## **Supporting Information**

## Chantratita et al. 10.1073/pnas.1111020108

## SI Text

Culture and Microscopy of Clinical Isolates. The six initial and variant strain pairs of B. pseudomallei were frozen at -80 °C in tryptone soya broth (TSB) with 15% glycerol at the time of isolation from diagnostic samples, where they remained until used in this study. These samples were isolated from patients presenting to a single hospital in northeast Thailand in the years 2007 (two cases), 2006, 1993, 1990, and 1988 (one case each). Identification of the six primary *B. pseudomallei* isolates from admission cultures was performed as described previously (1), together with a highly specific latex agglutination test based on a monoclonal antibody to exopolysaccharide (2), because the growth defect precluded the use of standard methodology that depends on bacterial growth. In brief, bacterial cells picked from a colony on ASH were emulsified in 30  $\mu$ L of latex suspension on a glass slide, which was rocked gently for 1 min and observed for evidence of agglutination. This was compared with a positive and negative control using B. pseudomallei K96243 and B. thailandensis E264, respectively.

Growth of the six strain pairs on routine laboratory agar or in liquid culture was tested as follows. Growth of the 12 strains on ASH was confirmed by streaking frozen stock onto an ASH plate, incubating at 37 °C in air and examining daily for 7 d. Gram stain and light microscopy was performed on day 2 colonies. Several colonies were picked from day 2 ASH plates to make a suspension of B. pseudomallei in sterile normal saline. This was streak inoculated onto one agar plate per strain for each of the following: tryptone soya agar, Columbia agar, B. cepacia agar, Mueller Hinton agar, blood agar (all from Oxoid, Ltd.), and LB agar (Becton Dickinson). All plates were incubated at 37 °C in air and examined daily for 7 d for the presence of visible colonies. The bacterial suspension was also used to inoculate tryptone soya broth, Mueller Hinton broth, and BacT/Alert FA blood culture bottles (AB bioMèrieux) to achieve a final bacterial concentration of  $1 \times 10^5$  cfu/mL. Liquid cultures were incubated by shaking at 200 rpm at 37 °C in air in a shaking incubator (New Brunswick Scientific Co. Inc), and examined daily for 7 d for evidence of cloudiness. A Gram stain was performed on the pellet of a 50-µL aliquot of each liquid culture at 24, 48, and 72 h, and day 7. A 50-µL aliquot of each liquid culture was streak inoculated onto ASH at these time points, incubated at 37 °C in air, and examined daily for 7 d.

Real-time microscopy was performed on colonies picked from ASH after incubating at 37 °C in air for 48 h. Bacteria were suspended in sterile saline and 10  $\mu$ L placed onto a glass slide (75 × 25 mm) and covered with a glass coverslip (22 × 22 mm). The samples were observed and images recorded using a real-time microscope (RTM-3; Richardson Technologies, Inc.) at 1,000× magnification.

**Bacterial Growth Curves.** Bacterial growth was monitored using a Synergy HT Multi-Mode Microplate Reader (BioTek). Briefly, 100  $\mu$ L of overnight culture grown in LB + 4% glycerol was washed once in 1 mL saline and resuspended in 50  $\mu$ L saline (glycerol was essential for growth of  $\Delta$ BPSS1219 mutants.). A 5- $\mu$ L aliquot of this cell suspension was added to 195  $\mu$ L of LB medium in each well of a 96-well flat-bottom plate. Plates were incubated at 37 °C with constant shaking at 200 rpm, and the optical density at 600 nm was read every 30 min for 48 h.

In Vitro Induction and Reversion of Bacterial Filamentation. The six primary ceftazidime-susceptible *B. pseudomallei* isolates from

study patients (415a, 699c, 1142a, 3351c, 4236a, and 4241a) were tested for in vitro induction of filamentation following exposure to ceftazidime. A pilot experiment was performed to confirm the presence of filament formation after exposure to ceftazidime at a concentration around the MIC for each of the six initial isolates.  $5 \times 10^4$  cfu of a log-phase culture was mixed with ceftazidime at a final concentration of 1, 2, or  $4 \mu g/mL$  in a total volume of 100 µL within a microtiter plate well. This mixture was incubated static at 37 °C in air for 16 h, after which the bacteria were spun and the pellet examined by Gram stain and light microscopy. This procedure confirmed the presence of bacterial filaments at all three ceftazidime concentrations, and 2 µg/mL was used for the remaining experiments. For each of the six initial isolates, two 10-mL log-phase cultures of B. pseudomallei in MHB were grown to  $\sim 1 \times 10^6$  cfu/mL. One culture was exposed to a final ceftazidime concentration of 2 µg/mL, and the second (control) was sham treated with the same volume of diluent but no drug. Cultures were incubated shaking at 37 °C in air for 16 h, after which 2 mL was removed, spun, and the bacterial pellet examined by Gram stain and light microscopy. The remaining culture was washed three times in sterile normal saline, resuspended in antibiotic-free MHB to a concentration of  $1 \times 10^6$  cfu/mL, and an aliquot removed for MIC determination using the standard E test on MHA. The remaining washed culture was incubated shaking at 37 °C in air for 24 h, after which Gram stain and MICs were performed as before.

High-Resolution Comparative Genomic Hybridization Array (aCGH). For probe preparation, genomic DNAs from parental and variant *B. pseudomallei* strains were sonicated ( $3 \times$  of 30% amplitude for 40 s with 1-min interval each, on ice) to generate DNA fragments of 100–500 bp. Fragmented samples were labeled with a Kreatech BAC array labeling kit using 2 µg of DNA per array. Hybridizations were performed at 50 °C for 18 h using the MAUI hybridization system (BioMicro Systems, Inc.), then washed with  $0.2 \times$  SSC/0.2% SDS at 65 °C for 1 min, followed by a half minute each in nonstringent wash buffer ( $6 \times$  SSPE, 0.01% Tween-20), then in  $0.2 \times$  SSC,  $0.05 \times$  SSC, and in milliQ water at room temperature. Slides were dried and then scanned on an Axon 4000B scanner (Molecular Devices). Signal intensity output files were generated by NimbleScan version 2.2 (NimbleGen) and normalized using the NimbleScan RMA function.

Sequence Analysis of the BPSS0946 penA Gene in Initial and Variant B. pseudomallei Strains. PCR amplifications were performed using a MJ Research DNA engine Dyad Peltier thermocycler (Bio-Rad Laboratories) in a total reaction volume of 100 µL [50 ng of genomic DNA, 10 µL of 10× PCR buffer (Invitrogen), 2 mM MgCl<sub>2</sub>, 10% (vol/vol) DMSO, 200 µM dNTPs, 200 pmol of each primer, and 5 U of Platinum Taq DNA polymerase (Invitrogen)]. Cycling was conducted under the following parameters: denaturation at 94 °C for 4 min, followed by 34 cycles of 94 °C for 30 s, 55 °C for 30 s, and 72 °C for 1 min, and a final step of 72 °C for 10 min. PCR products were sequenced by a commercial vendor (1st BASE), and sequences were aligned and analyzed using Vector NTI suite 10 software (Invitrogen). Primers were as follows: primer 90L (For): ATTCGCACGCACTCCTGT (position: 110 upstream of BPSS0946 penA); Primer 1256R (Rev): GTGAGCACGCGGATGAGC (position: +168 nt downstream of BPSS0946 penA). Though there were genetic differences between some of the strains and the BpK96243 reference sequence, these alterations were seen in both the initial and variant

strains and are unlikely to explain the ceftazidime resistance of the variant strains.

**Bioinformatic Analysis.** *B. pseudomallei* K96243 was used as a reference sequence (accession nos. BX571965 and BX571966). The deleted regions were mapped and visualized using Artemis software (3). The annotation was curated using updated data, as described previously for the original annotation (4). Comparison of the genome sequences was facilitated using the Artemis Comparison Tool (ACT) (5), which enabled the visualization of BLASTN and TBLASTX comparisons (6) between the genomes. Orthologous proteins were identified as reciprocal best matches using FASTA (7) with subsequent manual curation. Pairwise Needleman-Wunsch (8) global alignments of proteins were performed using needle program from the EMBOSS suite of tools (9).

Bacterial Mutagenesis. Culture Media. LB Lennox (LB; MO BIO Laboratories) broth or agar was used for routine growth of all E. coli or B. pseudomallei strains during genetic construct experiments. This medium was supplemented with 400 µg/mL diaminopimelic acid (DAP; LL-, DD-, and meso-isomers; Sigma) for E. coli RHO3 (10). MHB and MHA were prepared according to manufacturer's specifications (BD). YT agar [10 g/L yeast extract (Difco) and 10 g/L tryptone (Fisher Scientific)] with 15% sucrose was used for sacB-mediated B. pseudomallei merodiploid resolution. ASH consisted of 10 g/L tryptone soya broth, 15 g/L agar, 5 mg/L crystal violet, 50 mg/L neutral red, 4% glycerol, and 4 mg/L gentamicin (11). Antibiotics used with the E. coli cloning DH5 $\alpha$ (12) and mobilizer strain RHO3 (10) were 100 µg/mL ampicillin (Ap), 15 µg/mL zeocin (Zeo), and 35 µg/mL kanamycin (Km). For B. pseudomallei, we used 1,000 µg/mL Km or 2,000 µg/mL Zeo. Antibiotics were purchased from Sigma (Ap, Km) and Invitrogen (Zeo). For screening of pEXKm5-carrying B. pseudomallei merodiploids, media were supplemented with 50 µg/mL 5bromo-4-chloro-3-indolyl-β-D-glucuronic acid (Xgluc; Gold Biotechnology). Where required, media were supplemented with 4% (vol/vol) glycerol. Strains were routinely grown at 37 °C, except for manipulations such as merodiploid resolution on YT-sucrose medium and propagation of cells harboring temperature-sensitive plasmids, when bacteria were grown at 30 °C.

Construction and Integration of a BPSS1219 Expression Construct. The BPSS1219 gene was cloned into the mini-Tn7 delivery vector pPS2736. This vector was derived in two steps. First, pPS2735 was created by replacing the 16-bp SmaI-SacI fragment from the MCS of pUC18T-mini-Tn7T-Km-FRT with a s12 promoter-containing fragment, which was obtained by linker tailing using primers S12-UP and 2154. Second, pPS2735 was digested with SfiI and EcoRI, and the intervening sequences were replaced with a 147-bp SfiI-MfeI fragment from pUC57-loxP-MCS, which introduces a MCS (SacI-NruI-AgeI-KpnI-SacII-XhoI-EcoRI-ApoI-NotI-SmaI-HindIII) flanked by Cre recombinase target (loxP) sites. Next, primers 2027 and 2028 and Pfu polymerase were used to PCR amplify a 2,149-bp fragment containing BPSS1219 from 1026b (13) chromosomal DNA. The PCR fragment was adenylated with Taq polymerase, gel purified, and ligated into pCR2.1 (Invitrogen) to yield pPS2619. The 2,165-bp EcoRI fragment from pPS2619 was subsequently ligated into pPS2736 to create pPS2752. In this construct, expression of BPSS1219 is driven by the B. thailandensis s12 ribosomal promoter. The mini-Tn7 element contained on pPS2752 was inserted into the B. pseudomallei genome either by coelectroporation (1026b) or coconjugation (other clinical isolates) with helper plasmid pTNS3 (14) and mobilizer strain RHO3 (10). In coelectroporation experiments, 100 ng each of pPS2752 and pTNS3 DNA were electroporated into electrocompetent 1026b cells using previously described procedures (14). Transformation mixtures were plated on LB medium with 1,000 µg/mL Km and 4% glycerol (LBKG), and plates were incubated at 37 °C. For coconjugation experiments,

100  $\mu$ L of the respective *B. pseudomallei* recipient strain (415a, 415e, 699c, 699d, 1142a, or 1142b), 100  $\mu$ L of RHO3/pTNS3, and 100  $\mu$ L of RHO3/pPS2752 were mixed and processed as previously described (10). After an overnight conjugation, conjugation mixtures were plated on LBKG plates, and plates were incubated at 37 °C. Colonies were purified and checked for Tn7 insertion at the *glmS*-associated attachment sites using primer sets of Tn7L and BPGLMS1, BPGLMS2, or BPGLMS3, as previously described (14). For consistency, we used strains with a single mini-Tn7 insertion at the *glmS*-associated Tn7 attachment site. An exception was strain Bp562, which contains two mini-Tn7 insertions, one at *glmS2* and the second at *glmS3*.

Deletion of BPSS1239 and BPSS1240. Using the ceftazidime-susceptible strain K96243 (4) chromosomal DNA and Taq polymerase, PCR fragments were amplified and used for engineering gene deletion constructs as follows. For BPSS1239, its coding sequence was amplified using primers 1879 and 1882. The resulting 1,381-bp DNA fragment was gel purified and ligated into pCR2.1 to create pPS2568. A 1,397-bp EcoRI fragment from pPS2568 was then cloned into the EcoRI site of pEXKm5 to form pPS2569. Finally, pPS2569 DNA was digested with DraIII to delete 279 bp of the BPSS1239 coding sequence to create pPS2584. For BPSS1240, a 1,573-bp PCR amplicon obtained with primers 1884 and 1887 was ligated into pCR2.1 to create pPS2586. DNA of this plasmid was digested with HincII, which deleted 293 bp from the BPSS1240 coding sequence, creating pPS2587. A 1,296-bp EcoRI fragment from pPS2587 was then ligated with EcoRI-digested pEXKm5 to yield pPS2589. After transformation of pPS2584 (BPSS1239) and pPS2589 (BPSS1240) into E. coli mobilizer strain RHO3, the respective plasmid-borne deletions were transferred to the 1026b genome using a previously described method (10). Using this method, only  $\Delta BPSS1239$ (Bp276) and  $\triangle$ BPSS1240 (Bp307) mutants could be obtained. The presence of the correct deletions in strains Bp276 and Bp307 was checked by colony PCR using primers 1986 and 1993 (BPSS1239) or 1987 and 1988 (BPSS1240). The ΔBPSS1239  $\Delta$ BPSS1240 double-mutant Bp308 was obtained by transferring the BPSS1240 deletion allele contained on pPS2589 to the genome of Bp276.

Deletion of BPSS1219. Because BPSS1219 could not be deleted from 1026b using the above-described conventional gene replacement procedure, a rescue copy of BPSS1219 expressed from Ps12 was introduced into chromosome 1 of 1026b, and pFLPe2 (14) was used to remove the Km<sup>r</sup> marker from this strain to create the unmarked Bp483. A 656-bp PCR fragment where the entire 1,785-bp BPSS1219 coding region plus 93 bp of the upstream and 277 bp of the downstream intergenic regions were deleted was generated using splicing-by-overlap-extension (SOEing) PCR, which assembled two fragments of 351 bp (primer sets 2268 and 2279) and 326 bp (primer sets 2265 and 2280). This fragment was cloned into pGEM-T Easy (Promega), and the  $\Delta$ BPSS1219containing region was excised on a 676-bp EcoRI fragment that was cloned into the gene replacement vector pEXKm5 to form pPS2828. This plasmid was conjugally transferred to Bp483, and merodiploids selected on LB medium with 1,000 µg/mL Km and 50 µg/mL XGluc, which were then resolved on YT-sucrose-XGluc medium as previously described (10). White colonies were checked for the presence of the correct  $\Delta cBPSS1219$  allele using primers 2265 and 1979 and presence of the intact Tn7harbored copy of BPSS1219 using primers 2058 and 2205. Next, the Cre recombinase expression plasmid pCRE5 (14) was transformed into one retained Bp483 ΔcBPSS1219 mutant (Bp561) and plated on LB medium with 1,000 µg/mL Km and 0.2% rhamnose at 30 °C. Small colonies were picked and purified on the same medium at 30 °C. Excision of the loxP::BPSS1219 cassette was then verified using primers 2058 and 2205. Finally, mutants were grown at 37 °C on LB plates supplemented with 4% glycerol to cure pCRE5, which resulted in strain Bp560.

- Dance DA, Wuthiekanun V, Naigowit P, White NJ (1989) Identification of Pseudomonas pseudomallei in clinical practice: Use of simple screening tests and API 20NE. J Clin Pathol 42:645–648.
- Wuthiekanun V, Anuntagool N, White NJ, Sirisinha S (2002) Short report: A rapid method for the differentiation of *Burkholderia pseudomallei* and *Burkholderia* thailandensis. Am J Trop Med Hyg 66:759–761.
- Rutherford K, et al. (2000) Artemis: Sequence visualization and annotation. Bioinformatics 16:944–945.
- Holden MT, et al. (2004) Genomic plasticity of the causative agent of melioidosis, Burkholderia pseudomallei. Proc Natl Acad Sci USA 101:14240–14245.
- 5. Carver TJ, et al. (2005) ACT: The Artemis Comparison Tool. *Bioinformatics* 21: 3422–3423.
- Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410.
- 7. Pearson WR, Lipman DJ (1988) Improved tools for biological sequence comparison. *Proc Natl Acad Sci USA* 85:2444–2448.

- Needleman SB, Wunsch CD (1970) A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol 48: 443–453.
- Rice P, Longden I, Bleasby A (2000) EMBOSS: The European Molecular Biology Open Software Suite. *Trends Genet* 16:276–277.
- López CM, Rholl DA, Trunck LA, Schweizer HP (2009) Versatile dual-technology system for markerless allele replacement in *Burkholderia pseudomallei*. *Appl Environ Microbiol* 75:6496–6503.
- Ashdown LR (1979) An improved screening technique for isolation of Pseudomonas pseudomallei from clinical specimens. Pathology 11:293–297.
- 12. Liss L (1987) New M13 host: DH5αF' competent cells. Focus 9:13.
- DeShazer D, Brett PJ, Carlyon R, Woods DE (1997) Mutagenesis of Burkholderia pseudomallei with Tn5-OT182: Isolation of motility mutants and molecular characterization of the flagellin structural gene. J Bacteriol 179:2116–2125.
- Choi KH, et al. (2008) Genetic tools for select-agent-compliant manipulation of Burkholderia pseudomallei. Appl Environ Microbiol 74:1064–1075.

415 699 1142 3351 4236 4241



|        | Region of ge   | Size of genomic        |               |
|--------|----------------|------------------------|---------------|
| Strain | aCGH estimate  | Actual loss defined by | deletion (kb) |
|        |                | PCR and sequencing     |               |
| 415    | 14660861716130 | 14658231716237         | 250.4 kb      |
| 699    | 15311831840758 | 15311131840924         | 309.8 kb      |
| 1142   | 15778811850326 | 15777861850350         | 272.6 kb      |
| 3351   | 14773901746859 | 14767131747554         | 270.8 kb      |
| 4236   | 14990231716931 | 14988951716991         | 218.1 kb      |
| 4241   | 16441361789203 | 16442201789681         | 145.5 kb      |

**Fig. S1.** PCR confirmation of flanking breakpoint and summary table confirming regions of deletion in variant *B. pseudomallei* strains. PCR primers were designed to amplify across the predicted breakpoints in each variant strain. Successful PCR products of the expected sizes were obtained in all variant strains (V) but not initial/parental (I) strains. Lanes 1 and 14: 1-kb molecular weight ladder. Strains are labeled as variant/initial in the following order: 415, 699, 1142, 3351, 4236, and 4241, respectively. PCR products were directly sequenced to confirm the specific region of deletion.

| Table                                         | S1. | Minimal | common | region | of | deletion | comprising | 49 | genes | in | six |
|-----------------------------------------------|-----|---------|--------|--------|----|----------|------------|----|-------|----|-----|
| ceftazidime-resistant B. pseudomallei strains |     |         |        |        |    |          |            |    |       |    |     |

| Gene      | Putative function                                             |
|-----------|---------------------------------------------------------------|
| BPSS1217  | Conserved hypothetical protein                                |
| BPSS1218  | Putative methyl-accepting chemotaxis protein                  |
| BPSS1219  | Putative penicillin-binding protein                           |
| BPSS1220  | Putative L-arabinose-binding periplasmic protein precursor    |
| BPSS1221  | Putative short-chain dehydrogenase/oxidoreductase             |
| BPSS1222  | Putative cationic exchange protein                            |
| BPSS1223  | Putative metal-dependent hydrolase                            |
| BPSS1224  | Exported protein                                              |
| BPSS1225  | Membrane protein                                              |
| BPSS1226  | Hypothetical protein                                          |
| BPSS1227  | Putative 3-demethylubiquinone-9 3-methyltransferase           |
| BPSS1228  | Cora-like Mg <sup>2+</sup> transporter protein                |
| BPSS1229  | Deor family regulatory protein                                |
| BPSS1230  | Major Facilitator Superfamily protein                         |
| BPSS1231  | Exported protein                                              |
| BPSS1232  | ABC transporter periplasmic binding protein                   |
| BPSS1233  | ABC transporter permease protein                              |
| BPSS1234  | ABC transporter permease protein                              |
| BPSS1235  | Putative zinc-binding xvlitol/sorbitol dehydrogenase          |
| BPSS1236  | Sugar transporter ATP-binding protein                         |
| BPSS1237  | AraC family transcriptional activator protein                 |
| BPSS1238  | Putative xylulokinase                                         |
| BPSS1239  | Putative penicillin-binding protein                           |
| BPSS1240  | Putative penicillin-binding protein                           |
| RPSS1241  | Putative assimilatory nitrate reductase                       |
| BPSS1242  | Putative nitrite reductase [NAD(P)H] small subunit            |
| RPSS1243  | Putative nitrite reductase [NAD(P)H], sinal subunit           |
| BPSS1244  | Putative nitrate transporter                                  |
| BPSS1244  | Putative uroporphyrin-III c-methyltransferase                 |
| BPSS1246  | Putative response regulator transcriptional regulator protein |
| BPSS1247  | Putative nitrate transporter component                        |
| BPSS1248  | GTP cyclobydrolase I                                          |
| BPSS1240  | Linoprotein                                                   |
| BPSS1240  | Putative acetylpolyamine aminohydrolase                       |
| BPSS1250  | Putative N-carbamovi-i-amino acid aminohydrolase              |
| BPSS1257  | Major Facilitator Superfamily protein                         |
| BPSS1252  | Lys family transcriptional regulator                          |
| BPSS1255  | Hypothetical protein (nseudogene)                             |
| BPSS1254  | Lys family transcriptional regulator                          |
| BDSS1255  | Short-chain debydrogenace                                     |
| BPSS1250  | Putative CoA transferase                                      |
| BDSS1257  | Putative con transferase                                      |
| BDSS1250  | Putative zinc-binding denydrogenase                           |
| DF 551259 | Exported motallopantidase                                     |
| BPSS1260  | Conserved hypothetical protein                                |
| BDCC1262  | Exported protein                                              |
| DCC1762   | Mombrana protein                                              |
| DF 331203 | memorane protein                                              |
| DF 331204 | OmpA ranniy memorane protein                                  |
| 84221502  | hypothetical protein                                          |

PNAS PNAS

| Primer, strain, or plasmid name    | Relevant properties                                                     | Source     |
|------------------------------------|-------------------------------------------------------------------------|------------|
| Genetic constructs for BPSS1219 de | eletion and expression; verification of Tn7 insertions                  |            |
| S12-UP                             | 5'-GAGCTG <i>TTGACT</i> CGCTTGGGATTTTCG                                 | (1)        |
|                                    | GAATATCATGCCGGGTGGGCC*                                                  |            |
| 2154                               | 5′-GGCCCACCCGGC <i>ATGATATTC</i> CGAAA                                  | This study |
|                                    | ATCCCAAGCGAGTCAACAGCTCAGCT*                                             |            |
| 1879                               | 5'-CGGCGATTTGCGCTTCG                                                    | This study |
| 1882                               | 5'-CGCGATCGGATCGCTGTC                                                   | This study |
| 1884                               | 5'-TGCTCGCGCTCCTCTGC                                                    | This study |
| 1887                               | 5'-ATGATCTCCGCCCATGCG                                                   | This study |
| 2280                               | 5'- <b>CATTCGTCAGATCTTTCAAC<u>G</u>ATATC</b> GAA                        | This study |
|                                    | GCCCGCCGACGCGC <sup>†</sup>                                             |            |
| 2279                               | 5'-CGTTGAAAGATCTGACGAATG                                                | This study |
| 1986                               | 5'-AGGCACGCATGTATCTGACG                                                 | This study |
| 1993                               | 5'-CAACATCGACAACGACAACGC                                                | This study |
| 1987                               | 5'-CCTGTACCTGAAGCGCTGGAT                                                | This study |
| 1988                               | 5'-GTATAGACGTCCGCGAGTTGC                                                | This study |
| 1979                               | 5'-CGCTCGCCGTTTCACGCC                                                   | This study |
| 2265                               | 5'-GAGCGTGAAGTGCTTGTC                                                   | This study |
| 2268                               | 5'GTGGCGCGTAGAGTGACC                                                    | This study |
| Tn7L                               | 5'-ATTAGCTTACGACGCTACACCC                                               | (2)        |
| BPGLMS1                            | 5'-GAGGAGTGGGCGTCGATCAAC                                                | (1)        |
| BPGLMS2                            | 5'-ACACGACGCAAGAGCGGAATC                                                | (1)        |
| BPGLMS3                            | 5'-CGGACAGGTTCGCGCCATGC                                                 | (1)        |
| 2058                               | 5'-CTGGGTGTAGCGTCGTAAGC                                                 | This study |
| 2205                               | 5'-GGGCTGCAGGAATTGATAAC                                                 | This study |
| 2027                               | 5'-CAGCCAATCCAGACGAAATC                                                 | This study |
| 2028                               | 5'-ATTGCGAGGGGTTCCTAAAG                                                 | This study |
| Confirmation of MCR deletion (1-k  | b region between BPSS1245 and BPSS1246)                                 |            |
| Forward                            | 5'-ATGAACACGATGGGCAAAGT                                                 | This study |
| Reverse                            | 5'-GATCGGCTTGTCGGTGTC                                                   | This study |
| Confirmation of breakpoint regior  | ns in variant strains                                                   |            |
| 415-F                              | 5'-GTATTCCGTCGCGGCAAG                                                   | This study |
| 415-R                              | 5'-CATCGAGCAGCAGGTGTG                                                   | This study |
| 699-F                              | 5'-AGTGCGAGGTGAACGAACA                                                  | This study |
| 699-R                              | 5'-AACGAAGGACGCATCACAC                                                  | This study |
| 1142-F                             | 5'-CGTATAGAGGCCGATCTTGC                                                 | This study |
| 1142-R                             | 5'-CCGCAGATGATGTAGTCGAA                                                 | This study |
| 3351-F                             | 5′-AGCCGCCCGAAGAAGAAC                                                   | This study |
| 3351-R                             | 5′-CGTCCGAAAGCAGTCACAG                                                  | This study |
| 4236-F                             | 5′-GCAGAACGAAGGCTACCG                                                   | This study |
| 4236-R                             | 5'-GACGAGCAGGTGAAAGTGC                                                  | This study |
| 4241-F                             | 5'-GACCCGCAAGTTTGTATTGG                                                 | This study |
| 4241-R                             | 5'-GCGCAGATCCTTCAGTTGAT                                                 | This study |
| BPSS0946/penA sequencing           |                                                                         |            |
| 90L                                | 5'-ATTCGCACGCACTCCTGT (-110 bp                                          | This study |
|                                    | upstream of BPSS0946/penA)                                              |            |
| 1256R                              | 5′-GTGAGCACGCGGATGAGC (+168 bp                                          | This study |
|                                    | downstream of BPSS0946/penA)                                            |            |
| Strain B. pseudomallei             |                                                                         |            |
| 1026b                              | Clinical isolate and common laboratory strain                           | (3)        |
| Bp276                              | 1026b <i>∆BPSS1239</i>                                                  | This study |
| Вр307                              | 1026b <i>∆BPSS1240</i>                                                  | This study |
| Bp308                              | 1026b <i>∆BPSS1239 ∆BPSS1240</i>                                        | This study |
| Bp478                              | Km <sup>r</sup> ; 415e::mini-Tn <i>7</i> T- <i>FRT-nptll-FRT-Ps12-</i>  | This study |
|                                    | <i>loxP-BPSS1219-loxP</i> from pPS2752 <sup>‡</sup>                     |            |
| Bp480                              | Km <sup>r</sup> ; 699d::mini-Tn <i>7</i> T- <i>FRT-nptll-FRT-Ps12-</i>  | This study |
|                                    | loxP-BPSS1219-loxP from pPS2752                                         |            |
| Bp483                              | 1026b::mini-Tn7T-FRT-Ps12-loxP-BPSS1219-                                | This study |
|                                    | loxP from pPS2752                                                       |            |
| Bp484                              | Km <sup>r</sup> ; 1142b::mini-Tn <i>7</i> T- <i>FRT-nptll-FRT-Ps12-</i> | This study |
|                                    | loxP-BPSS1219-loxP from pPS2752                                         |            |
| Bp504                              | Km'; 415a::mini-Tn7T-FRT-nptll-FRT-Ps12-                                | This study |
|                                    | loxP-BPSS1219-loxP from pPS2752                                         |            |

## Table S2. Primers, bacterial strains and plasmids used in this study

PNAS PNAS

| Table S2. Cont.                          |                                                                                                                     |            |
|------------------------------------------|---------------------------------------------------------------------------------------------------------------------|------------|
| Primer, strain, or plasmid name          | Relevant properties                                                                                                 | Source     |
| Bp506                                    | Km <sup>r</sup> ; 699c::mini-Tn7T-FRT-nptll-Ps12-loxP-<br>BPSS1219-loxP from pPS2752                                | This study |
| Bp508                                    | Km <sup>r</sup> ; 1142a::mini-Tn7T- <i>FRT-nptll-FRT-Ps12-</i><br><i>loxP-BPSS1219-loxP</i> from pPS2752            | This study |
| Bp561                                    | 1026b::mini-Tn7T-FRT-Ps12-loxP-BPSS1219-<br>loxP ΔcBPSS1219 <sup>§</sup>                                            | This study |
| Bp560                                    | 1026b::mini-Tn7T-FRT-Ps12-loxP; ∆cBPSS1219                                                                          | This study |
| Bp562                                    | Bp560::mini-Tn7T-FRT-npt/I-FRT-Ps12-loxP-<br>BPSS1219-loxP <sup>11</sup>                                            | This study |
| Plasmids                                 |                                                                                                                     |            |
| pEXKm5                                   | Km <sup>r</sup> ; gene replacement vector                                                                           | (4)        |
| pUC57- <i>loxP</i> -MCS                  | Ap <sup>r</sup> ; contains a multiple cloning site (MCS)<br>flanked by <i>loxP</i> sites (synthesized by GenScript) | This study |
| pUC18T-mini-Tn <i>7</i> T-Km- <i>FRT</i> | Ap <sup>r</sup> Km <sup>r</sup> ; mini-Tn7 delivery vector                                                          | (1)        |
| pPS2735                                  | Ap <sup>r</sup> Km <sup>r</sup> ; pUC18T-mini-Tn <i>7</i> T-Km- <i>FRT</i> with <i>Ps12</i>                         | This study |
| pPS2736                                  | Ap <sup>r</sup> Km <sup>r</sup> ; pUC18T-mini-Tn7T-Km- <i>FRT-Ps12-</i><br><i>loxP</i> -MCS- <i>loxP</i>            | This study |
| pPS2619                                  | Ap <sup>r</sup> Km <sup>r</sup> ; pCR2.1 (Invitrogen) with 2,149-bp<br><i>BPSS1219</i> PCR fragment                 | This study |
| pPS2752                                  | Ap <sup>r</sup> Km <sup>r</sup> ; pPS2736 with 2,165-bp EcoRI fragment<br>from pPS2619                              | This study |
| pPS2568                                  | Ap <sup>r</sup> Km <sup>r</sup> ; pCR2.1 with 1,381-bp <i>BPSS1239</i><br>PCR fragment                              | This study |
| pPS2569                                  | Km <sup>r</sup> ; pEXKm5 with 1,397-bp EcoRI fragment<br>from pPS2568                                               | This study |
| pPS2584                                  | Km <sup>r</sup> ; pPS2569 with 279-bp Dralll fragment deleted from <i>BPSS1239</i>                                  | This study |
| pPS2586                                  | Ap <sup>r</sup> Km <sup>r</sup> ; pCR2.1 with 1,573-bp <i>BPSS1240</i><br>PCR fragment                              | This study |
| pPS2587                                  | Ap <sup>r</sup> Km <sup>r</sup> ; pPS2586 with 293-bp Hincll fragment<br>deleted from <i>BPSS1240</i>               | This study |
| pPS2589                                  | Km <sup>r</sup> ; pEXKm5 with 1,296-bp EcoRI fragment<br>from pPS2587                                               | This study |
| pPS2828                                  | Km <sup>r</sup> ; pEXKm5 with 676-bp EcoRI fragment $\Delta BPSS1219$                                               | This study |

Ap, ampicillin; Km, kanamycin; Ps12, B. thailandensis ribosomal s12 gene promoter; Zeo, zeocin.

\*Italicized letters indicate B. thailandensis ribosomal s12 gene promoter sequences.

<sup>†</sup>The underlined sequence represents an EcoRV restriction site, and the bold sequences signify overlap of primers 2279 and 2280 for SOEing PCR.

<sup>‡</sup>Unless otherwise stated, all mini-Tn7 elements were integrated at the *glmS2*-associated Tn7 attachment site. <sup>§</sup>*cBPSS1219* denotes the chromosomal BPSS1219 gene.

<sup>¶</sup>The mini-Tn7T-FRT-nptII-FRT-Ps12-loxP-BPSS1219-loxP was integrated at the glmS3-associated Tn7 attachment site.

1. Choi KH, et al. (2008) Genetic tools for select-agent-compliant manipulation of Burkholderia pseudomallei. Appl Environ Microbiol 74:1064–1075.

2. Choi KH, et al. (2005) A Tn7-based broad-range bacterial cloning and expression system. Nat Methods 2:443-448.

3. DeShazer D, Brett PJ, Carlyon R, Woods DE (1997) Mutagenesis of Burkholderia pseudomallei with Tn5-OT182: Isolation of motility mutants and molecular characterization of the flagellin structural gene. J Bacteriol 179:2116–2125.

4. López CM, Rholl DA, Trunck LA, Schweizer HP (2009) Versatile dual-technology system for markerless allele replacement in Burkholderia pseudomallei. Appl Environ Microbiol 75: 6496–6503.

SANG SAL