Supporting Information For

Substrate-Triggered Activation of a Synthetic [Fe₂(µ-O)₂] Diamond Core for C–H Bond Cleavage

Genqiang Xue, Alexander Pokutsa, and Lawrence Que, Jr.*

Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, MN 55455

Figure S1. Time-resolved spectral changes during the oxidation of 10 mM DHA by **1** at -30 °C in MeCN in the presence of 1.0 M H₂O. Inset: time trace at 616 nm (black solid line) together with the fit (red dashed line) using a first-order rate constant of 0.0099 s⁻¹.

Figure S2. Time-resolved spectral changes during the oxidation of 1.0 mM CH₃OH by **1** at -30 °C in MeCN in the presence of 50 mM H₂O. Inset: time trace at 616 nm (black solid line) together with the fit (red dashed line) using a first-order rate constant of $2.0 \times 10^{-4} \text{ s}^{-1}$.

Figure S3. k_{obs} -vs-[substrate] plots for oxidation of CH₃OH (squares) or CH₃OD by **1** in MeCN in the presence of 10 mM 2,6-lutidine. The corresponding second order rate constants (k_2) are 0.053 M⁻¹ s⁻¹ and 0.032 M⁻¹ s⁻¹, and KIE is 1.6. The reaction rates were measured under Ar at -30 °C.

Figure S4. k_{obs} -vs-[DHA] plots for oxidation by 1 in MeCN in the presence of 1.0 M H₂O (squares) or D₂O (circles). The corresponding second order rate constants (k_2) are 0.82 M⁻¹ s⁻¹ and 0.56 M⁻¹ s⁻¹, and KIE is 1.5. The reaction rates were measured under Ar at -30 °C.

Figure S5. k_{obs} -vs-[2,6-lutidine] plot for oxidation of 2.0 mM DHA by 1 in MeCN with 1.0 M H₂O at - 30 C under Ar. See Table S5 for list of data in the plot.

Figure S6. Time resolved spectral changes during self-decay of -OCH₃ at -50 °C in 3:1 CH₂Cl₂-MeCN. Inset: time trace at 420 nm (black solid line, one data point per 0.1 second) together with the fit (red dashed line) using a first order rate constant of 0.40 s⁻¹.

Figure S7. Time-resolved spectral changes during the oxidation of DHA by $1-OCD_3$ at -80 °C in 3:1 CH₂Cl₂-MeCN. Inset: time trace at 420 nm (black solid line, one data point per 0.1 second) together with the fit (red dashed line) using a first order rate constant of 0.36 s⁻¹.

Substrate	BDE kcal mol ⁻¹	k_2 ' (M ⁻¹ s ⁻¹) by 3 in MeCN	$\begin{array}{c c} (M^{-1} s^{-1}) \text{ by } 3 \\ MeCN \\ \end{array} \begin{array}{c} k_2^{\circ} (M^{-1} s^{-1}) \text{ by } 1 \\ \text{in MeCN with} \\ 0.05 \text{ M H}_2\text{O} \end{array}$		
xanthene	75.5 ¹	ND	4.8 x 10 ⁻²	0.84	
DHA	78^{1}	1.2	7.0 x 10 ⁻³	0.20	
fluorene	80^1	0.22	4.1 x 10 ⁻³	0.16	
triphenylmethane	81 ²	0.16	ND	ND	
diphenylmethane	82 ²	ND	ND	6.5 x 10 ⁻³	
tetralin	85 ²	0.10	6.9 x 10 ⁻⁵	1.4 x 10 ⁻³	
ethylbenzene	87 ¹	2.7 x 10 ⁻³	ND	1.0 x 10 ⁻⁴	
toluene	90 ¹	ND	ND	4.0 x 10 ⁻⁵	
benzhydrol	79 ³	ND	4.7 x 10 ⁻³	ND	
benzyl alcohol	85 ⁴	0.047	5.0 x 10 ⁻⁴	1.7 x 10 ⁻³	
2-hexanol	90 ⁴	2.2 x 10 ⁻³	2.1 x 10 ⁻⁵	ND	
1-hexanol	93 ⁴	3.6 x 10 ⁻⁴	1.5 x 10 ⁻⁴	ND	
isobutanol	93 ⁴	ND	2.0 x 10 ⁻⁵	ND	
ethanol	934	ND	1.4 x 10 ⁻⁴	ND	
methanol	96 ⁵	2 x 10 ⁻⁵	6.0 x 10 ⁻⁵	6.3 x 10 ⁻⁵	

Table S1. Summary of k_2 ' values for substrate oxidations by **1** and **3** at -30 °C under Ar.

[2,6-lutidine] / mM	0	2.0	4.0	6.0	8.0	10	20	50
$k_{\rm obs} ({\rm x}10^{-3}{\rm s}^{-1})$	0.20	1.6	2.6	3.8	4.1	5.7	11	23
[2,4,6-collidine] / mM	0	2.0	4.0	6.0	10			
$k_{\rm obs} ({\rm x}10^{-3}{\rm s}^{-1})$	0.20	3.2	6.0	9.2	14			
pK _a	5.17	5.97	6.51	6.77	7.48			
$k_{\rm obs} ({\rm x}10^{-3}{\rm s}^{-1})$	0.23	0.80	1.4	5.7	14			

Table S2. Rate constants for methanol (1.0 M) oxidation by **1** in MeCN at -30 °C under Ar (Figure 6). For the k_{obs} versus p K_a experiments, 10 mM bases were added to mixture of **1** and methanol.

Table S3. Comparison of the rates for the oxidation of DHA^a and methanol^b.

Oxidant	Oxidant T/Solvent						
DHA oxidation ^a							
1 + 1 M H ₂ O	1 + 1 M H ₂ O -30 °C/CH ₃ CN						
2 + 1 M H ₂ O	-30 °C/CH ₃ CN	$0.15 \text{ M}^{-1} \text{ s}^{-1}$					
2	-80 °C/3:1 CH ₂ Cl ₂ :CH ₃ CN	$10^{-5} \text{ M}^{-1} \text{ s}^{-1}$					
4	-80 °C/3:1 CH ₂ Cl ₂ :CH ₃ CN	$10^{-4} \text{ M}^{-1} \text{ s}^{-1}$					
2- OH	-80 °C/3:1 CH ₂ Cl ₂ :CH ₃ CN	$28 \text{ M}^{-1} \text{ s}^{-1}$					
2- OCD ₃	-80 °C/3:1 CH ₂ Cl ₂ :CH ₃ CN	360 M ⁻¹ s ⁻¹					
Methanol oxidation ^b							
1 (+ 2.0 M CH ₃ OH)	-30 °C/CH ₃ CN	$4.0 \ge 10^{-4} \text{ s}^{-1}$					
2 (+ 2.0 M CH ₃ OH)	-30 °C/CH ₃ CN	$3.3 \times 10^{-5} \text{ s}^{-1}$					
4 (+ 2.0 M CH ₃ OH)	-30 °C/CH ₃ CN	$5 \times 10^{-6} \text{ s}^{-1}$					

^aDHA oxidation rates by **2**, **4** and **2**-OH were reported from ref 6. ^bOnly first order rate constants for the oxidation of 2 M CH₃OH are listed, because the reaction rates for **2** and **4** at lower methanol concentrations were too slow to allow second order rate constants to be obtained.

Table S4. Rate constants measured for the Eyring plot for the self-decay of 2-OCH₃ (Figure 9, inset). All k_{obs} values are averages of data from three measurements.

T (°C)	-85	-80	-75	-70	-65	-60	-55	-50
$k_{\rm obs}/({\rm s}^{-1})$	0.012	0.024	0.040	0.080	0.13	0.33	0.44	0.78

Table S5. Rate constants for DHA (2 mM) oxidation by 1 in the presence of 1 M H_2O and varying amounts of 2,6-lutidine in MeCN at -30 °C under Ar (Figure S5).

[2,6-lutidine]/mM	0	1.0	2.0	3.0	4.0
$k_{\rm obs}/({\rm s}^{-1})$	0.0018	0.049	0.080	0.14	0.16

References

- (1) Bryant, J. R.; Mayer, J. M. J. Am. Chem. Soc. 2003, 125, 10351-10361.
- (2) Goldsmith, C. R.; Jonas, R. T.; Stack, T. D. P. J. Am. Chem. Soc. 2002, 124, 83-96.
- (3) Finn, M.; Friedline, R.; Suleman, N. K.; Wohl, C. J.; Tanko, M. M. J. Am. Chem. Soc. 2004, 126, 7578-7584.
- (4) Tumanov, V. E.; Denisov, E. T. Russ. J. Phys. Chem. 1996, 70, 741-746.
- (5) Blanksby, S. J.; Ellison, G. B. Acc. Chem. Res. 2003, 36, 255-263.
- (6) Xue, G.; De Hont, R.; Münck, E.; Que, L., Jr. Nature Chem. 2010, 2, 400-405.