945 - 1.028)	(0.875 - 0.992)	(0.835 - 1.034)	(0.960 - 1.108)	(0.994 - 1.149)
3 (0.932 · 1.173) (0.983 · 1.093) (0.954 · 1.111) (0.855 · 1.118) (1.004 · 1.207) (0.874 · 1.060) 4 Richest (Reference) 1.00 1.00 1.00 1.00 1.00 1.00 5 Rich 1.138 1.182 1.272 1.110 1.171 · 1.227) (1.093 · 1.249) 6 (1.063 · 1.219) (1.148 · 1.216) (1.216 · 1.331) (1.032 · 1.194) (1.149 · 1.272) (1.093 · 1.249) 7 Middle 1.223 1.257 1.416 1.276 1.209 1.246 9 Poorer 1.268 1.332 1.524 1.344 1.244 1.287 9 Poorest 1.289 1.445 1.671 1.458 1.289 1.338 100 1.00 <td< td=""><td>12</td><td>42-59</td><td>1.046</td><td>1.036</td><td>1.030</td><td>0.977</td><td>1.101</td><td>0.962</td></td<>	12	42-59	1.046	1.036	1.030	0.977	1.101	0.962
4 Wath Guild Wath Call the Unit of Notschold 7 Nichest (Reference) 1.00 1.10 1.171 1.157 1.168 1.228 1.161 1.266 1.332 1.134 1.244 1.2287 1.344 1.244 1.2287 1.338 1.289 1.337 1.245 1.671 1.458 1.289 1.338 1.287 1.331 1.287 1.338 1.229 1.338 1.247 1.245 1.338 1.245 1.245 1.331 1.245 1.245 1.245 1.245 1.245 1.245 1.245 1.245 1.245 <td< td=""><td></td><td></td><td>(0.932 - 1.173)</td><td>(0.983 - 1.093)</td><td>(0.954 - 1.111)</td><td>(0.855 - 1.118)</td><td>(1.004 - 1.207)</td><td>(0.874 - 1.060)</td></td<>			(0.932 - 1.173)	(0.983 - 1.093)	(0.954 - 1.111)	(0.855 - 1.118)	(1.004 - 1.207)	(0.874 - 1.060)
7 Rich (netrice) 1.00 1.00 1.00 1.00 1.00 7 Nich (1.063 - 1.219) (1.148 - 1.216) (1.216 - 1.331) (1.032 - 1.194) (1.117 - 1.227) (1.093 - 1.224) 7 Middle 1.223 1.257 1.416 1.276 1.209 1.246 8 (1.136 - 1.316) (1.218 - 1.277) (1.348 - 1.486) (1.176 - 1.334) (1.149 - 1.272) (1.109 - 1.727) 9 0 (1.173 - 1.371) (1.238 - 1.376) (1.448 - 1.604) (1.233 - 1.466) (1.177 - 1.314) (1.203 - 1.378) 0 Poorer 1.268 1.332 1.524 1.344 1.289 1.338 0 Poorest (1.187 - 1.399) (1.397 - 1.496) (1.585 - 1.762) (1.313 - 1.598) (1.245 - 1.438) 1 1.043 1.062 1.029 0.943 0.939 0.981 0 Mater Netpied to the Child's Household at the Time of Interview 1.043 1.062 1.029 0.943 0.939 0.981 0 1.043 1.082 1.029 0.943 0.939 0.981 <td< td=""><td>13</td><td>Wealth Quintile of the Child's Household</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	13	Wealth Quintile of the Child's Household						
6 (1.063 - 1.219) (1.148 - 1.216) (1.216 - 1.331) (1.032 - 1.194) (1.117 - 1.227) (1.093 - 1.224) 7 Middle 1.223 1.257 1.416 1.276 1.209 1.246 8 Poorer 1.268 1.323 1.524 1.344 1.244 1.287 9 (1.173 - 1.371) (1.289 - 1.376) (1.448 - 1.604) (1.233 - 1.466) (1.177 - 1.314) (1.203 - 1.378) 9 Poorest 1.289 1.445 1.671 1.458 1.289 1.338 1 Residence of the Child's Household at the Time of Interview 1.001 1.00<	14	Richest (Reference)	1.00	1.00	1.00	1.00	1.00	1.00
7 Middle 1.223 1.257 1.416 1.276 1.209 1.246 8 0 (1.136 - 1.316) (1.218 - 1.297) (1.348 - 1.486) (1.149 - 1.272) (1.170 - 1.326) 9 0 1.268 1.322 1.524 1.344 1.244 1.287 9 0 0 1.173 - 1.371) (1.289 - 1.376) (1.448 - 1.604) (1.233 - 1.466) (1.177 - 1.314) (1.203 - 1.378) 9 0 Poorest 1.289 1.445 1.671 1.458 1.289 1.338 1 0 1.097 - 1.496) (1.585 - 1.762) (1.31 - 1.598) (1.245 - 1.438) 7 Miral 1.00 1.00 1.00 1.00 1.00 1.00 8 noral 1.023 1.029 0.943 0.939 0.981 9 Near 1.00 1.00 1.00 1.00 1.00 1.00 1.00 9 Water Piped to house (Reference) 1.00 1.00 1.00 1.00 1.00 0.956 1.031 1.034 1.002 0.988 <tr< td=""><td>15</td><td>Rich</td><td>1.138</td><td>1.182</td><td>1.272</td><td>1.110</td><td>1.171</td><td>1.157</td></tr<>	15	Rich	1.138	1.182	1.272	1.110	1.171	1.157
7 Middle 1.223 1.257 1.416 1.276 1.209 1.246 8 0 (1.136 - 1.316) (1.218 - 1.297) (1.348 - 1.486) (1.149 - 1.272) (1.170 - 1.326) 9 0 1.268 1.322 1.524 1.344 1.244 1.287 9 0 0 1.173 - 1.371) (1.289 - 1.376) (1.448 - 1.604) (1.233 - 1.466) (1.177 - 1.314) (1.203 - 1.378) 9 0 Poorest 1.289 1.445 1.671 1.458 1.289 1.338 1 0 1.097 - 1.496) (1.585 - 1.762) (1.31 - 1.598) (1.245 - 1.438) 7 Miral 1.00 1.00 1.00 1.00 1.00 1.00 8 noral 1.023 1.029 0.943 0.939 0.981 9 Near 1.00 1.00 1.00 1.00 1.00 1.00 1.00 9 Water Piped to house (Reference) 1.00 1.00 1.00 1.00 1.00 0.956 1.031 1.034 1.002 0.988 <tr< td=""><td>16</td><td></td><td>(1.063 - 1.219)</td><td>(1.148 - 1.216)</td><td>(1.216 - 1.331)</td><td>(1.032 - 1.194)</td><td>(1.117 - 1.227)</td><td>(1.093 - 1.224)</td></tr<>	16		(1.063 - 1.219)	(1.148 - 1.216)	(1.216 - 1.331)	(1.032 - 1.194)	(1.117 - 1.227)	(1.093 - 1.224)
8 Poorer 1.268 1.239 1.524 1.149 1.149 1.272 1.170 1.326) 9 Poorer 1.268 1.332 1.524 1.344 1.244 1.287 9 Poorest 1.289 1.376) (1.478 1.671 1.458 1.289 1.333 1 Residence of the Child's Household at the Time of Interview (1.187 1.399) (1.397 1.496) (1.585 1.671 1.458 1.289 1.338 1 Residence of the Child's Household at the Time of Interview (1.997 1.000 1.00	17	Middle	1.223	1.257	1.416	1.276	1.209	1.246
9 (1.173 - 1.371) (1.289 - 1.376) (1.448 - 1.604) (1.231 - 1.466) (1.177 - 1.314) (1.203 - 1.378) 9 Poorest 1.289 1.445 1.671 1.458 1.289 1.338 1 Residence of the Child's Household at the Time of Interview 11.387 - 1.399) (1.397 - 1.496) (1.585 - 1.762) (1.331 - 1.598) (1.213 - 1.369) (1.245 - 1.438) 2 Water Of the Child's Household at the Time of Interview 10.00 1.			(1.136 - 1.316)	(1.218 - 1.297)	(1.348 - 1.486)	(1.176 - 1.384)	(1.149 - 1.272)	(1.170 - 1.326)
Poorest 1.289 1.445 1.671 1.458 1.289 1.338 Image: Construction of the child's Household at the Time of Interview (1.387 - 1.399) (1.585 - 1.762) (1.331 - 1.598) (1.213 - 1.369) (1.245 - 1.438) Residence of the Child's Household at the Time of Interview 1.00 <	18	Poorer	1.268	1.332	1.524	1.344	1.244	1.287
1 (1.187 - 1.399) (1.397 - 1.496) (1.585 - 1.762) (1.31 - 1.598) (1.213 - 1.369) (1.245 - 1.438) 2 Urban (Reference) 1.00 1.00 1.00 1.00 1.00 1.00 3 Rural 1.043 1.082 1.029 0.943 0.939 0.981 4 (0.991 - 1.099) (1.059 - 1.106) (0.996 - 1.064) (0.891 - 0.998) (0.905 - 0.974) (0.937 - 1.026) 5 Water Piped to the Child's House 1.100 0.956 1.031 1.034 1.002 0.988 6 Vater Piped to house (Reference) 1.00 1.00 1.00 1.00 1.00 1.00 7 Hush Toilet at Child's House 1.100 0.938 - 0.975) (1.000 - 1.063) (0.980 - 1.037) (0.950 - 1.029) 8 Flush Toilet at Child's House 1.047 - 1.156) (0.938 - 0.975) (1.000 - 1.00 1.00	19		(1.173 - 1.371)	(1.289 - 1.376)	(1.448 - 1.604)	(1.233 - 1.466)	(1.177 - 1.314)	(1.203 - 1.378)
1 (1.187 - 1.399) (1.397 - 1.496) (1.585 - 1.762) (1.31 - 1.598) (1.213 - 1.369) (1.245 - 1.438) 2 Residence of the Child's Household at the Time of Interview incomplete incomplete </td <td>20</td> <td>Poorest</td> <td>1.289</td> <td>1.445</td> <td>1.671</td> <td>1.458</td> <td>1.289</td> <td>1.338</td>	20	Poorest	1.289	1.445	1.671	1.458	1.289	1.338
Particle of the Child's Household at the line of interview Network Urban (Reference) 1.00 1.00 1.00 1.00 1.00 Rural (0.991 - 1.099) (1.059 - 1.106) (0.996 - 1.064) (0.891 - 0.998) (0.905 - 0.974) (0.937 - 1.026) Water Piped to the Child's House 1.00 1.00 1.00 1.00 1.00 1.00 Water not piped to house (Reference) 1.00 1.00 1.00 1.00 1.00 0.988 Vater not piped to house 1.100 0.956 1.031 1.034 1.002 0.988 Flush Toilet at Child's House 1.00 1.00 1.00 1.00 1.00 1.00 Flush toilet at child's House 1.137 1.224 1.137 1.045 1.041 1.035 No flush toilet at house 1.137 1.224 1.137 1.045 1.041 1.035 Vaccinated (Reference) 1.00 1.00 1.00 1.00 1.00 1.00 Not vaccinated 1.008 1.070 1.164	21		(1.187 - 1.399)	(1.397 - 1.496)	(1.585 - 1.762)	(1.331 - 1.598)	(1.213 - 1.369)	(1.245 - 1.438)
3 Rural 1.00 1.00 1.00 1.00 1.00 1.00 1.00 4 (0.991 - 1.099) (1.059 - 1.106) (0.996 - 1.064) (0.891 - 0.998) (0.905 - 0.974) (0.937 - 1.026) 5 Water Piped to the Child's House Piped to house (Reference) 1.00 1.00 1.00 1.00 1.00 6 Water not piped to house 1.100 0.956 1.031 1.034 1.002 0.988 7 (1.047 - 1.156) (0.938 - 0.975) (1.000 - 1.003) (0.980 - 1.092) (0.969 - 1.037) (0.950 - 1.029) 8 Flush Toilet at Child's House 1.100 1.00 1.00 1.00 1.00 1.00 9 Flush toilet at house (Reference) 1.00 1.00 1.00 1.00 1.00 1.00 0 No flush toilet at house 1.137 1.224 1.137 1.045 1.041 1.035 1 Child Measles Vaccination 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1 Observations 1.038 - 1.183) (1.042 - 1.100) 1.120 - 1.209)		Residence of the Child's Household at the Tim	ne of Interview					
4 (0.991 - 1.099) (1.059 - 1.106) (0.996 - 1.064) (0.891 - 0.998) (0.905 - 0.974) (0.937 - 1.026) 5 Piped to house (Reference) 1.00 1.00 1.00 1.00 1.00 1.00 6 Water not piped to house 1.100 0.956 1.031 1.034 1.002 0.988 7 Water not piped to house 1.000 0.956 1.031 1.034 1.002 0.988 7 Flush Toilet at Child's House (1.047 - 1.156) (0.938 - 0.975) (1.000 - 1.063) (0.980 - 1.029) (0.969 - 1.037) (0.950 - 1.029) 8 Flush Toilet at Child's House 1.00 1.	22	Urban (Reference)	1.00	1.00	1.00	1.00	1.00	1.00
Water Piped to the Child's House Piped to house (Reference) 1.00	23	Rural	1.043	1.082	1.029	0.943	0.939	0.981
Water Piped to the Child's House Piped to house (Reference) 1.00	24		(0.991 - 1.099)	(1.059 - 1.106)	(0.996 - 1.064)	(0.891 - 0.998)	(0.905 - 0.974)	(0.937 - 1.026)
Piped to house (Reference) 1.00 0.988 7 (1.047 - 1.156) (0.938 - 0.975) (1.000 - 1.063) (0.980 - 1.092) (0.969 - 1.037) (0.950 - 1.029) 8 Flush Toilet at Child's House 1.00	25	Water Piped to the Child's House						
7 Watch hot pipe to holdse 1.100 0.503 1.001 1.004 1.004 1.004 8 Flush Toilet at Child's House (1.047 - 1.156) (0.938 - 0.975) (1.000 - 1.063) (0.980 - 1.092) (0.969 - 1.037) (0.950 - 1.029) 9 Flush toilet at house (Reference) 1.00 1.00 1.00 1.00 1.00 1.00 0 No flush toilet at house 1.137 1.224 1.137 1.045 1.041 1.035 1 Child Measles Vaccination (1.062 - 1.217) (1.191 - 1.259) (1.091 - 1.184) (0.978 - 1.116) (0.997 - 1.087) (0.982 - 1.090) 1 Child Measles Vaccination 1.00 1.00 1.00 1.00 1.00 1.00 1.00 2 Vaccinated 1.008 1.070 1.164 1.195 1.072 1.109 4 (1.038 - 1.183) (1.042 - 1.100) (1.120 - 1.209) (1.113 - 1.284) (1.020 - 1.127) (1.051 - 1.170) 5 Observations 176,583 119,018 122,680 120,246 135,121 31,520		Piped to house (Reference)	1.00	1.00	1.00	1.00	1.00	1.00
8 Flush Toilet at Child's House 1.00 1.00 1.00 1.00 1.00 9 Flush toilet at house (Reference) 1.00 1.00 1.00 1.00 1.00 0 No flush toilet at house 1.137 1.224 1.137 1.045 1.041 1.035 1 Child Measles Vaccination (1.062 - 1.217) (1.191 - 1.259) (1.091 - 1.184) (0.978 - 1.116) (0.997 - 1.087) (0.982 - 1.090) 2 Vaccinated (Reference) 1.00 1.00 1.00 1.00 1.00 3 Not vaccinated 1.108 1.070 1.164 1.195 1.072 1.109 4 (1.038 - 1.183) (1.042 - 1.100) (1.120 - 1.209) (1.113 - 1.284) (1.020 - 1.127) (1.051 - 1.170) 5 Observations 176,583 119,018 122,680 120,246 135,121 31,520 7 1 1 1.528 1.20,246 135,121 31,520	26	Water not piped to house	1.100	0.956	1.031	1.034	1.002	0.988
9 Flush toilet at house (Reference) 1.00	27		(1.047 - 1.156)	(0.938 - 0.975)	(1.000 - 1.063)	(0.980 - 1.092)	(0.969 - 1.037)	(0.950 - 1.029)
9 Flush toilet at house (Reference) 1.00	28	Flush Toilet at Child's House						
No flush toilet at house 1.137 1.224 1.137 1.045 1.041 1.035 (1.062 - 1.217) (1.191 - 1.259) (1.091 - 1.184) (0.978 - 1.116) (0.997 - 1.087) (0.982 - 1.090) Child Measles Vaccination Vaccinated (Reference) 1.00 1.00 1.00 1.00 1.00 Not vaccinated 1.108 1.070 1.164 1.195 1.072 1.109 (1.038 - 1.183) (1.042 - 1.100) (1.120 - 1.209) (1.113 - 1.284) (1.020 - 1.127) (1.051 - 1.170) 5 Observations 176,583 119,018 122,680 120,246 135,121 31,520 7 7 1.00 1.00.18 1.22,680 120,246 135,121 31,520	29	Flush toilet at house (Reference)	1.00	1.00	1.00	1.00	1.00	1.00
1 Child Measles Vaccination (1.002 - 1.217) (1.191 - 1.239) (1.091 - 1.104) (0.978 - 1.116) (0.997 - 1.087) (0.962 - 1.090) 2 Vaccinated (Reference) 1.00 1.00 1.00 1.00 1.00 3 Not vaccinated 1.108 1.070 1.164 1.195 1.072 1.109 4 (1.038 - 1.183) (1.042 - 1.100) (1.120 - 1.209) (1.113 - 1.284) (1.020 - 1.127) (1.051 - 1.170) 5 Observations 176,583 119,018 122,680 120,246 135,121 31,520 7	30	No flush toilet at house	1.137	1.224	1.137	1.045	1.041	1.035
2 Vaccinated (Reference) 1.00 1.00 1.00 1.00 1.00 1.00 3 Not vaccinated 1.108 1.070 1.164 1.195 1.072 1.109 4 (1.038 - 1.183) (1.042 - 1.100) (1.120 - 1.209) (1.113 - 1.284) (1.020 - 1.127) (1.051 - 1.170) 5 Observations 176,583 119,018 122,680 120,246 135,121 31,520 7			(1.062 - 1.217)	(1.191 - 1.259)	(1.091 - 1.184)	(0.978 - 1.116)	(0.997 - 1.087)	(0.982 - 1.090)
3 Not vaccinated 1.108 1.070 1.164 1.195 1.072 1.109 4 (1.038 - 1.183) (1.042 - 1.100) (1.120 - 1.209) (1.113 - 1.284) (1.020 - 1.127) (1.051 - 1.170) 5 Observations 176,583 119,018 122,680 120,246 135,121 31,520 7	31							
3 (1.038 - 1.183) (1.042 - 1.100) (1.120 - 1.209) (1.113 - 1.284) (1.020 - 1.127) (1.051 - 1.170) 4 0bservations 176,583 119,018 122,680 120,246 135,121 31,520 6 7 7 7 7 7 7 7	32	Vaccinated (Reference)	1.00	1.00	1.00	1.00	1.00	1.00
4 (1.038 - 1.183) (1.042 - 1.100) (1.120 - 1.209) (1.113 - 1.284) (1.020 - 1.127) (1.051 - 1.170) 5 Observations 176,583 119,018 122,680 120,246 135,121 31,520 6	33	Not vaccinated	1.108	1.070	1.164	1.195	1.072	1.109
5 Observations 176,583 119,018 122,680 120,246 135,121 31,520 6 7 7 7 7 7 7 7 7 7 100,018 120,246 135,121 31,520 100,0246 135,121 31,520 100,0246 135,121 31,520 100,0246 135,121 31,520 100,0246 135,121 31,520 100,0246 135,121 31,520 100,0246 135,121 31,520 100,0246 135,121 31,520 100,0246 135,121 31,520 100,0246 135,121 31,520 100,0246 135,121 31,520 100,0246 135,121 31,520 100,0246 100,024	34		(1.038 - 1.183)	(1.042 - 1.100)	(1.120 - 1.209)	(1.113 - 1.284)	(1.020 - 1.127)	(1.051 - 1.170)
6 10,1111 10,111 10,111 10,111 10,111 10,111 10,111 10,111 10,110	35	Observations	176 583	119 018	122 680	120 246	135 121	31 520
7	36	Observations	170,303	115,010	122,000	120,240	155,121	51,520
	37							
•	38							
9	39							

Page 21 of 36

BMJ Open

socio-economic status	The effect of young age of mother at first birth on poor child health outcomesreflects a combination of biological and	Deleted: Viewed another way, the social and biological mechanisms can be dispatagelight by stratifying regressions by
		disentangled by stratifying regressions by socio-economic status

1		socio-economic status
2	social factors. If the effect were solely social, then we would expect no age gradient for women grouped into high and	
2 3 4	low socio-economic status. That is, if all women are of the same socio-economic status, then any age gradient reflects	
5	the biological mechanism. This hypothesis is explored by stratifying low and high socio-economic status. For the high SES	
6		Deleted: at least
7	group we select children who have mothers who have completed at least primary school, in households that are in one	
8		Deleted: We
9	of the top two wealth quintiles and who live in an urban area (Table 5). <u>Incontrast, we select the</u> children with mothers	Deleted: this group of
10 11	who have not completed primary school, are in households that are in the bottom two wealth quintiles and live in a	
12 13	rural area into the low socio-economic status group. At the top of Table 5 we report the absolute prevalence of the child	
14 ['] 15	health outcome by this stratification. In the high SES group 3.0% of the infants die, while in the low SES households	
16 17	10.4% of the infants die (Table 5). Stunting, underweight, wasting diarrhoea and anaemia are all much more prevalent in	
18	low SES households than in the high SES households (Table 5). However, when considering the relative risk ratios across	
19 20	the age groups for outcomes of stunting, underweight and diarrhoea, the relative risk of a poor health outcome for	
21 22	young mothers is higher in the high SES households than in the low SES households (Table 5). The difference in the	
23 24	relative risk of age on these child health outcomes across the two groups indicates that early childbearing is not just a	
25 26	risk factorin lower socio_economic groups, and that the biological mechanism of young mothers plays a role in	Deleted: problem
20 27 28	determining child health outcomes.	
20 29		
29 30		
30 31		
32		
33		
34		

Table 5: Adjusted Relative Risk Ratios in High SES and Low SES Households

revalence (Weighted %) ge Band of the Mother at First irth 7-29 (reference) 2-14	High SES 2.99 1.00	Low SES 10.4	High SES 18.6	Low SES	High SES	Low SES	High SES	Low SES	High SES	Low SES	High SES	Low SES
ge Band of the Mother at First irth 7-29 (reference)		10.4	18.6								0	
rirth 7-29 (reference)	1.00			54.2	7.92	33.6	4.46	11.7	11	15.4	21.4	42.2
	1.00											
2-14		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	1.757	1.747	1.899	1.244	1.750	1.167	0.875	1.062	1.792	1.342	0.388	1.438
	(1.015 - 3.040)	(1.338 - 2.283)	(1.473 - 2.449)	(1.118 - 1.385)	(1.169 - 2.619)	(1.004 - 1.355)	(0.358 - 2.140)	(0.776 - 1.452)	(1.229 - 2.612)	(1.057 - 1.702)	(0.108 - 1.400)	(1.047 - 1.974)
5-17	1.297	1.315	1.474	1.143	1.377	1.066	1.234	0.968	1.377	1.181	1.234	1.504
	(0.984 - 1.710)	(1.029 - 1.681)	(1.313 - 1.655)	(1.040 - 1.257)	(1.147 - 1.654)	(0.935 - 1.215)	(0.950 - 1.602)	(0.744 - 1.258)	(1.172 - 1.618)	(0.964 - 1.446)	(1.001 - 1.521)	(1.144 - 1.978)
8-20	1.087	1.104	1.308	1.085	1.260	0.984	1.181	0.964	1.395	1.107	1.154	1.433
	(0.846 - 1.398)	(0.865 - 1.409)	(1.179 - 1.452)	(0.987 - 1.192)	(1.071 - 1.482)	(0.863 - 1.121)	(0.951 - 1.467)	(0.743 - 1.250)	(1.214 - 1.603)	(0.905 - 1.354)	(0.964 - 1.381)	(1.092 - 1.880)
1-23	1.020	1.016	1.221	1.065	1.156	0.948	1.198	0.990	1.318	1.126	1.203	1.500
	(0.800 - 1.300)	(0.790 - 1.307)	(1.102 - 1.352)	(0.968 - 1.171)	(0.985 - 1.357)	(0.830 - 1.084)	(0.976 - 1.472)	(0.759 - 1.292)	(1.152 - 1.508)	(0.917 - 1.382)	(1.008 - 1.437)	(1.141 - 1.972)
4-26												1.424
	1.315)	1.470)	1.208)	1.100)	1.215)	1.091)	1.489)	1.428)	1.388)	1.425)	1.320)	(1.066 1.901)
0-32												1.270
2.25	2.291)	1.216)	1.093)	1.093)	1.150)	1.097)	1.351)	1.418)	1.167)	1.590)	1.496)	(0.820 1.966)
3-35												1.438
	(0.846 - 2.341)	(0.525 - 1.740)	(0.822 - 1.338)	(1.013 - 1.473)	(0.471 - 1.170)	(0.594 - 1.245)	(0.713 - 1.785)	(0.287 - 1.473)	(0.555 - 1.065)	(0.488 - 1.379)	(0.686 - 1.565)	(0.826 2.502)
ex of Child												
Aale (reference)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
emale	0.700	0.829	0.850	0.929	0.911	0.921	0.886	0.843	0.913	0.959	0.942	0.963
	(0.627 - 0.782)	(0.781 - 0.881)	(0.814 - 0.888)	(0.908 - 0.951)	(0.850 - 0.977)	(0.890 - 0.954)	(0.802 - 0.979)	(0.786 - 0.905)	(0.859 - 0.969)	(0.910 - 1.011)	(0.868 - 1.021)	(0.910 1.019)
in a f Diale												
	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
												1.183
												(0.860
	6.916)	5.281)	1.482)	1.454)	2.251)	1.778)	2.074)	2.112)	1.106)	1.437)	1.534)	1.627)
ge of Child in Months												
ge 48-59 months (reference)			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
6-47 months			1.239	1.118	1.037	1.037	0.877	0.994	1.410	1.453	1.258	1.219
			(1.145 - 1.341)	(1.076 - 1.162)	(0.919 - 1.170)	(0.976 - 1.102)	(0.741 - 1.039)	(0.868 - 1.138)	(1.229 - 1.617)	(1.289 - 1.638)	(1.064 - 1.487)	(1.095 1.357)
	4-26 0-32 3-35 ex of Child tale (reference) emale ype of Birth ingleton (reference) win ge of Child in Months ge 48-59 months (reference)	1-23 1.020 (0.800 - 1.300) 4-26 1.015 (0.783 - 1.315) 0-32 1.647 (1.183 - 2.291) 3-35 1.407 (0.846 - 2.341) ex of Child tale (reference) 1.00 emale 0.700 (0.627 - 0.782) ype of Birth ingleton (reference) 1.00 win 5.439 (4.278 - 6.916) ge of Child in Months ge 48-59 months (reference)	1-23 1.020 1.016 (0.800 - (0.790 - 1.300) 1.307) 4-26 1.015 1.116 (0.783 - (0.848 - 1.315) 1.470) 0-32 1.647 0.710 (1.183 - (0.414 - 2.291) 1.216) 3-35 1.407 0.956 (0.846 - (0.525 - 2.341) 1.740) ex of Child tage of Child tage of Sirth ingleton (reference) 1.00 1.00 win 5.439 4.557 (4.278 - (3.932 - 6.916) 5.281)	1-23 1.020 1.016 1.221 (0.800 - (0.790 - $(1.102 1.300$ 1.307 1.352 4-26 1.015 1.116 1.083 (0.783 - (0.848 - (0.972 - 1.315 1.470 1.208 0-32 1.647 0.710 0.918 ($1.183 -$ ($0.414 -$ ($0.771 2.291$ 1.216 1.093 3-35 1.407 0.956 1.049 ($0.846 -$ ($0.525 -$ ($0.822 2.341$ 1.740 1.338 ex of Child tale (reference) 1.00 1.00 emale 0.700 0.829 0.850 ($0.627 -$ ($0.781 -$ ($0.814 0.782$ 0.881 0.888 ype of Birth $0.991 6.916$ 5.281 1.482 ge of Child in Months ge af 8-59 months (reference) 1.00 1.00 6.916 5.281 1.482 1.239 ($1.47 -$	1-23 1.020 1.016 1.221 1.065 $(0.800 - (0.790 - (1.102 - (0.968 - 1.300) - 1.307) - 1.352)$ 1.171 $4-26$ 1.015 1.116 1.083 0.989 $(0.783 - (0.848 - (0.972 - (0.890 - 1.315) - 1.470) - 1.208)$ 1.100 $0-32$ 1.647 0.710 0.918 0.911 $(1.183 - (0.414 - (0.771 - (0.760 - 2.291) - 1.216) - 1.093)$ 1.093 1.093 $3-35$ 1.407 0.956 1.049 1.222 $(0.846 - (0.525 - (0.822 - (1.013 - 2.341) - 1.740) - 1.338)$ 1.473 ex of Child tate (reference) 1.00 1.00 1.00 emale 0.700 0.829 0.850 0.929 $(0.627 - (0.781 - (0.814 - (0.908 - 0.782) - 0.881) - 0.888)$ 0.951 ype of Birth $(4.278 - (3.932 - (0.991 - (1.111 - 6.916) - 5.281) - 1.482)$ 1.454 ge of Child in Months ge 48-59 months (reference) 1.00 1.00 1.00 6.47 months 1.239 1.118 $(1.145 - (1.076 - 1.$	1-23 1.020 1.016 1.221 1.065 1.156 (0.800 - (0.790 - (1.102 - (0.968 - (0.985 - 1.300) 1.307) 1.352) 1.171) 1.357) 4-26 1.015 1.116 1.083 0.989 1.028 (0.783 - (0.848 - (0.972 - (0.890 - (0.871 - 1.315) 1.470) 1.208 1.100) 1.215) 0-32 1.647 0.710 0.918 0.911 0.875 (1.183 - (0.414 - (0.771 - (0.760 - (0.666 - 2.291) 1.216) 1.093) 1.150) 1.503 3-35 1.407 0.956 1.049 1.222 0.743 (0.846 - (0.525 - (0.822 - (1.013 - (0.471 - 2.341) 1.740) 1.338) 1.473) 1.170) ex of Child tale (reference) 1.00 1.00 1.00 1.00 1.00 0.782) 0.881) 0.888) 0.951) 0.977) <td< td=""><td>1-23 1.020 1.016 1.221 1.065 1.156 0.948 (0.800 - (0.790 - (1.102 - (0.968 - (0.985 - (0.830 - 1.300) 1.307) 1.352) 1.1711 1.357) 1.084) 4-26 1.015 1.116 1.083 0.989 1.028 0.941 (0.783 - (0.848 - (0.972 - (0.890 - (0.871 - (0.811 - 1.315) 1.470) 1.208) 1.100) 1.215) 1.091) 0-32 1.647 0.710 0.918 0.911 0.875 0.827 (1.183 - (0.414 - (0.771 - (0.760 - (0.666 - (0.624 - 2.291) 1.216) 1.093) 1.150) 1.097) 3-35 1.407 0.956 1.049 1.222 (0.743 0.860 (0.846 - (0.525 - (0.822 - (1.013 - (0.471 - (0.594 - 2.341) 1.740) 1.338) 1.473) 1.170) 1.245) ex of Child tale (reference) 1.00 1.00 1.00 1.00 1.00 1.00 emale 0.700 0.829 0.850 0.929 0.911 0.921 (0.627 - (0.781 - (0.848 - (0.955 - (0.826 - (0.850 - (0.890 - 0.782) 0.881) 0.888) 0.951) 0.977) 0.954) ype of Birth ingleton (reference) 1.00 1.00 1.00 1.00 1.00 1.00 win 5.439 4.557 1.212 1.271 1.704 1.448 (4.278 - (3.932 - (0.991 - (1.111 - (1.290 - (1.179 - 6.916) 5.281) 1.482) 1.454) 2.251) 1.778) ge of Child in Months ge 48-59 months (reference) 1.00 1.00 1.00 1.00 1.00 1.00 5-47 months (reference) 1.03 1.239 1.118 1.037 1.037 (1.145 - (1.076 - (0.919 - (0.976 - 0.991 - 0.991 - 0.991 - 0.991 - 0.991 - 0.991 - 0.991 - 0.991 - 0.991 - 0.991 - 0.991 - 0.991 - 0.977 - 0.954)</td><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>1-23 1.020 1.016 1.221 1.065 1.156 0.948 1.198 0.990 1.318 (0.800 - (0.790 - (1.102 - (0.968 - (0.985 - (0.830 - (0.759 - (1.152 - 1.300 1.307 1.352 1.171 1.357 1.084 1.472 1.292 1.508 4-26 1.015 1.16 1.088 0.989 - (0.871 - (0.811 - (0.979 - (0.811 - (1.076 - 1.048 - 1.315 1.470 1.208 1.100 1.215 1.019 1.489 1.428 1.388 0-32 1.647 0.710 0.918 0.911 0.871 - (0.666 - (0.624 - (0.697 - (0.488 - (0.757 - 3-35 1.407 0.956 1.049 1.222 (0.733 - (0.871 - (0.783 - (0.555 - (0.522 - (0.527 - (0.482 - (0.573 - (0.555 - (0.527 - (0.527 - (0.483 - 0.769 (0.773 - (0.769 - (0.713 - (0.769 - (0.769 - (0.769 - (0.769 - (0.769 - (0.769 - <t< td=""><td>1-23 1.020 1.016 1.221 1.065 1.156 0.948 1.198 0.990 1.318 1.126 0.800- (0.790- (1.102- (0.968- (0.985- (0.830- (0.775- (1.152- (0.917-) 1.300 1.015 1.116 1.083 0.989 1.028 0.941 1.207 1.076 1.206 1.139 4-26 1.015 1.116 1.083 0.989 1.028 0.941 1.207 1.076 1.206 1.139 0.783- (0.848- (0.972- (0.890- 0.871- (0.811- (0.979- (0.811- (1.048- (0.911- 1.315 1.470 0.918 0.910 1.215 0.827 0.971 0.832 0.940 1.111 0.32 1.447 0.710 0.918 0.911 1.051 1.077 0.777- 0.777- 2.291 1.216 1.093 1.193 1.170 1.245 1.785 1.473 1.055 1.077- 3-35 1.407 0.552 - (0.822 - 1.013 0.471-</td><td>1-23 1.020 1.016 1.221 1.065 1.156 0.948 1.198 0.990 1.318 1.126 1.203 0.800 (0.790 - (1.102 - (0.968 - (0.976 - (0.776 - (0.779 - (1.152 - (0.917 - (1.008 - 4-26 1.015 1.116 1.083 0.989 1.028 0.941 1.207 1.076 1.206 1.313 1.1437 4-26 1.015 1.116 1.083 0.989 1.028 0.941 1.007 1.076 1.206 1.139 1.1371 0.733 - (0.848 - (0.977 - (0.887 - (0.817 - (0.977 - (0.887 - 0.971 0.832 0.940 1.111 1.151 0.431 (1.447 - (0.771 - (0.760 - (0.666 - (0.697 - (0.488 - (0.757 - (0.777 - (0.886 - 2.231 1.247 1.249 1.243 1.469 1.429 1.338 1.425 1.359 1.443 1.455 1.496 3.35 1.407 0.955 (0.822 - (1.017 - (0.594 -</td></t<></td></td<>	1-23 1.020 1.016 1.221 1.065 1.156 0.948 (0.800 - (0.790 - (1.102 - (0.968 - (0.985 - (0.830 - 1.300) 1.307) 1.352) 1.1711 1.357) 1.084) 4-26 1.015 1.116 1.083 0.989 1.028 0.941 (0.783 - (0.848 - (0.972 - (0.890 - (0.871 - (0.811 - 1.315) 1.470) 1.208) 1.100) 1.215) 1.091) 0-32 1.647 0.710 0.918 0.911 0.875 0.827 (1.183 - (0.414 - (0.771 - (0.760 - (0.666 - (0.624 - 2.291) 1.216) 1.093) 1.150) 1.097) 3-35 1.407 0.956 1.049 1.222 (0.743 0.860 (0.846 - (0.525 - (0.822 - (1.013 - (0.471 - (0.594 - 2.341) 1.740) 1.338) 1.473) 1.170) 1.245) ex of Child tale (reference) 1.00 1.00 1.00 1.00 1.00 1.00 emale 0.700 0.829 0.850 0.929 0.911 0.921 (0.627 - (0.781 - (0.848 - (0.955 - (0.826 - (0.850 - (0.890 - 0.782) 0.881) 0.888) 0.951) 0.977) 0.954) ype of Birth ingleton (reference) 1.00 1.00 1.00 1.00 1.00 1.00 win 5.439 4.557 1.212 1.271 1.704 1.448 (4.278 - (3.932 - (0.991 - (1.111 - (1.290 - (1.179 - 6.916) 5.281) 1.482) 1.454) 2.251) 1.778) ge of Child in Months ge 48-59 months (reference) 1.00 1.00 1.00 1.00 1.00 1.00 5-47 months (reference) 1.03 1.239 1.118 1.037 1.037 (1.145 - (1.076 - (0.919 - (0.976 - 0.991 - 0.991 - 0.991 - 0.991 - 0.991 - 0.991 - 0.991 - 0.991 - 0.991 - 0.991 - 0.991 - 0.991 - 0.977 - 0.954)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1-23 1.020 1.016 1.221 1.065 1.156 0.948 1.198 0.990 1.318 (0.800 - (0.790 - (1.102 - (0.968 - (0.985 - (0.830 - (0.759 - (1.152 - 1.300 1.307 1.352 1.171 1.357 1.084 1.472 1.292 1.508 4-26 1.015 1.16 1.088 0.989 - (0.871 - (0.811 - (0.979 - (0.811 - (1.076 - 1.048 - 1.315 1.470 1.208 1.100 1.215 1.019 1.489 1.428 1.388 0-32 1.647 0.710 0.918 0.911 0.871 - (0.666 - (0.624 - (0.697 - (0.488 - (0.757 - 3-35 1.407 0.956 1.049 1.222 (0.733 - (0.871 - (0.783 - (0.555 - (0.522 - (0.527 - (0.482 - (0.573 - (0.555 - (0.527 - (0.527 - (0.483 - 0.769 (0.773 - (0.769 - (0.713 - (0.769 - (0.769 - (0.769 - (0.769 - (0.769 - (0.769 - <t< td=""><td>1-23 1.020 1.016 1.221 1.065 1.156 0.948 1.198 0.990 1.318 1.126 0.800- (0.790- (1.102- (0.968- (0.985- (0.830- (0.775- (1.152- (0.917-) 1.300 1.015 1.116 1.083 0.989 1.028 0.941 1.207 1.076 1.206 1.139 4-26 1.015 1.116 1.083 0.989 1.028 0.941 1.207 1.076 1.206 1.139 0.783- (0.848- (0.972- (0.890- 0.871- (0.811- (0.979- (0.811- (1.048- (0.911- 1.315 1.470 0.918 0.910 1.215 0.827 0.971 0.832 0.940 1.111 0.32 1.447 0.710 0.918 0.911 1.051 1.077 0.777- 0.777- 2.291 1.216 1.093 1.193 1.170 1.245 1.785 1.473 1.055 1.077- 3-35 1.407 0.552 - (0.822 - 1.013 0.471-</td><td>1-23 1.020 1.016 1.221 1.065 1.156 0.948 1.198 0.990 1.318 1.126 1.203 0.800 (0.790 - (1.102 - (0.968 - (0.976 - (0.776 - (0.779 - (1.152 - (0.917 - (1.008 - 4-26 1.015 1.116 1.083 0.989 1.028 0.941 1.207 1.076 1.206 1.313 1.1437 4-26 1.015 1.116 1.083 0.989 1.028 0.941 1.007 1.076 1.206 1.139 1.1371 0.733 - (0.848 - (0.977 - (0.887 - (0.817 - (0.977 - (0.887 - 0.971 0.832 0.940 1.111 1.151 0.431 (1.447 - (0.771 - (0.760 - (0.666 - (0.697 - (0.488 - (0.757 - (0.777 - (0.886 - 2.231 1.247 1.249 1.243 1.469 1.429 1.338 1.425 1.359 1.443 1.455 1.496 3.35 1.407 0.955 (0.822 - (1.017 - (0.594 -</td></t<>	1-23 1.020 1.016 1.221 1.065 1.156 0.948 1.198 0.990 1.318 1.126 0.800- (0.790- (1.102- (0.968- (0.985- (0.830- (0.775- (1.152- (0.917-) 1.300 1.015 1.116 1.083 0.989 1.028 0.941 1.207 1.076 1.206 1.139 4-26 1.015 1.116 1.083 0.989 1.028 0.941 1.207 1.076 1.206 1.139 0.783- (0.848- (0.972- (0.890- 0.871- (0.811- (0.979- (0.811- (1.048- (0.911- 1.315 1.470 0.918 0.910 1.215 0.827 0.971 0.832 0.940 1.111 0.32 1.447 0.710 0.918 0.911 1.051 1.077 0.777- 0.777- 2.291 1.216 1.093 1.193 1.170 1.245 1.785 1.473 1.055 1.077- 3-35 1.407 0.552 - (0.822 - 1.013 0.471-	1-23 1.020 1.016 1.221 1.065 1.156 0.948 1.198 0.990 1.318 1.126 1.203 0.800 (0.790 - (1.102 - (0.968 - (0.976 - (0.776 - (0.779 - (1.152 - (0.917 - (1.008 - 4-26 1.015 1.116 1.083 0.989 1.028 0.941 1.207 1.076 1.206 1.313 1.1437 4-26 1.015 1.116 1.083 0.989 1.028 0.941 1.007 1.076 1.206 1.139 1.1371 0.733 - (0.848 - (0.977 - (0.887 - (0.817 - (0.977 - (0.887 - 0.971 0.832 0.940 1.111 1.151 0.431 (1.447 - (0.771 - (0.760 - (0.666 - (0.697 - (0.488 - (0.757 - (0.777 - (0.886 - 2.231 1.247 1.249 1.243 1.469 1.429 1.338 1.425 1.359 1.443 1.455 1.496 3.35 1.407 0.955 (0.822 - (1.017 - (0.594 -

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 23 of 36

BMJ Open

	24-35 months			1.415	1.172	1.182	1.142	0.956	1.236	2.466	2.507	1.763	1.469
1				(1.310 -	(1.129 -	(1.049 -	(1.077 -	(0.806 -	(1.086 -	(2.174 -	(2.246 -	(1.493 -	(1.319 -
				1.528)	1.216)	1.331)	1.211)	1.133)	1.408)	2.796)	2.799)	2.081)	1.637)
2	12-23 months			1.392	1.081	1.107	1.151	1.156	1.853	3.891	3.720	2.585	1.927
3				(1.287 -	(1.040 -	(0.977 -	(1.084 -	(0.974 -	(1.632 -	(3.449 -	(3.347 -	(2.163 -	(1.727 -
4				1.506)	1.124)	1.254)	1.222)	1.371)	2.104)	4.389)	4.135)	3.090)	2.149)
5	Education Level of the Mother at Time	of Intonviou											
6	Secondary or Higher (reference)	1.00		1.00		1.00		1.00		1.00		1.00	
7	Completed Primary	1.220		1.266		1.208		1.103		1.177		1.099	
8		(1.049 -		(1.191 -		(1.101 -		(0.969 -		(1.085 -		(0.987 -	
		1.420)		1.346)		1.325)		1.255)		1.277)		1.223)	
9													
10	Mother has a Partner												
11	Omitted Category: Yes												
12	No	1.012	0.960	1.215	1.038	1.333	1.180	1.249	1.608	1.038	1.223	1.100	1.063
13		(0.811 -	(0.739 -	(1.108 -	(0.949 -	(1.127 -	(1.012 -	(0.985 -	(1.179 -	(0.926 -	(1.030 -	(0.930 -	(0.814 -
14		1.263)	1.246)	1.332)	1.135)	1.577)	1.377)	1.583)	2.193)	1.163)	1.451)	1.301)	1.388)
15	Education Level of the Mother's Partne	er at the Time	of Interview										
16	Secondary or Higher (reference)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	Completed primary	1.046	1.100	1.115	0.997	1.137	1.056	0.910	1.266	1.071	0.989	1.087	0.987
17		(0.911 -	(0.902 -	(1.052 -	(0.926 -	(1.041 -	(0.940 -	(0.807 -	(0.994 -	(0.989 -	(0.852 -	(0.979 -	(0.782 -
18		1.201)	1.341)	1.182)	1.074)	1.242)	1.187)	1.027)	1.613)	1.159)	1.148)	1.208)	1.246)
19	No education or incomplete primary	1.303	1.277	1.206	1.039	1.381	1.224	1.180	1.452	1.209	1.002	1.221	0.974
20		(1.059 -	(1.059 -	(1.109 -	(0.968 -	(1.218 -	(1.094 -	(0.981 -	(1.149 -	(1.069 -	(0.869 -	(1.043 -	(0.777 -
21		1.602)	1.540)	1.312)	1.116)	1.566)	1.370)	1.420)	1.834)	1.368)	1.156)	1.428)	1.222)
22	Age Band of the Mother's Partner at th	a Diuth af tha	Mathaula Five	A Diath									
23	24-29 (reference)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
24	12-17	1.284	1.528	1.010	1.087	1.106	1.085	0.551	0.959	1.206	1.091	1.124	1.005
		(0.668 -	(1.261 -	(0.697 -	(0.996 -	(0.627 -	(0.937 -	(0.141 -	(0.672 -	(0.847 -	(0.883 -	(0.664 -	(0.785 -
25		2.470)	1.851)	1.466)	1.186)	1.952)	1.256)	2.147)	1.368)	1.715)	1.349)	1.901)	1.285)
26	18-23	1.122	1.090	1.141	1.036	1.072	1.015	1.028	0.977	0.967	1.076	1.069	1.061
27		(0.948 -	(1.008 -	(1.070 -	(1.006 -	(0.970 -	(0.970 -	(0.872 -	(0.889 -	(0.881 -	(1.006 -	(0.954 -	(0.989 -
28		1.327)	1.178)	1.217)	1.068)	1.186)	1.063)	1.211)	1.073)	1.061)	1.149)	1.198)	1.138)
29	30-35	0.907	0.970	0.937	0.964	0.917	0.960	1.012	0.878	0.911	0.990	0.892	1.122
30		(0.770 -	(0.863 -	(0.875 -	(0.919 -	(0.825 -	(0.898 -	(0.880 -	(0.767 -	(0.831 -	(0.895 -	(0.795 -	(1.027 -
31	36-41	1.069) 0.784	1.090) 0.950	1.004) 0.962	1.012) 1.030	1.019) 0.760	1.026) 0.970	1.163) 1.070	1.004) 0.851	1.000) 0.994	1.094) 0.993	1.000) 0.876	1.226) 1.180
32	50-41	(0.587 -	(0.797 -	(0.852 -	(0.963 -	(0.614 -	(0.880 -	(0.842 -	(0.701 -		(0.855 -	(0.715 -	(1.044 -
		(0.587 - 1.048)	(0.797 - 1.132)	1.086)	(0.963 - 1.101)	0.940)	(0.880 - 1.069)	(0.842 - 1.360)	1.034)	(0.851 - 1.160)	(0.855 - 1.152)	1.074)	(1.044 - 1.334)
33	42-59	0.698	1.100	1.106	1.054	1.119	0.960	1.388	0.885	0.949	1.078	0.910	1.012
34		(0.413 -	(0.912 -	(0.907 -	(0.973 -	(0.807 -	(0.854 -	(0.940 -	(0.711 -	(0.731 -	(0.909 -	(0.656 -	(0.869 -
35		1.178)	1.327)	1.349)	1.141)	1.550)	1.079)	2.052)	1.103)	1.233)	1.280)	1.263)	1.178)
36													
37													
38													
20													

23

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

47 48 10

	Wealth Quintile of the Child's House	ald											
	Richest (reference)	1.00		1.00		1.00		1.00		1.00		1.00	
1	Rich	1.00		1.00		1.288		1.00		1.143		1.00	
2	RICH												
		(1.111 - 1.445)		(1.161 - 1.290)		(1.187 - 1.398)		(0.926 - 1.180)		(1.065 - 1.226)		(1.023 - 1.228)	
3	Middle	1.445)		1.290)		1.398)		1.180)		1.220)		1.228)	
4	Wildule												
5	Poorer		0.996		0.936		0.923		0.937		0.957		0.977
6	100101		(0.938 -		(0.913 -		(0.891 -		(0.870 -		(0.905 -		(0.922 -
7			1.057)		0.913 -		0.956)		1.008)		1.012)		1.037)
	Poorest (reference)		1.00		1.00		1.00		1.00		1.00		1.00
8													
9	Water Piped to the Child's House												
10	Piped to house (reference)												
11	Water not piped to house	1.066	1.138	0.936	0.964	1.001	1.066	0.991	1.163	0.966	1.065	0.976	1.028
12		(0.924 -	(1.017 -	(0.883 -	(0.925 -	(0.919 -	(0.995 -	(0.874 -	(1.015 -	(0.884 -	(0.979 -	(0.886 -	(0.933 -
13		1.229)	1.273)	0.993)	1.004)	1.089)	1.142)	1.123)	1.333)	1.055)	1.159)	1.076)	1.133)
14	Flush Toilet at Child's House												
15	Flush toilet at house (reference)												
16	No flush toilet at house	0.948	1.369	1.158	1.173	1.082	1.239	1.011	0.996	1.088	1.057	0.984	0.982
17		(0.818 -	(1.075 -	(1.089 -	(1.064 -	(0.988 -	(1.037 -	(0.879 -	(0.753 -	(0.994 -	(0.889 -	(0.872 -	(0.797 -
18		1.098)	1.745)	1.232)	1.294)	1.185)	1.481)	1.164)	1.318)	1.191)	1.257)	1.110)	1.209)
19	Child Measles Vaccination												
20	Not vaccinated	1.653	1.000	1.190	1.066	1.211	1.200	1.229	1.185	1.045	1.030	1.299	1.127
21		(1.309 -	(0.905 -	(1.072 -	(1.022 -	(1.037 -	(1.130 -	(0.969 -	(1.050 -	(0.907 -	(0.940 -	(1.101 -	(1.035 -
22		2.088)	1.106)	1.320)	1.111)	1.414)	1.275)	1.559)	1.337)	1.204)	1.129)	1.531)	1.228)
23	Observations	40.200	20 (12	20 707	22 (57	20.245	24.946	20 702	24.251	22.000	27 425	0.027	C 02C
	Observations	40,299	38,612	28,797	23,657	29,345	24,846	28,783	24,251	32,809	27,435	8,027	6,026
24													

Note: High SES includes children who are in households that are in the rich or richest wealth quintiles, have mothers with completed primary school or higher,

and live in an urban area. Low SES includes children who are in households that are in the poor and poorest wealth quintiles, have mothers with incomplete primary or no education, and live in a rural area.

Page 25 of 36

BMJ Open

Results: Sensitivity Analysis 1 Recent work by Subramanian *et al*² and Ozaltin*et al*³⁴ indicates that maternal height is a significant predictor of 2 3 infant mortality, anthropometric failure and anaemia in India. At the cost of a smaller sample (n=101,054) height is 4 5 included as a control variable in the regression, in addition to the controls used in the adjusted regressions, to examine 6 7 whether in the sub-set of countries for which the Demographic and Health Surveys have data on women's height, the 8 age effect that we observe is confounded by maternal height. Household religion is also included as a control variable as 9 10 in many low- to middle-income countries religion has a bearing on household decision making that may include health 11 12 seeking behaviour. Moreover, religion may influence the autonomy of women to make decisions over the timing of their 13 Deleted: is 14 first birth. Even after controlling for height and religion, the age of the mother at first birth remainsa significant risk 15 16 factor for infant mortality, anthropometric failure and child health outcomes (Table A5). Controlling for height, which is 17 Deleted: indicator an additional biological covariate, and religion, which is an additional social covariate, the general relationship between 18 Deleted: indicator 19 Deleted: does not change the age of mother at first birth and child health outcomes persists (Table A5). 20 21 Discussion 22 23 **Principal findings** 24 25 In this paper we show that, controlling for maternal, paternal and household and social factors, there is an 26 Deleted: 27, 27 improvement in child health outcomes as the age of mother at first birth rises up to ages 27-29. This is a much higher Deleted: controlling for maternal, 28 paternal and household and social factors 29 age than has been previously reported, where teen pregnancy is emphasized as a risk factor. In the adjusted model, we Deleted: usually found in the literature 30 show that there is an elevated risk in infant mortality in first borns to mother's below ages 27-29, though the effect is Deleted: infant mortality shows 31 32 Deleted: for only statistically significant for women below age 18. However, the lack of significance may be because cases of infant 33 Deleted: is 34 mortality in our sample are relatively rare, whereas we find mothers below ages 27-29 have elevated and statistically Deleted: and when we turn to models 35 for stunting, diarrhoea, and anaemia 36 outcomes, significant risks for stunting, diarrhoea, and anaemia outcomes. 37 Deleted: all of these 38 Our results indicate that children to mothers below age 27-29 are at higher risk of poor health outcomes. In our Deleted: all mothers below age 27., 39 Deleted: and this higher risk is 40 sample of low- to middle-income countries only 7% of women delay their first birth until the age of 27 or older. The statistically significant. 41 United States has seen a steady rise in the average age at first birth from 21 in 1970 to 25 in 2000.³⁸Age at first birth is 42 Deleted: s 43 increasing in some of our sample countries, but is still lagging behind the level seen in United States. For example, in the 44 45 1993 Bangladesh DHS the mean age for first births in the last five years was 18.2, but in 2007 had risen to 18.5. In 46 47 25 48 49 50 51 52 53 54 55 56 57 58 59 60

1	l
2	
2	
3	
4 5 6	
5	
6	
7	
Ω.	
0	
9	
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	
11	
12	
12	
13	
14	
15	
16	
17	
10	
10	
19	
20	
21	
22	
22	
23	
24	
25	
26	
27	
21	
28	ī
29	
30	
31 32 33	
32	
22	
33	
34	
34 35 36	
36	I
36 37 38	
20	
38	
39	
40	
41	
42	I
43	
43	
44	
45	l
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

60

ages.

Ghana, age for first births increased from a mean of 19.8 in 1988 to 21.2 in 2008. In Tanzania, mean age at first birth increased from 19.2 in 1991 to 19.6 in 2004. Bongaarts found that family planning programs can reduce the child mortality rate by delaying the age at first birth, preventing high parity births, and improving birth spacing.³⁹ The results in this paper indicate that there are benefits to reducing infant mortality and improving child health by delaying the age at first birth even for women in their early twenties.

Taken together, the risk of a poor health outcome dissipates by age 21, but the general trend of improvement continues through to age 27-29. Thus while the early 20s presents a lower risk of a poor child health outcome than a first birth to a teen mother, delaying to the late 20s means that the risk of a poor child health outcome is minimized. Moreover, We find evidence of a paternal age gradient, although it is weaker than the maternal age gradient. This indicates that social mechanisms play a role in part, but the biological maturity of the mother also plays a role in determining child health outcomes. This finding was also supported by the stratification by low and high socioeconomic status, where we found that the age gradient was not solely reflecting socio-economic differences across the

Comparisons to other studies

20			
27	Consistent with country studies, in this paper we show that delaying first birth beyond the teen years and into the		
28			
29	twenties has a positive impact on child survival. While from the 2005-6 India sample, Raj et al. ¹³ found that maternal age	_	
30 31	only has a significant effect on stunting and underweight in the current study that applies to 55 low- to middle-income		eleted: Unlike the Raj <i>et al</i> . ¹³ study nat focused on the case of India,
32	countries we find that young maternal age has a significant effect <u>on</u> reducing infant mortality, stunting, underweight,		eleted: in general in the low- to iddle-income countries
33		D	eleted: of
34 35	diarrhoea and moderate to severe anaemia. The broadening of the significant results to include other child health	D	eleted: strong
36 37	outcomes can stem from the inclusion of a greater number of countries, and also from a wider time horizon. As the	Ra ha	eleted: In the 2005-6 India sample, aj <i>et al.</i> ¹³ find that maternal age only as a significant effect on stunting and nderweight
38	2005-6 India National Family Health Survey-3 is one of the 118 surveys within our current study, the comparison		
39		D	eleted: is
40	between our study and the Raj et al ¹³ study highlights that generalizing across countries does not always reflect each	D	eleted: not mirrored in
41		_	
42	country's experience. Thus we include the country specific examples in the appendix (Table A3). Even so, for the case of	_	
43		D	eleted: there are
44	India in our sample we include three National Family Health Surveys (1992, 1998, 2005-6), Thus, even the country	D	eleted: and not just the one
45			
46			
47			

Page 27 of 36

BMJ Open

	specific results <u>may</u> differ from the survey specific results. Taking a broad view, however, the two papers yield the same	
1		Deleted: and
2	fundamental conclusion that delaying first birth beyond the teen years is beneficial for child health outcomes.	Deleted: is,
3 4	The results in this paper also compare to that of Subramanian <i>et al</i> . ⁴⁰ which teases out the biological from the	Deleted: Changing the d countries within the study differences in the finer po
5 6	socio-economic predictors of child health outcomes. If being a young mother is associated with low socio-economic	results, but the fundamen remains consistent.
7 8	status in ways we have not controlled for, maternal age at first birth may simply be a proxy for socio-economic status.	
9	However if this were true, we would expect the effect of young fathers to be similar to that of mothers (Subramanian <i>et</i>	
10 11	al. ⁴⁰ put forward this idea of looking at the differential effects of maternal and paternal indicators on child health as a	
12 13	method of distinguishing between biological and social mechanisms).	
14 15	Limitations of the study	Deleted: in
16 17	Although this study provides important insights to the benefits of delaying first birth to age 27-29 to child health, there	Deleted: In Deleted: to child health
18	are certain limitations that should be considered when interpreting the results. The primary variable of interest, age of	
19 20	mother <u>at first birth</u> , is subject to measurement error as <u>data</u> collection of this variable relies on recall by the	
21 22	respondent. The same holds true for identifying the population of children within a 0-11 and 12-60 month age range.	
23 24	We already include the 60 month old children (which would normally be restricted to 12-59 months) as it is common for	
25 26	the mother to round up in their recall of the child's age. The result is that a larger fraction of children are reported to be	
27 28	60 months rather than 59 months. As this inconsistency is attributed to recall error, we follow the World Health	
29 30	Organization guidelines and include the 60 month olds in the child group. For the women's age, we assume that	
31	measurement error increases with actual age. Given our concern over young mothers, then the measurement error on	
32 33	the age will be minimized for this group of interest.	
34 35	A further limitation of the model is that the socio-economic measures of male and female education, along with	
36 37	the wealth index, may not fully capture the socio-economic status of the woman and her child. While we include	
38 39	information about location of residence, piped water to the house, and flush toilet, these all serve as proxies for actual	
40 41	SES. Any unobserved wealth captured in the residual will confound the current results. Factors such as actual household	
42	income and education quality are such variables that we are unable to control for in the regression and may significantly	
43 44	influence child health outcomes and shape our understanding of the role of SES factors.	
45 46		
47 48	27	
49 50		
51 52		
53		
54 55		
56 57		
58		
59 60		

: and

l: is,

Changing the date range and within the study creates subtle es in the finer points of the ut the fundamental result consistent.

2
3
4
5
6
7
1
8
9
10
11
12
12
13
14
15
16
17
10
10
19
20
21
2 3 4 5 6 7 8 9 10 11 2 13 14 5 6 7 8 9 10 11 2 13 14 15 16 17 18 19 20 1 22 3 24 25 26 27 28 29 30 31 32 33 4 35 36 37 38 39 40 1
22
23
24
25
26
27
28
20
29
30
31
32.
33
34
25
35
36
37
38
39
10
40
- T I
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
50
57
58
59

60

1

~

BMJ Open
Observational studies are subject to the limitation of omitted variables. In this case, there may be variables that
are correlated with the age of the mother at birth, but for which we do not control. This would mean that the
significance attributed to age of mother as a significant correlate of child health outcomes, may in fact be a proxy for
other omitted factors. Fixed effects on year of birth are included in both the unadjusted and adjusted regressions to
control for common factors in a given year, andsecular changes over time. Country fixed effects are also included in the
unadjusted and adjusted regressions to control for factors that may be common to women within the same country and
are unchanging over time. The covariates control for deviations from the country average and the global time trends in
the variables included in the adjusted regressions. However, there may be some factors that are correlated to the
explanatory variable of interest that is omitted from the regression. In which case, the regression coefficients suffer
from omitted variable bias.Omitted variables correlated to the age of the mother could include, place of delivery,
trained or untrained birth attendance, and breastfeeding.
One of the key outcomes of interest in this study is infant mortality. Infant mortality is aggregated across all
causes of death. However, it could be reasonably expected that the age of the mother affects infant mortality outcomes
by cause of death. Using a range of child health outcomes in this study, we have illustrated how the age of mother is
differentially (or similarly) related to various outcomes. However, an investigation of the vulnerability of death by, say,
pneumonia, diarrhoea, malaria or AIDS by the age of the mother is beyond the scope of this study as cause of death for
children is not recorded in the Demographic and Health Surveys.
Conclusions and implications

		Deleted: for
The current study documents that the first born child of a woman aged less than 27-29 in low- to middle-income	_´_` {	Deleted: who is born to
countries, is at a higher rick of infant mortality, stunting, underweight, diarrhead, and moderate to countreanaomia, but	{	Deleted: it
countries, is at a higher risk of infant mortality, stunting, underweight, diarrhoea, and moderate to <u>severe</u> anaemia, but		Deleted: strong
notwasting. Children born to women aged 12-14 or 15-17 are significantly more likely to die in their first year of life than	1	Deleted: at
	*{	Deleted: significantly different risk of
children born to women aged 27-29. The risk of stunting, diarrhoea, and anaemia diminishes significantly as a woman	Ì	Deleted: suffer mortality
delays her first birth through to age 27-29, when the risk is minimized. The risk of underweight decreases significantly as a woman delays her first birth and is minimized by age 21. These results offer support to the evidence of the benefits of	·	Deleted: For children born to women aged 19-26, the risk of mortality declines as she ages each yearwith maternal age, but this risk is not significantly different from the risk to children born to women aged 27-29.
delaying first birth <u>to offspring</u> . Importantly, beyond just avoiding teen pregnancy, the results in this study show that it is	Ì	Deleted: to offspring
optimal to delay first birth until age 27-29 ₄ The results reveal that interventions designed to target adolescents	[Deleted: , and not just avoiding teen pregnancy

Page 29 of 36

ι	utcomes. Development of programs targeting women in general, and not just targeting teen mothers, should provide	
~//	omen and families with tools to make informed decisions over the timing of their first birth and the benefits of	
de	elaying the birth. Highlighting the benefits of delaying first birth to the child's health, <u>not only allowing women to</u>	Deleted: s
m	ature biologically, but also to provide a mechanism for young female family members improve knowledge and skills in	Deleted: have time to build education and skills to empow
ch	nildcare, family planning and empower female autonomy in decisionmaking within the household.	autonomy and to better care t families
	Our results indicated that while the absolute risk of poor child health outcomes is lower when the mother is in a	
hi	gh <u>socio-economics</u> household, there remains a high relative risk of poor child health outcomes for young mothers	Deleted: -SES
		Deleted: -SES
	ven in high <u>socio-economics</u> households. The persistence of the age gradient across the SES groups highlights that child	Deleted: SES
an	nd maternal health issues associated with age of the mother cut across <u>socio-economic</u> lines and the children of young-	
ric	ch women are not shielded from the relative risk of a poor health outcome. This indicates that the biological	
im	maturity of young mothers also affects child health outcomes in addition to the social disadvantage young mothers	
of	t <u>ten face.</u>	
	Encouraging women to delay their first birth, and encouraging families to permit the delay when the woman is	
nc	ot granted autonomy over her reproductive health decisions, come through providing women with viable and valuable	Deleted: to
alt	ternatives. Education programs aimed atencouraging women to stay in school, take on meaningful employment	Deleted: e
op	oportunities, and provide service to the community, relieves the immediacy of the need or desire for child bearing. It	
als	so provides empowerment to women in illustrating to herself and her family that her contribution to society need not	
or	nly be defined by her reproductive life. By delaying a few years and engaging in other activities she contributes to	
50	priety as well as broadening her skills and knowledge to go on to be a more informed and more highly educated	
	other. These benefits to the women, then trickle through the generations and benefit her offspring. In this paper, we	Deleted: ed
sh	now that those benefits are in terms of health, but future studies may highlight the educational and social benefits for a	
ch	hild if a woman delays her first birth.	
	hild if a woman delays her first birth.	
	29	

References

1 2

3

4

5

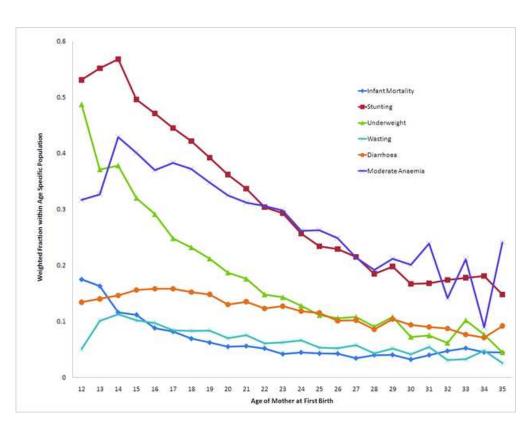
6

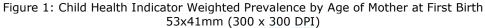
7

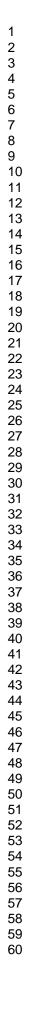
8

9

- 1. United Nations. We Can End Poverty 2015: Millennium Development Goals, 2011.
- 2. Subramanian SV, Ackerson LK, Davey Smith G, John NA. Association of Maternal Height With Child Mortality, Anthropometric Failure, and Anemia in India. JAMA 2009;301(16):1691-701.
- 3. Ozaltin E, Hill K, Subramanian SV. Association of maternal stature with offspring mortality, underweight, and stunting in low- to middle-income countries. JAMA 2010;303(15):1507-16.
- 4. Temin M, Levine R. Start with a Girl: A New Agenda for Global Health. A Girls Count Report on Adolescent Girls. Washington D.C.: Center for Global Development, 2009.
- 5. Kembo J, Van Ginneken JK. Determinants of Infant and Child Mortality in Zimbabwe: Results of Multivariate Hazard Analysis. Demographic Research 2009;21(13):367-84. 10
- 6. Knodel J, Herman AT. Effects of birth rank, maternal age, birth interval and sibship on infant and child 11 mortality: Evidence from 18th and 19th Century Reproductive Histories. American Journal of Public 12 Health 1984;74(10):1098-106. 13
- 7. Manda SOM. Birth intervals, breastfeeding and determinants of childhood mortality in Malawi. Social 14 Science & Medicine 1999;48(3):301-12. 15
- 8. Reynolds HW, Wong EL, Tucker H. Adolescents' Use of Maternal and Child Health Services In Developing 16 Countries. International Family Planning Perspectives 2006;32(1):6-16.
- 17 9. Villar J, Belizan J. The relative contribution of prematurity and fetal growth retardation to low birth weight in 18 developing and developed societies. American Journal of Obstetrics and Gynecology 1982;143(7):793-19 98.
- 20 10. Vitolo MR, Gama CM, Bortolini GA, Campagnolo PD, Drachler ML. Some risk factors associated with 21 overweight, stunting and wasting among children under 5 years old. J Pediatr (Rio J) 2008;84(3):251-22 57.
- 23 11. Wang SC, Lee SH, Lee MC, Wang L. The effects of age and aboriginality on the incidence of low birth 24 weight in mountain townships of Taiwan. Journal of Public Health 2009;31(3):406-12.
- 25 12. Hobcraft J. Fertility patterns and child survival: a comparative analysis. Population Bullitin of the United Nations 1992;33:1-31. 26
- 13. Raj A, Saggurti N, Winter M, Labonte A, Decker MR, Balaiah D, et al. The effect of maternal child 27 marriage on morbidity and mortality of children under 5 in India: cross sectional study of a nationally 28 representative sample. Br Med J (Clin Res Ed) 2010;340. 29
- 14. Trussell J, Hammerslough C. A hazards-model analysis of the covariates of infant and child mortality in Sri 30 Lanka. Demography 1983;20(1):1-26. 31
- 15. ICF Macro. DHS Final Reports. In: DHS M, editor. Calverton, 2011. 32
- 16. Cooper LG, Leeland NL, Alexander G. Effect of maternal age on birth outcomes among young adolescents. 33 Social Biology 1995;42:22-35. 34
- 17. Fraser AM, Brockert JE, Ward RH. Association of Young Maternal Age with Adverse Reproductive 35 Outcomes. N Engl J Med 1995;332(17):1113-18.
- 36 18. Geronimus AT. On Teenage Childbearing and Neonatal Mortality in the United States. Population and 37 Development Review 1987;13(2):245-79.
- 38 19. Geronimus AT, Korenman S, Hillemeier MM. Does Young Maternal Age Adversely Affect Child 39 Development? Evidence from Cousin Comparisons in the United States. Population and Development 40 Review 1994;20(3):585-609.
- 41 20. Horon IL, Strobino DM, MacDonald HM. Birth weights among infants born to adolescent and young adult women. American Journal of Obstetrics and Gynecology 1983;146:444-9. 42
- 21. Trussell J. Teenage pregnancy in the United States. Family Planning Perspectives 1988;20:262-72. 43
- 22. Ventura SJ, Mathews TJ, Hamilton BE. Births to teenagers in the United States, 1940-2000. National Vital 44 Statistics Report 2001;49(10). 45
- 23. Alam N. Teenage motherhood and infant mortality in Bangladesh: Maternal age-dependent effect of parity 46 one. Journal of biosocial science 2000;32(2):229-36. 47


Page 31 of 36


BMJ Open


- 24. DHS. Demographic and Health Surveys. Calverton, MD: MEASURE DHS, 2009.
- 25. Rutstein SO, Rojas G. Guide to DHS Statistics. Calverton, Maryland: ORC Macro, MEASURE DHS+, 2003.
- 26. Wirth ME, Wirth E, Delamonica E, Sacks D, Balk A, Minujin A. Monitoring health equity in the MDGs: A practical guide. New York: CIESIN/UNICEF, 2006.
 - 27. Vaessen M. The potential of the demographic and health surveys (DHS) for the evaluation and monitoring of maternal and child health indicators. In: Khlat M, editor. Demographic evaluation of health programmes (Proceedings). Paris: CICRED/UNFPA, 1996.
- 28. Pullum TW. An Assessment of the Quality of Data on Health and Nutrition in the DHS Surveys, 1993-2003. Calverton, Maryland, USA: Macro International Inc, 2008.
- 29. ICF Macro. Demographic and Health Survey Interviewer's Manual. In: Macro International, editor. Calverton, Maryland, U.S.A.: ICF Macro, 2006.
- 30. ICF Macro. Description of the Demographic and Health Surveys Individual Recode Data File. In: Measure DHS, editor, 2008.
- 31. Demographic and Health Survey. Sampling Manual. DHS-III. Calverton, Maryland: Macro International, 1996.
- 32. ICF Macro. Measure DHS Biomarkers Inventory. In: DHS M, editor, 2011.
- 33. Borghi E, de Onis M, Garza C, Van den Broeck J, Frongillo E, Grummer-Strawn L, et al. Construction of the World Health Organization child growth standards: selection of methods for attained growth curves. *Statistics in Medicine* 2006;25(2):247-65.
- 34. Ozaltin E, Hill K, Subramanian SV. Association of Maternal Stature with Offspring Mortality, Underweight, and Stunting in Low- to Middle-Income Countries. JAMA 2010;303(15):1507-16.
- 35. Filmer D, Pritchett LH. Estimating wealth effects without expenditure data--or tears: an application to educational enrollments in states of India. *Demography* 2001;38(1):115-32.
- 36. Zou G. A modified poisson regression approach to prospective studies with binary data. Am J Epidemiol 2004;159(7):702-06.
- 37. Deaton A. The Analysis of Household Surveys: A Microeconometric Approach to Development Policy. Baltimore: World Bank, 1997.
- 38. Mathews TJ, Hamilton BE. Mean age of mother, 1970-2000. National Vital Statistics Report 2002;51(1).
- 39. Bongaarts J. Does Family Planning Reduce Infant Mortality Rates? Population and Development Review 1987;13(2):323-34.
- 40. Subramanian SV, Ackerson LK, Smith GD. Parental BMI and Childhood Undernutrition in India: An Assessment of Intrauterine Influence. Pediatrics 2010;126(3):663-71.

	Contributors: JEF co-led the conception and interpretation of results in this study. She assisted with drafting the
1 2	manuscript. She prepared the data, empirical analysis, and tables presented in the paper. As guarantor, she accepts full
3 4	responsibility for this submitted work, had access to the data, and controlled the decision to publish. EÖ assisted with
5	conception of the article themes, compilation of the data setand empirical analysis for this study, and critical revision of
6 7	the paper. DC led the conception of this study and interpretation of study findings as well as assisting with the drafting of
8 9	the manuscript. Authors have seen and approved this final submitted version of the manuscript. All authors will provide
10 11	final approval of the version to be published.
12 13	Acknowledgements: The authors thank the invaluable research assistance of Laura Khan and June Po in assisting with
14	the preparation of the draft.
15 16 17	Funding: We thank the William and Flora Hewlett Foundation for support of this research. Conception of this paper was
18 19	funded by the <u>Centre for Global Development</u> . Researchers operated independently from the funders on this work, and
20	funders neither provided nor were required to provide review and approval of this research.
21 22	Competing Interests: None declared
23 24	Exclusive License: The Corresponding Author has the right to grant on behalf of all authors and does grant on behalf of
25 26	all authors, an exclusive licence (or non exclusive for government employees) on a worldwide basis to the BMJ
27 28	Publishing Group Ltd and its Licensees to permit this article (if accepted) to be published in BMJ editions and any other
29	BMJPGL products and sublicenses to exploit all subsidiary rights, as set out in our licence
30 31	(http://resources.bmj.com/bmj/authors/checklists-forms/licence-for-publication).
32 33	Ethical Review
34 35	The DHS data collection procedures were approved by the ICF Macro International (Calverton, Maryland) Institutional
36 37	Review Board as well as by the relevant body in each country which approves research studies on human subjects. Oral
38	informed consent for the interview/survey was obtained from respondents by interviewers. The current study was
39 40	reviewed by Harvard School of Public Health Institutional Review Board (Protocol #20069-101) and was ruled exempt
41 42	from full review because the study was based on an anonymous public use data set with no identifiable information on
43 44	the survey participants.
45	
46 47	
48 49	32
50 51	
52	
53 54	
55 56	
57 58	
59	
60	

Deleted: Centre for Disease Control

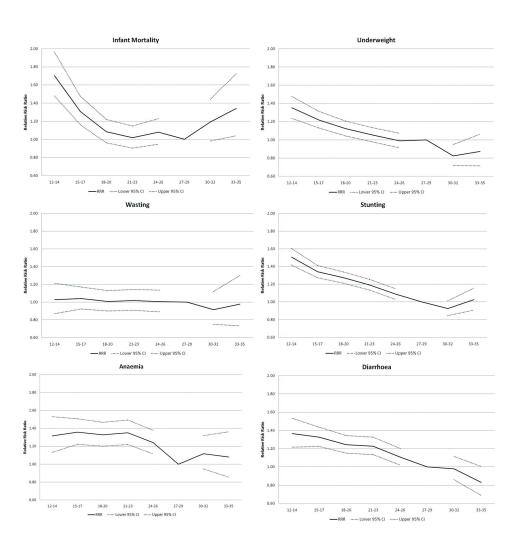


Figure 2: Plot of Adjusted Relative Risk Ratios and 95% Confidence Intervals as per the results tabulated in Table 4 174x176mm (300 x 300 DPI)

STROBE Statement—Checklist of items that should be included in reports of cross-sectional studies

All items below are included in the study entitled: Association of Maternal Age with Infant Mortality, Child Anthropometric Failure, Diarrhoea, and Anaemia for First Births in Low- and Middle-Income Countries

	Item No	Recommendation
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract
		(b) Provide in the abstract an informative and balanced summary of what was done
		and what was found
Introduction		
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported
Objectives	3	State specific objectives, including any prespecified hypotheses
Methods		
Study design	4	Present key elements of study design early in the paper
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment,
C		exposure, follow-up, and data collection
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect
		modifiers. Give diagnostic criteria, if applicable
Data sources/	8*	For each variable of interest, give sources of data and details of methods of
measurement		assessment (measurement). Describe comparability of assessment methods if there i
		more than one group
Bias	9	Describe any efforts to address potential sources of bias
Study size	10	Explain how the study size was arrived at
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable,
		describe which groupings were chosen and why
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding
		(b) Describe any methods used to examine subgroups and interactions
		(c) Explain how missing data were addressed
		(d) If applicable, describe analytical methods taking account of sampling strategy
		(<u>e</u>) Describe any sensitivity analyses
Results		
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially
		eligible, examined for eligibility, confirmed eligible, included in the study,
		completing follow-up, and analysed
		(b) Give reasons for non-participation at each stage
		(c) Consider use of a flow diagram
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and
		information on exposures and potential confounders
		(b) Indicate number of participants with missing data for each variable of interest
Outcome data	15*	Report numbers of outcome events or summary measures
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and
		their precision (eg, 95% confidence interval). Make clear which confounders were
		adjusted for and why they were included
		(b) Report category boundaries when continuous variables were categorized

(b) Report category boundaries when continuous variables were categorized

1
2
3
4
5
6
7
0
8
9
10
11
12
12
13
14
15
16
17
18
$\begin{array}{c} 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 23 \\ 4 \\ 15 \\ 16 \\ 7 \\ 18 \\ 9 \\ 20 \\ 22 \\ 22 \\ 22 \\ 22 \\ 22 \\ 20 \\ 3 \\ 3 \\ 23 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ $
19
20
21
22
23
24
24
25
26
27
28
29
20
30
31
32
33
34
35
36
27
31
38
39
40
41
42
44
45
46
47
48
40
51
52
53
54
55
00
56
57
58
59
60
00

1

		(c) If relevant, consider translating estimates of relative risk into absolute risk for a
		meaningful time period
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and
		sensitivity analyses
Discussion		
Key results	18	Summarise key results with reference to study objectives
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or
		imprecision. Discuss both direction and magnitude of any potential bias
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,
		multiplicity of analyses, results from similar studies, and other relevant evidence
Generalisability	21	Discuss the generalisability (external validity) of the study results
Other information		
Funding	22	Give the source of funding and the role of the funders for the present study and, if
		applicable, for the original study on which the present article is based

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

it em.co.