Supporting Information

Clark et al. 10.1073/pnas.1114194108

SI Materials and Methods

Materials. MRT67307 was synthesized by Natalia Shpiro in the Medical Research Council Protein Phosphorylation Unit. 5Z-7oxozeaenol was purchased from BioAustralis Fine Chemicals. Pharmacological inhibitors were dissolved in DMSO and stored as 10 mM solutions at -20 °C. LTA, Pam₃CSK₄, poly(I:C), R837, and CpG-type B (ODN1826) were purchased from Invivogen and LPS (*Escherichia coli* strain O55:B5) was from Alexis Biochemicals. Mouse IL-1 α was purchased from Sigma-Aldrich. All antibodies used for immunoblotting and immunoprecipitation have been described previously with the exception of anti-IKK β and anti-NEMO (1, 2). Antibodies were raised in sheep against the entire IKK β (S189C, bleed 1) and NEMO (S190C, bleed 2) human proteins in sheep and affinity purified by the Division of Signal Transduction Therapy, University of Dundee.

Mice. MyD88^{-/-}, TIR-domain-containing adapter-inducing IFN β (TRIF)^{-/-}, and TRAF associated NF κ B activator (TANK)^{-/-} mice were described previously (3–5). C57BL/6, MyD88^{-/-}, and TRIF^{-/-} mice were bred at the University of Dundee, whereas TANK^{-/-} were bred at Osaka University under specific pathogen-free conditions in accordance with local regulations. C3H/HeJ mice were purchased from Charles River Laboratories. Work was approved by local ethical review and was performed with a UK Home Office project license.

Cell Culture. BMDMs were differentiated for 7 d in DMEM supplemented with 5 ng/mL recombinant M-CSF (R&D Systems) or 20% L929-conditioned medium as a source of M-CSF, 2 mM glutamine, 10% FCS, and the antibiotics penicillin and streptomycin. TBK1- and IKK ϵ -deficient mouse embryonic fibroblasts (MEFs) and control MEFs were cultured in DMEM supplemented with 10% FCS, 2 mM glutamine, penicillin, and streptomycin.

- Clark K, Plater L, Peggie M, Cohen P (2009) Use of the pharmacological inhibitor BX795 to study the regulation and physiological roles of TBK1 and IkappaB kinase epsilon: A distinct upstream kinase mediates Ser-172 phosphorylation and activation. J Biol Chem 284:14136–14146.
- Clark K, et al. (2011) Novel cross-talk within the IKK family controls innate immunity. Biochem J 434:93–104.

Cell lysis and Immunoblotting. Pharmacological inhibitors dissolved in DMSO, or an equivalent volume of DMSO for control incubations, were added to the culture medium of macrophages or fibroblasts. After 1 h at 37 °C, the cells were stimulated with LTA, Pam₃CSK₄, poly(I:C), LPS, R837, CpG, or IL-1a as described in the figure legends (Figs. 1-5 and Figs. S1-S4). Thereafter, the cells were rinsed in ice-cold PBS and extracted in lysis buffer (50 mM Tris/HCl pH 7.4, 1 mM EDTA, 1 mM EGTA, 50 mM NaF, 5 mM sodium pyrophosphate, 10 mM sodium β-glycerol 1phosphate, 1 mM DTT, 1 mM sodium orthovanadate, 0.27 M sucrose, 1% (vol/vol) Triton X-100, 1 mg/mL aprotinin, 1 mg/mL leupeptin, and 1 mM phenylmethylsulphonyl fluoride). Cell extracts were clarified by centrifugation at $14,000 \times g$ for 10 min at 4 °C and protein concentrations determined using the Bradford assay. To detect proteins in cell lysates, 20 µg of protein extract was separated by SDS/PAGE. After transfer to PVDF membranes, proteins were detected by immunoblotting and visualized by treating the blots with ECL (Amersham) followed by autoradiography.

Immunoprecipitation. To immunoprecipitate endogenous TBK1, NEMO, and IKK β , 1 mg of cell protein extract was incubated with 10 µg of antibody for 2 h at 4 °C, followed by the addition of Protein G Sepharose. After mixing for 30 min at 4 °C, the immunocomplexes were washed three times in lysis buffer, denatured in SDS, and subjected to SDS/PAGE followed by immunoblotting.

Statistical Analysis. Data are presented as the mean \pm SEM. Statistical significance of differences between experimental groups was assessed using the Student *t* test and were considered significant if P < 0.05.

- Adachi O, et al. (1998) Targeted disruption of the MyD88 gene results in loss of IL-1and IL-18-mediated function. *Immunity* 9:143–150.
- Yamamoto M, et al. (2003) Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science 301:640–643.
- Kawagoe T, et al. (2009) TANK is a negative regulator of Toll-like receptor signaling and is critical for the prevention of autoimmune nephritis. Nat Immunol 10:965–972.

Fig. S1. Activation of TBK1 and IKK ε by TLR ligands. (*A*) BMDMs were stimulated for 30 min without (–) or with (+) 100 ng/mL LPS and the cells lysed. TBK1 and IKK ε were immunoprecipitated separately from the cell extracts, washed and assayed for kinase activity without (–) or with (+) 1 μ M of MRT67307 or 1 μ M of the IKK β inhibitor BI605906 as described under *Materials and Methods*. Reactions were terminated in SDS, the proteins resolved by SDS/PAGE, stained with Coomassie Blue (*Middle*), and the gels autoradiographed (*Top*). An aliquot of each immunoprecipitation was also immunobletted for TBK1 and IKK ε as a loading control (*Bottom*). (*B* and C) BMDMs were stimulated for the times indicated with 2 μ g/mL LTA (*B*) or 2 μ g/mL R837 (C). The catalytic activities of TBK1 and IKK ε were then measured as described in *A* and quantitated by phosphorimager analysis (mean \pm SEM, n = 3). Cell extract (20 μ g protein) was also immunobletted with the antibodies indicated (bottom three panels).

Fig. 52. Effects of prolonged TLR signaling on the IKK-related kinases. (*A*) RAW264.7 cells were stimulated with 100 ng/mL LPS for the times indicated. TBK1 and IKK ε were immunoprecipitated and their catalytic activities were measured by incubating the immunoprecipitated kinases with GST-IRF3 and Mg[γ -³²P]-ATP as described in *Materials and Methods* (*Upper*, second and third panels). Cell extract (20 µg protein) was also immunoblotted with antibodies that recognize TBK1 phosphorylated at Ser172 to monitor activation by a second independent method (*Upper*). (*Lower* four panels) A total of 20 µg cell extract protein was immunoblotted with the antibodies indicated. (*B*) RAW264.7 cells were stimulated for 16 h with 1 µg/mL Pam₃CSK₄, 2 µg/mL LTA, 10 µg/mL poly(I:C), 100 ng/mL LPS, 2 µg/mL R837, 1 µg/mL CL097, or 2 µM CpG. Cell extracts (20 µg protein) were immunoblotted for IKK ε or TBK1 and for glyceraldehyde 3-phosphate dehydrogenase (GAPDH) as a loading control.

A TLR1/2: Pa	am ₃ CSK ₄			
	WT	MyD88-/-	WT	TRIF-/-
t _(min)	0 20 30 60 22	° 1030 60 120	0 20 30 60 20	0 20 30 60 25
IP IKKE activity				
IP TBK1 activity		from one only not over		
pS172-TBK1				
pS933-p105				
TBK1				
B TLR3: poly	(I:C)			
IP IKKE activity				
IP TBK1 activity				
pS172-TBK1				
pS396-IRF3				
pS933-p105				
TBK1				
C TLR7: R83	7			
IP IKK ϵ activity				
IP TBK1 activity				
pS172-TBK1				
pS933-p105				
TBK1				
D TLR9: CpG				
IP IKKE activity				
IP TBK1 activity				
pS172-TBK1				
p\$933-p105				
TBK1				

Fig. S3. Activation of TBK1 and IKK ϵ in MyD88- and TRIF-deficient macrophages. BMDMs from MyD88^{-/-} or TRIF^{-/-} mice or WT littermates were stimulated for the times indicated with (A) 1 µg/mL Pam₃CSK₄, (B) 10 µg/mL poly(I:C), (C) 2 µg/mL R837, or (D) 2 µM CpG. The catalytic activities of TBK1 and IKK ϵ were measured as described in Fig. S1 (top two panels) and *Materials and Methods*. Cell extracts (20 µg protein) were also immunoblotted with the indicated antibodies (A, C, and D, bottom three panels and B, bottom four panels).

Fig. 54. Ablation of the IKK-related kinases enhances the IL-1-stimulated activation of the canonical IKKs in MEFs. Control and TBK1/IKK ε DKO MEFs were stimulated with 0.5 ng/mL (*A*) or 5 ng/mL (*B*) IL-1 α for the times indicated and the cell extracts were immunoblotted with the indicated antibodies. In *B*, note that the IL-1 α -stimulated decrease in the electrophoretic mobility of IKK β was reduced in TBK1/IKK ε DKO MEFs (compare lanes 2–4 with 6–8).

<